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Abstract — Hamiltonian monodromy —a topological property of the bundle of regular tori of a
static Hamiltonian system which obstructs the existence of global action-angle variables— occurs
in a number of integrable dynamical systems. Using as an example a simple integrable system of
a particle in a circular box with quadratic potential barrier, we describe a time-dependent process
which shows that monodromy in the static system leads to interesting dynamical effects.

Copyright © EPLA, 2008

Introduction. — One of the pleasures of research in
physics is in examining a simple problem and finding some-
thing new and interesting in it. We also feel particularly
motivated to look for a way of turning an abstract math-
ematical concept into a physical phenomenon that can
potentially be observed experimentally. Both aspects are
present in this letter.

We study here a very simple integrable Hamiltonian
system that possesses the property called ‘Hamiltonian
monodromy’. This property is associated with the absence
of global action-angle variables for the classical system,
and with a local defect in the lattice of the joint spectrum
of mutually commuting operators for the corresponding
quantum system. We examine monodromy in a new
perspective: we show that monodromy leads to nontrivial
time-dependent evolution of the system. We also try
to present the results so that physicists who are not
familiar with Hamiltonian monodromy, a phenomenon
known currently within a limited circle of specialists, can
reproduce the calculation, and consider how our model
setup can be transformed in order to observe the effect.

Monodromy was introduced in [1] as a topological prop-
erty of the family of regular invariant tori of certain
autonomous integrable Hamiltonian systems with two or
more degrees of freedom. A number of simple classical
mechanical systems, including the spherical pendulum,
the Lagrange top, and others [2] are known to have this
property. Quantum monodromy [3,4] was discovered in
many fundamental quantum systems, such as the hydro-
gen atom in external fields [5-7], the Hj molecular ion [8],

(3)E-mail: jbdelo@um.edu

systems with coupled angular momenta [9], rotating dipo-
lar molecules in external electric field [10,11], rovibra-
tional structure in molecules [12-17], collective vibrations
of nuclei [18], or of Bose condensates [19] —to name
a few.

Monodromy prevents classical and corresponding quan-
tum systems from having global action-angle variables and
global quantum numbers, respectively. In most cases, the
presence of quantum monodromy was demonstrated by
constructing the joint spectrum of mutually commuting
observables, the energy and the angular momentum in
the simplest case. In the (angular momentum, energy)
domain, this spectrum forms a locally regular lattice of
points with defects [3,4,9,20-23] which are the finger-
prints of quantum and (via the correspondence princi-
ple) of classical Hamiltonian monodromy. Universality
of such patterns in systems with monodromy reflects
the topological origin of the phenomenon, and turns out
to be useful in the analysis of complicated quantum
spectra [14,16].

All of the above are “static’ manifestations of
monodromy in an unperturbed autonomous system.
In this work we discuss a way to probe monodromy
dynamically. We apply a small specific time-dependent
perturbation to a static system with monodromy and we
monitor the temporal evolution of the perturbed system.
Since monodromy is a topological phenomenon, we look
for interesting results that are (within certain limits)
insensitive to the concrete form of the perturbation.

A simple system with monodromy. — All prop-
erties of the classical mechanical system studied here
can be computed analytically in terms of elementary
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functions. Its smooth analogue! is known as the “cham-
pagne bottle” [24] and it models such physical systems
as doubly degenerate vibrations of a molecule near an
unstable linear configuration [14-16]. Consider a classi-
cal particle of mass g moving in two dimensions without
friction inside a circular box of radius pyax with an axially-
symmetric quadratic potential barrier

2
—aq /23
Voz{

when |g| < pmax,

(1)

00, when |q| > pmax,
where g= (z,y) are Cartesian coordinates of the parti-
cle, and a > 0. Denoting canonically conjugate momenta
P = (ps, py), the Hamiltonian of the system is

1

Ho(p,q) = —p* + Vo(q).

o (2)

This system is scalable and with no loss of generality
we will assume p=a=1; we will also use ppax =3 for
all concrete computations. Denoting the four-vector
(z,9y,pz,py)T as u, the general solution to the linear
equations of motion between the bounces, i.e., so long as
P = 14| < pmax, is

u(t) = i ' 590 a(m, E), (3a)

where S%; and S%, are commuting matrices

cosht 0 sinht 0
0 cosht 0 sinht
sinht 0 cosht 0 ’
0 sinht 0 cosht

t o _
SHO_

(3b)

and

6 R? 0 . 6 cos ¢ —sin¢
SM_(O R with R?= o cosé | (3¢)

Here t and ¢ denote time and polar angle tan~!(y/x),
respectively. Components of the initial vector @ are
restricted by the conservation laws of energy Hy(p, q) and
angular momentum M (p, q) = zp, — yp, with respective
values E and m. Since u depends only on (E,m), two
more constants (o, ) are required to characterize the
initial phase-space position of the particle at ¢ =0; the
meaning of (¢, ¢p) will become clear later. When the
particle reaches p= pmax, @ hardwall reflection reverses
the radial component p, of p, and the constants ¢y and
¢o change. A typical trajectory is shown in fig. 1.

To uncover monodromy of this classical mechanical
system, we can introduce local action-angle variables that

1Compared with a smooth confining potential (such as
Vo =—aq?*/2+bg*/4) the hard wall (1) has the effect of truncating
the outer part of a smooth torus to a cylinder, but we can recover
topological tori by identifying points on the two edges of the cylinder.
With this identification, all trajectories are continuous. A represen-
tation of the initial and final torus is shown in fig. 5.

Pmax : Pmax = 3
i ' I u =Qq= ].
] ‘ . m=2sin8N
(| EEEEEEETTNNNC SRR - F = —cos 8
| i B Q = 27‘(’/60
O(m, E I
—Pmax : \ ‘:L.
— Prmax 0 Pmax

Fig. 1: Configuration space image of an unperturbed trajectory
of a particle bouncing around a cylindrical barrier in eq. (1).

Fig. 2: Image of the energy-momentum map of the classical
system with Hamiltonian Ho (2). Light shade represents
allowed set of regular (m, E) values, solid lower boundary
corresponds to relative equilibria, the origin (0,0) of the energy-
momentum plane is an isolated critical (m,E) value. Bold
directed circle shows monodromy circuit I' (4) surrounding
the origin: (a) I" within the set of regular (m, E) values, (b)
snapshot time marks (cf fig. 3).

define coordinates on regular invariant tori A labelled
by (angular momentum, energy) values (m, E). However,
extending these coordinates globally to all regular tori
Ay, g is impossible: as we continue them along specific
nontrivial closed paths I' in the classically-allowed domain
of regular (m, E) values (see fig. 2), we come back with
a coordinate system which differs from the original one
because one of our actions turns out to be a multivalued
function of (m, E'). We return to this phenomenon in more
detail at the end of the letter.

Perturbed system. — The central idea of this work
is that in order to observe a dynamical manifestation
of monodromy, we should follow the motion of a family
of trajectories, which we may call non-interacting parti-
cles. Furthermore, additional forces are applied which
change the angular momentum m and energy E of each
particle. Specifically, we want to perturb the system with
Hamiltonian Hy so that m and E of every particle evolve
continuously around a closed counterclockwise directed
path T encircling the origin of the (m, E) plane as shown
in fig. 2. We call I' a monodromy circuit.

In this paper we will not specify the perturbation as
a force or as an additional term in the Hamiltonian, but
instead we will characterize the perturbation by its desired
results, i.e. by the desired flow in phase space. We assume
that it is possible to perturb the system in such a way
that all the particles in the family have the same value of
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Fig. 3: A single trajectory and the instantaneous location of a family of particles in (z,y)-space shown in snapshots at time
t=tr =>5,10,...,60, cf fig. 2 and eq. (4). The dashed circle indicates the currently forbidden region surrounding =y = 0. The
instantaneous location of one selected particle is marked by the large circle. The full trace of its trajectory for 0 <t < ¢x is shown
in each picture with the most recent section t;_1 <t < tr emphasized. Also shown are snapshots of the location of a family of
particles, which all begin on the positive z-axis with m =0 and £ = —1, and which evolve around the same monodromy circuit.
By t =5, they form a loop in the (z,y)-plane, and as ¢ increases, the loop steadily expands. After ¢ = 30, the loop goes around
the forbidden region. The evolution shows up most clearly in a movie, which was first presented at the 2006 APS DAMOP

conference, and which is provided online (pearl.gif 1.5M).

angular momentum m(¢) and energy E(t) at every instant
t, and furthermore, perturbed trajectories are given by
eq. (3) with (angular momentum, energy) values (m, E)
in eq. (3a) varying with time.

One can think of a flock of automobiles racing in the
circular stadium around the parabolic hill (1). All start
with the same value of (m, E) but at different positions
(to,¢0) (see eq. (3)) and each automobile is required
to use its engine and steering in such a way that the
instantaneous values m(t) and E(t) evolve synchronously
in the desired fashion prescribed by I.

Behaviour of the perturbed system. — Let a
complete tour on I' occur within the time interval [ty, tf] =
[0,60]. Taking 2 =27/60 and a particular circuit

T:[0,60] —R?: ¢ (gg;) - (E?;;%i) . @)

let particles begin with m(0) =0 and F(0) <0, and let
m(t) and E(t) evolve along I' until the final time ¢; = 60,
when m(60) =m(0) =0 and E(60) = E(0).

One such particle (represented by the large hollow
circle) is followed in fig. 3. Beginning with y(0) = p,(0) =0,
2(0) = pmax, m(0) =0, E(0) = —1, which determine p,(0),
the particle is moving initially on a radial line, climb-
ing up the potential-energy barrier. As m(t) increases,
the particle begins moving around the enclosure counter-
clockwise. As F(t) increases, the particle bounces in ever
larger leaps, and then when m(t) decreases, the pericen-
tre of the path between bounces gets ever closer to the
origin (x=y=0). At t=30, m(t) passes through zero
while E(t) >0, and at that instant the velocity of the
particle points directly to (or from) the origin. Then with
m(t) <0 it begins bouncing clockwise. As E(t) decreases,
the angle subtended between bounces gets smaller, and

finally at ¢t =60, m(t) =0, E(t) = F(0) = —1, the particle
is again bouncing on a radial line between the hard wall
and the inner turning point.

Let us now launch a family of particles (hollow dots
in fig. 3). Every particle begins with y(0)=p,(0)=0,
m(0) =0, and E(0)=-1, but they begin at different
locations on the positive z-axis, between the inner turning
point and ppayx, while the magnitude of p,(0) is dictated
by the energy F(0). Thus at ¢t =0 all particles are moving
either inward (p,(0) <0) or outward (p,(0)>0) on a
straight radial line. When m(¢) increases, this family of
particles forms in the (z, y)-plane a continuous closed loop
with one point always touching the wall.

The essential result. — Now here is the important
result. As m and E continue around I, the loop expands
continuously. At the end (¢=60), all particles return to
negative energy and zero angular momentum, so they are
all bouncing on straight radial lines between their inner
turning point and the wall. However, the loop of particles
now encloses the classically forbidden region surrounding
the origin and no isoenergetic deformation could turn
this loop into the initial loop! We observe, therefore, a
topological transformation of the loop of initial conditions.

This result becomes quite remarkable once we realize
that for any closed “placebo” circuit I within the domain
of regular (m, F) values, which starts with the same m(0)
and E(0) but which does not encircle (0,0) (i.e., IV is
homotopic to a point), the topology of the loop will not
change. Certainly, the loop may change its shape, it may
end up at a different location, and individual particles may
end up in different places on it, but the loop will remain
homotopically equivalent to the initial loop.

The time-dependent phenomenon, in which an initial
loop of particles evolves continuously in time into a

24003-p3



J. B. Delos et al.

topologically different loop, is a dynamical manifestation
of Hamiltonian monodromy. It is a robust phenomenon
that does not depend on the specific realization of the
monodromy circuit I' in the (m,FE) plane as long as
I' encircles the isolated critical value (0,0), and it is
determined by the topological properties of the family of
regular tori of the unperturbed (static) system governed
by Hy(p, q). These properties are in turn defined by the
type of the corresponding singular fibre Ag o, i.e., by the
monodromy of the unperturbed system. In the rest of this
letter, we describe in more detail how the evolution of
particles is calculated, and we uncover why the resulting
transformation is related to Hamiltonian monodromy.

Computation of perturbed trajectories. — We give
more details on computing fig. 3. We assume that under
our hypothetical perturbation, trajectories of particles are
given by the formulae (3) for the unperturbed motion in
which parameters m and E now vary with time. Returning
to eq. (3), note that all dependence of the trajectory on
(m, E) is contained in the vectors a(m, E). Let A, g be
the torus (see footnote ') defined by M(p, q) =m and
Hy(p, q) = E. The vector u(m, E) selects a point which
serves as the origin of coordinates on this torus. For the
circuit in eq. (4), we have chosen a smooth a=u(t)=
(#(1),0,0, (1)) with
£(0) = —2(60) = pmin (m(0), E(0)),
Z(t) = sgn(m(t)) pmin (m(t), E(t)), for 0<t<60, (5b)
P(t) = pmin(m(t), E(t)) =0, for 0<t<60, (5¢)
where ppin(m, E) and pmin(m, E) are obtained by solving

(5a)

‘m‘ = Pmin Pmin and E= % (p1211in - pgnin)' (5d)
The point u is the pericentre of a reference orbit, which
is the unperturbed trajectory on A,, p starting on the
wall |g| = pmax at time —7/2 and polar angle —60/2 and
coming back to the wall at time 7/2 and angle 6/2 (fig. 4).
The time 7=7(m, E) between bounces or the period of
first return, and the angle § = (m, E) subtended between
bounces, or the rotation angle, are given (for py=a=1)
by, respectively,

2

E

T(m,E)= cosh™! Pmax + &
c

E 2 FE—
O(m, E) = tan~! [ 216, [Pmax 22 C) )
m \ phaxtE+c

where ¢(m, E) :=|E +im|=vE?+m? > 0. For ¢(m, E)<

(6a)

and

Prax We have simple asymptotic expressions
7(m, E) ~log2p2,.. —log|E+im|+..., (7a)
O(m,E)~m—arg(E+im)+.... (7b)

—Pmax

—Pmax 0

Fig. 4: Thick lines: (z,y)-images of reference orbits at various
(m, E) corresponding to times on the monodromy circuit T’
(fig. 2). Thin lines: when the reference orbits are modified by
the flow under M (rotation by —6(m, E)) they become closed
fundamental loops 72 on the torus, shown in projection here.

All other unperturbed trajectories on A,, g differ in the
initial position of the particle which is specified in eq. (3)
by to € [-i7,+347) and ¢ =[0,27). This describes the
trajectory between bounces.

When the particle bounces off the wall, we simply
augment ty and ¢¢ by 7 and 6, respectively, and continue
the next smooth segment of the trajectory, as in fig. 1. On
each such segment, the particle arrives at the pericentre
at time tg and angle ¢g. So it follows that for a segment
which begins after a bounce at time ¢, and longitude ¢y,

(®)

As the system goes around the monodromy circuit, m and
FE change with time, so between bounces, we continue
the trajectory using eq. (3) with fixed ty and ¢, and
with @(m, E) varying according to eq. (4) and (5a).
When the particle hits the wall at time ¢, and longitude
¢, which we can determine numerically, we find the
new to and ¢ for the next segment by combining (8)
and (4) and using instantaneous values 7(m(ty), E(tp))
and 6(m(ty), E(tp)). For this to work, we must use smooth
and therefore necessarily multivalued functions p, & and 6
correctly along I, e.g., we have (60) = —%(0) and 6(60) =
0(0) + 27. This completes the description of our dynamical
realization of the monodromy circuit in figs. 2, 3.

to =1, + %T(m, E) and ¢ = ¢ + %9(m7E)

Relation to Hamiltonian monodromy. — Why does
this topological change occur? A naive explanation can
be supplied by noticing that at the time ¢=30, when
m=0 and F >0, one point on the continuous loop (not
necessarily a particle in the discrete family) in fig. 3
touches the origin z =y =0, i.e., at that instant there
exists one trajectory in this continuous family that passes
through. By a continuity argument, the whole loop “slips”
through the origin and over the barrier.

Understanding the origins of this phenomenon, we get
into some recent advances in classical mechanics. The
change which we observe is related to the monodromy

24003-p4
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Fig. 5: (a) Immersion in R* of a regular torus A, g of the
system with Hamiltonian Hy (dark) and its smooth analogue
(gray); the upper and lower circular edges (bold) are to be
identified. (b) Initial and final loops 72(0) and 72(60) on
the torus Ag,_; immersed in R® with coordinates z, y, and
K= %q - .

of the underlying unperturbed integrable Hamiltonian
system with first integrals Hy and M. Monodromy char-
acterizes how the regular tori of this system fit together.
Specifically, we consider the set of regular tori A, g with
(m, E) on circuit I" (eq. (4)), i.e., the torus bundle over
I'. Local action-angle variables define coordinates on A,, g
and tori in its neighbourhood, a local isomorphism which
we can use to establish a connection between the coordi-
nates on Ay = Ay, 1), 51y @s we go from the initial torus
Aoy to the final torus A(gp). These tori Ay and Ao
are the same, but the initial and final coordinate systems
on them differ. The difference is given by a monodromy
matrix, which is a matrix in SL(2,7Z). Having fixed the
origin 1 of the coordinates on A, ), g(1), We can now pass
coordinate axes through this origin using particular repre-
sentatives y; and 72 of cycles [y1] and [y2] of the funda-
mental group 71 of Ay, «4), g(¢)- One such fundamental loop
~1 is readily available on all tori. It is the orbit of the flow
obtained from Hamiltonian M (p, q) and is given by

71:Sl—>AmE:¢>l—>S¢ﬁm,E. 9a
, M

This loop 1 projects to configuration space as a counter-
clockwise path around the origin.

The second fundamental loop 2 has to be constructed
continuously as we advance on I', i.e., as t in eq. (4)
goes from 0 to 60 (fig. 4 and 5). On the torus A, we
can take v2(0) to be the reference orbit itself, which goes
from = = pmax, Pz = —Pmax t0 the inner turning point and
back out to T = pmax, Pz = Pmax always with y=p, =0.
However, on all other tori the reference orbits are not
closed (fig. 4). On these we construct v2 by combining
the reference orbit on A, gy with a cylindrical flow that
compensates the change in angle 6(m, E) subtended by
the orbit:

—c0 ~
Yoi[=4, = Amp € 83, SE . (9b)
Now &= —% and & :% represent the same point at the

wall, so eq. (9b) describes a closed loop at each (m, E). As

(m, E) change along T, that loop changes continuously.
Since the reference orbit changes when we go around I'
(because & changes sign) and also 6 changes from 0 to 27,
the final loop 2 must be different from the initial one.
The resulting continuous family ~»(¢) is shown in fig. 4,
and we can see there and in fig. 5 right that the initial
~2(0) and final v2(60) are not homotopic. In fact, since v,
is directed counterclockwise, v2(60) =y2(0) —v1(0).

For the unperturbed (static) system, this has several
consequences. Most importantly, this system cannot have
action variables defined globally. Indeed the values J; and
J- of actions are computed as integrals along respective
cycles 71 and ~5. So we have one globally defined action
with J; (m, E) =27 m, while J2(m, E) is multivalued. In
fact from the differential dJo = 7(m, E) dE — 0(m, E) dm,
which is closed but not exact, we can obtain that for
c(m, B) < proax

Jo(m,E)=~E+ET(m,E)—m0(m,E)+... (10)

For the dynamical system driven in time around the
monodromy circuit, the particles starting on torus A(O)
form a loop 42(0) that is identical to 42(0), and they
end up forming a loop 42(60) that is homotopic to
~2(60). This happens because the perturbation establishes
a continuous dynamical connection that is similar to the
static connection used in constructing v2(¢) (eq. (9b)) for
the static system. Hence the similarity between the loops
in figs. 3 and 4. Moreover, our calculations indicate that
in the “slow” limit? of Q < 1/7 the loops A2 (t) and ~,(t)
become identical.

Discussion. — Monodromy of our system is caused
by the presence of the isolated critical fibre Ay which
includes the focus-focus equilibrium ¢=p=0. The
dynamics of a single particle on tori near such a fibre
can be quite remarkable [27,28], but that single-particle
behaviour cannot be related directly to monodromy.
From this point of view, our essential contribution is that
we must follow a collective time-dependent evolution of
several particles.

We also like to relate our work to the setup in the
geometric phase theories, see [26] and references therein.
There is no direct connection between Hamiltonian
monodromy and geometric phase, but they share certain
common aspects [9,29]: in both cases, i) we study the
structure of a regular toric fibration ® with base space B
by taking a closed loop I' C B and connecting the fibres
over I'; ii) following this connection, we look at what
happens after we complete a tour on I'. However, we deal
here with @ defined by the flow of a single Hamiltonian
system and our B is the two-dimensional space of the
regular values (m,E) of first integrals (shaded area in
fig. 2 without the boundary and point 0). B is not simply

2When the motion around the monodromy circuit is much slower
than the radial motion of the particles it can be called “adiabatic”.
However, contrary to, for example, [25,26], the values E and m, and
those of local actions evolve with time even in this limit.
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connected, we use a non-contractible I', and monodromy
is non-trivial. In the geometric phase theories, B is a
space of external parameters and ® is of a more general
kind. In the simplest situation, the topology of B may
be that of an open ball and I' may be homotopic to a
point, and furthermore, both ® and the torus bundle over
I' may have trivial topology, that of B x T? and S! x T2,
respectively. In other words, monodromy is a topolog-
ical phenomenon, while geometric phase is primarily a
geometric phenomenon related to the curvature of B.

Specifically, the Berry-Hannay angle [26] gives the
resulting change of the angle variable after a tour on T.
It can occur already in one degree of freedom (for an
S! bundle over T'). In two degrees of freedom, the initial
and final coordinate systems on the 2-torus A may differ
not only by the origin shift, which in our case is given
by @(60) —(0) in (3) and (5), but also by an SL(2,7)
transformation of the basis. If the latter is the identity,
we have trivial monodromy but we may still accumulate a
geometric phase. Monodromy deals solely with the affine
72 structure on A and homology H;(A); geometric phase is
related to fixed origin coordinates. To measure the Hannay
angle, we may compare positions of our particles on the
initial and final loops. To uncover monodromy, we consider
what happened to the loop as a whole and whether it
became a qualitatively different loop. So the effect that
we are after in this work is both ‘cruder’ and more
robust.

Conclusion. — We have explained how to probe the
monodromy of an autonomous (static) classical integrable
system using a time-dependent dynamical process. Apply-
ing a time-dependent perturbation which forces the system
to evolve in the energy-momentum plane along a closed
circuit I', and following the collective evolution of a family
of perturbed trajectories situated initially along a funda-
mental loop of a regular torus of the static system, we
observed the modification of this loop of initial conditions
into a topologically (homotopically) different final loop on
the same torus. The transformation does not depend on
the details of the dynamical processes used. It is deter-
mined entirely by the requirement for I' to encircle the
isolated critical energy-momentum value (0,0) and by the
type of the singular fibre of the static system which corre-
sponds to (0,0). From this study, we can infer a general
result: a nontrivial connection between fundamental loops
defined on a family of tori of an autonomous system
leads to a nontrivial topological behaviour of a family
of trajectories evolving in time through that family of
tori.
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