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Abstract

We consider a generalization of the 1:1:2 resonant swing–spring [see H. Dullin, A. Giacobbe, R.H.
Cushman, Physica D 190 (2004) 15] which is suggested both by the symmetries of this system and by
its physical and in particular molecular realizations [see R.H. Cushman, H.R. Dullin, A. Giacobbe,
D.D. Holm, M. Joyeux, P. Lynch, D.A. Sadovskiı́, B.I. Zhilinskiı́, Phys. Rev. Lett. 93 (2004) 024302-
1–024302-4]. Our generic integrable system is detuned off the exact Fermi resonance 1:2. The
three-dimensional (3D) image of its energy–momentum map EM consists either of two or three qual-
itatively different non-intersecting 3D regions: a regular region at low vibrational excitation, a region
with monodromy similar to that studied for the exact resonance, and in some cases—an intermediate
region in which the 3D set of regular values of EM is partially self-overlapping while remaining con-
nected. In the presence of this latter region, the system has an interesting property which we called
bidromy. We analyze monodromy and bidromy for a concrete integrable classical Hamiltonian sys-
tem of three coupled oscillators and for its quantum analog. We also show that the bifurcation
involved in the transition from the regular region to the region with monodromy can be regarded
as a special resonant equivariant analog of the Hamiltonian Hopf bifurcation.
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1. Introduction

Hamiltonian systems with 1:1:2 resonance became recently of renewed acute interest
after it was pointed out in [1] that they exhibited an interesting ‘‘plane switching’’ phenom-
enon, called so after the behavior which can be observed in the classical 1:1:2 resonant
swing–spring or elastic pendulum with axial symmetry O(2) [2,3] (see Fig. 1, left). It was
also shown in [3] that this behavior was intrinsically related to the monodromy [5,6] of inte-
grable approximations to these systems. Furthermore, a quantum analog of the 1:1:2 res-
onant swing–spring was studied in [4], where its quantum monodromy [8,7] was
interpreted as a particular one-dimensional defect of the three-dimensional (3D) lattice
[9] whose nodes represented quantum eigenstates within the 3D image of the energy–mo-
mentum map EM of the corresponding classical system. The evidence that the CO2 mol-
ecule (see Fig. 1) constitutes an almost perfect quantum 1:1:2 resonant swing–spring [10]
opened perspectives of experimental manifestations of monodromy in molecules. In par-
ticular, the quantum plane switching phenomenon was demonstrated for CO2 molecule
[11].

1.1. Motivation for studying systems with detuned Fermi resonance

The Lie symmetry group G of the integrable approximation to the 1:1:2 resonant
swing–spring system is a 2-torus group which includes the axial S1 symmetry (rotation
about the vertical axis in Fig. 1) and the S

1 symmetry defined by the flow of the 1:1:2 har-
monic oscillator Hamiltonian. It can be easily shown (see Section 2) that any exactly 1:1:2
resonant system is exceptional within the class of G-invariant systems. Furthermore, while
the frequencies of the 1:1 subsystem are exactly degenerate due to the axial symmetry, the
1:2 ratio between these frequencies and the frequency of the third oscillator, known as

Fig. 1. Elastic pendulum and normal mode vibrations of the CO2 molecule. Note that the first three modes,
symmetric stretching m1 and the two components of bending m2 constitute the Fermi resonant oscillator system
while the asymmetric stretch vibration m3 is not in resonance and can be averaged out, see more in [10,4].
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Fermi resonance, is not exact in real systems. So both symmetry arguments and physical
realizations suggest studying a system with detuned Fermi resonance [12,13]. In this work
we use the example of an integrable approximation to a classical system of three coupled
nonlinear oscillators whose Hamiltonian may be regarded as an effective vibrational Ham-
iltonian of a linear triatomic molecule, such as CO2 in Fig. 1.

1.2. Dynamical regimes of systems with detuned Fermi resonance

Our system has three first integrals, the integral N of the 1:1:2 resonant harmonic oscil-
lator with value n, which we call polyad integral, the angular momentum L with value ‘,
and Hamiltonian H whose value, energy, we will denote by E; the image of the energy–mo-
mentum map EM of our system is a 3D region in the space R3 with coordinates (‘,E,n).
The detuning term is part of the linearized Hamiltonian, i.e., this term is quadratic in (q,p).
Since the main Fermi resonance term is of degree 3, it is clear that at very small n when our
oscillator system is near its equilibrium q = p = 0, detuning is more important than the
resonance interaction. In this region, which we call regular, the system can be globally
described using three pairs of action-angle variables associated with its three normal oscil-
lator modes. At the same time, detuning can be neglected at sufficiently high n. Dynamics
in this high n region is qualitatively the same as that in the case of the exact resonance 1:1:2
studied in [3] and the joint eigenvalue spectrum lattice of the corresponding quantum sys-
tem should be equivalent to that described in [4]. In particular, our system should have
monodromy and consequently, it cannot be described using global action-angle variables.

1.3. Transition between different dynamical regimes

It is commonly known that in a parametric family of systems with two degrees of free-
dom, transition from a regular system to a system with monodromy is often associated
with Hamiltonian Hopf bifurcation [14]. In our situation, the most directly relevant gener-
alization of this bifurcation to three degrees of freedom is that of a bifurcation of a relative
equilibrium (RE) which is an orbit of an S1 action. However, in all cases studied up to now
[15–20] the bifurcating orbit was a regular orbit of a locally free S1 action and after the S1

symmetry was reduced the RE became an equilibrium undergoing a standard Hamiltonian
Hopf bifurcation. So, though clearly important for many applications, such generalization
is somewhat trivial. The major difference of our situation is that the bifurcating orbit is an
isolated critical orbit of the particular S

1 action of the 1:1:2 resonant harmonic oscillator
system. This orbit corresponds to the pure ‘‘spring’’ motion described by the oscillator
with frequency 2. (Note that in the CO2 molecule it corresponds to the symmetric stretch
vibration m1.) All other orbits are generic and are two times longer. The short orbit is stable
in the regular region (at low n); it turns unstable as n increases past ncrit. We show that this
bifurcation is in many ways reminiscent of the trivial generalization of the Hamiltonian
Hopf bifurcation to RE. However, it cannot be reduced to the standard case because,
obviously, the bifurcating RE becomes a singular point after our S

1 action gets reduced.
In order to underline the nontrivial way in which the S

1 symmetry becomes involved, we
speak of resonant equivariant generalization of the Hamiltonian Hopf bifurcation to RE.

In what follows we consider the 3D-image of the EM map as a one-parameter family of
2D-images parameterized by the value n of the polyad integral. To understand the global
picture we split the whole range of n > 0 into regions where the EM images (for fixed n) do
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not vary qualitatively. We are not interested in the trivial exceptional value n = 0. We are
interested only in modifications of the EM image closely related to the bifurcation of the
‘‘spring’’ RE. We do not take into account possible saddle-node bifurcations [27–29] which
can lead to the appearance of new RE and to more complex intra-polyad dynamics but do
not involve the local neighborhood of the ‘‘spring’’ RE.

1.4. Supercritical transition

We aim at describing the whole of the image and fibers of the EM map of our system,
and therefore we should go beyond studying the resonant bifurcation of the ‘‘spring’’ RE
as a purely local individual phenomenon. Much like the standard Hamiltonian Hopf bifur-
cation [14], this bifurcation can be of two types depending on the parameters of the high
order terms in the Hamiltonian. Keeping the terminology, we call them supercritical and
subcritical.

The global context of the supercritical bifurcation is quite simple. There is no other
related phenomena and the 3D-image of the EM map can be split (depending on n value)
into two non-intersecting 3D-domains and one exceptional 2D-section. One of these 3D-
domains belongs to the region 0 < n < ncrit, the other domain lies in the region n > ncrit.
The exceptional section of the EM map for n = ncrit includes the image of the fiber corre-
sponding to the short ‘‘spring’’ RE at the moment of bifurcation. Note that because of
somewhat less stringent conditions on the Hamiltonian parameters, this kind of global
structure of the EM image seems to be prevailing in real molecular systems. CO2 is certain-
ly of this kind. However the bifurcation happens there at very low value of n which is far
below n ¼ 3

2
of the ground state of the quantum analog and hence is unobservable. On the

other hand, the CS2 molecule with much larger detuning provides a good example.

1.5. Subcritical transition and bidromy

The subcritical scenario of the transition from the regular normal mode region to the
monodromy region is more complicated. In this case, the resonant Hopf-like bifurcation
of the short ‘‘central’’ or ‘‘spring’’ RE at n = ncrit is preceded by two equivalent-by-sym-
metry cusp bifurcations at n = n 0 < ncrit which give rise to new RE. In the small region with
n 0 < n < ncrit, the 3D set REM of regular EM values folds over itself while remaining connect-
ed thus forming a third transitional region. All this happens ‘‘semi-globally’’ in the small
immediate vicinity of the spring RE and the whole sequence of bifurcations is predefined
or ‘‘organized’’ by the form of the Hamiltonian. Most importantly, this sequence of bifur-
cations and the geometry of the image and fibers of the EM map in the transitional region
are structurally stable with regard to any sufficiently small equivariant variations of the
Hamiltonian.

The fact that the inverse map EM�1 becomes multi-component shortly before or after
a subcritical bifurcation occurs has been observed in a number of different systems
[16,17,20,23] and seems to be a common feature. In all these cases the set REM of regular
values in the image of the EM map can be represented using a cell unfolding surface

SEM. Different points of this surface which have the same energy E and momenta
(n,‘, . . .) represent different regular connected components (normally tori) of the fiber
EM�1ðE; n; ‘; . . .Þ. Such representation is especially simple in the two-dimensional case.
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Note that the closure �SEM represents all (i.e., both regular and critical) EM values and that
such construction is similar to that of Riemann surfaces and branch coverings.

1.5.1. Overlapping lower cells
In all cases we have so far encountered in the literature [20–23,25,26], the two-dimen-

sional surface �SEM consists of several disconnected sheets glued together along a set of crit-
ical EM values. We will name these sheets lower cells (for a general discussion of lower
cells see Section 2 of [24]). Thus consider a simple example of three lower cells in the image
of the EM map of which two cells overlap (partially) as shown in Fig 2. The cells are glued
together along the line of critical values c, which either ends at the boundary of the EM
image or goes to infinity (cf.[26]). The singular fiber EM�1ðcÞ is a ‘‘bi-torus’’ which can be
modeled in three dimensions as two tori glued together along one of their principle circles.
In Fig. 2 we also show two regular EM values a and b. The former lifts to one regular
torus EM�1ðaÞ, while the latter is in the overlap area of two lower cells and the fiber
EM�1ðbÞ consists of two tori. On the unfolding surface, b corresponds to b 0 and b00. A
somewhat different situation occurs if one of the ends of the singular line is not connected
to any boundary (see Fig. 3, left). In this case we have two lower cells, the values a and b 0

lie on the same sheet of SEM and can be connected by a continuous path in the set of reg-
ular EM values. Furthermore, if both ends of the gluing segment of singular EM values c

do not connect to any boundary (see Fig. 3, right), then the sheet containing a and b 0 is not
simply connected. In this case the system may have nonlocal monodromy computed along
a noncontractible path around the singular segment. This situation was discussed in rela-
tion to a quadratic deformation of the spherical pendulum [23] and its particular molecu-
lar realization [25], as well as in the two-center system [21,22]. Due to extra discrete
symmetries, there are two ‘‘small’’ sheets glued to the critical segment in the case of the
subcritical Hopf bifurcation of the hydrogen atom in crossed electric and magnetic fields
[20]. Note that systems studied in [21,22,20] have an extra degree of freedom and that their
lower cells are three-dimensional and that the path a�(b 0)�a remains noncontractible in
the full 3D image of their EM map.

1.5.2. Self-overlapping lower cell

Our present case is also three-dimensional. When the bifurcation of the spring RE is
subcritical it has many similarities with [21,22] albeit one important difference: while

Fig. 2. Example of overlapping lower cells in the 2D-image of the energy–momentum map EM: a multi-sheet cell
unfolding surface (top left) and the corresponding EM image (bottom). Points a, b 0, b00, and c lift each to one
connected component of the integrable fibration shown right; b 0 and b00 correspond to the same EM value b.
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EM�1 becomes two-valued in the part of the transitional region, the set of regular values
of the surface SEM remains connected. In other words, we deal with one single self-overlap-
ping lower cell and SEM consists of one sheet as illustrated in Fig. 4 in the two-dimensional
case. It can be seen that now both points b 0 and b00 can be connected by a path going
through the set of regular EM values. Since b 0 and b00 represent one value, this path is
closed in the image of the EM map, but it is not closed on SEM.

This specific feature of the image of the EM map, namely the existence of the region of
values whose preimage consists of two disconnected components (tori) which can be con-
nected by a smooth path going only through regular tori allows us to introduce the new
concept of bidromy. Standard integral Hamiltonian monodromy characterizes the evolu-
tion of the first homology group of the regular fiber along a closed (non-contractible) path
going only through regular tori. ‘‘Fractional monodromy’’ which was introduced recently
[30,24] is a generalization which allows for closed paths to cross certain singular tori (the
so called curled tori). With the concept of bidromy announced recently in [31] we attempt
further generalization. Namely, we study paths which start at point a (see Fig. 4), then
approach the line of critical values and bifurcate in point c of this line (recall that c rep-
resents a bitorus) into two paths which fuse together after going in two different ways and
join the initial point a, thus forming the closed ‘‘bipath’’. The bidromy is the tentative gen-
eralization of monodromy to a special class of ‘‘bipaths’’. In order to realize such a gen-
eralization we need to define a suitable class of homotopically equivalent closed ‘‘bipaths’’,
which allow the transportation of the basis cycles of some subgroup of the first homology
group of a regular fiber along such closed ‘‘bipaths’’ and to show that the transformation
between initial and final system of cycles does not depend on the concrete choice of
‘‘bipaths’’ within the chosen class of homotopically equivalent ‘‘bipaths’’. Naturally, the
manifestation of classical ‘‘bidromy’’ in corresponding quantum problems should be stud-
ied in parallel because, as it was mentioned earlier on several occasions [4,16,30,24,31], the
complementarity of classical and quantum points of view allows better understanding of
both phenomena.

Fig. 3. Possible two-sheet cell unfolding surfaces for the image of an EM map with two overlapping lower cells,
cf. Fig. 2. Fibers in the image of EM�1 can have either one (a) or two (b 0 and b00) connected components; a and b 0

can be related by a continuous path which lies in the set of regular EM values of the ‘‘lower’’ (grey) sheet. In the
case of the right surface, this sheet is not simply connected and the system has monodromy.

Fig. 4. A single-sheet cell unfolding surface for the image of an EM map with one self-overlapping lower cell: the
inverse map EM�1 can have one (point a) or two (points b 0 and b00) connected components, cf. Fig. 2.
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Our main result in this paper is the construction of a relatively simple model exhibiting
this new phenomenon. Our model describes the internal polyad structure of vibrational
polyads formed by three nonlinear vibrational modes in 1:1:2 resonance in the presence
of axial symmetry with small detuning between doubly degenerate mode and nondegener-
ate mode with double frequency. We give detailed analytical description of the corre-
sponding classical problem, pay special attention to the stratification of the image of
the EM map, and demonstrate characteristic features of the joint energy–momentum spec-
trum for the corresponding quantum problem.

The organization of the paper is as follows. We remind in Section 2 using a concrete
example of three-dimensional system of nonlinear 1:1:2 resonant oscillators the general
scheme of the qualitative analysis of classical dynamical systems based on construction
of integrable models, their reduction, and geometrical representation. Section 3 describes
the construction via appropriate scaling transformation of the simplified universal model
valid in the narrow region where the qualitative modifications of the image of the EM map
take place. The results of the analysis of the 3D-image of the corresponding EM map are
given in Section 4 through geometrical representation of different 2D-sections in order to
visualize better the 3D-region responsible for the presence of monodromy and bidromy for
this problem. Complete analytical solution for all strata on the 3D-image of the EM map
is given in the Appendix A. Section 5 introduces the system of closed paths and ‘‘bipaths’’
associated with monodromy and ‘‘bidromy’’ of the classical model system. Corresponding
quantum problem and the manifestation of classical ‘‘bidromy’’ in quantum system is dis-
cussed in Section 6. Section 7 briefly discusses possible physical systems which seem to be
the most realistic candidates to observe the manifestation of quantum bidromy and pos-
sible ways of further mathematical clarification and simplification of bidromy
transformations.

2. Generic axially symmetric integrable Fermi resonant system

The logic behind defining our generic 1:1:2 system and constructing its integrable model
is as follows:

(i) state all symmetries, geometric (exact) and dynamical (possibly approximate), which
constitute the total two-parameter Lie symmetry group G of the system with two
integrals (N,L);

(ii) consider sections On;‘ of the orbit space O of the action of G on the original phase
space R6 with coordinates (q,p) for given fixed values (n, ‘) of first integrals (N,L);

(iii) define the ring R of all polynomials in dynamical variables (q,p) which are G-invari-
ant; use these polynomials to represent On;‘ which are called reduced phase spaces
Pn‘;

(iv) assume that the Hamiltonian H of the system is a power series in (q,p) where the
coefficients in front of the terms of total degree k in (q,p) can be scaled using a uni-
versal smallness parameter � < 1 as �k�2;

(v) assume that H is G-invariant (or can be made such by normalization) and therefore
H (or its normal form H) belongs to R and that for any given k it can include all
possible polynomials of degree k from R;

(vi) verify that the family of constant energy-level sets of H on Pn,‘ is structurally stable

with respect to any sufficiently small G-equivariant change of H.
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Below we follow this outline. Instead of (q,p) we will use the usual complex Hamilto-
nian coordinates

z ¼ q� ip; �z ¼ qþ ip; fz; �zg ¼ 2i;

which are more convenient to study the action of G.

2.1. Exact symmetries

The geometric axial symmetry C1 of the system results in the exact first integral, the
angular momentum

L ¼ 1
2
ðz2�z3 � �z2z3Þi; ð1Þ

whose value will be denoted by ‘. We assume also additional discrete time reversal sym-
metry which acts on z variables like involution z! �z. Under this operation L transforms
as L fi �L.

2.2. Approximate dynamical symmetry

To account for the dynamical S1 symmetry of the Fermi system, we introduce the
approximate first integral N

N ¼ �z1z1 þ 1
2
�z2z2 þ 1

2
�z3z3 ¼ 2n1 þ ðn2 þ n3Þ; ð2Þ

which is the harmonic oscillator Hamiltonian, whose flow generates the S1 symmetry of
the 1:1:2 resonance; we call N polyad integral (a terminology inherited from quantum ana-
logs of these systems) and we denote its value by n.

2.3. Hamiltonian in terms of invariant polynomials

The reduced system can be described fully using three dynamical variables [4]

R ¼ 1
2
�z2z2 þ 1

2
�z3z3 ¼ ðn2 þ n3Þ; ð3aÞ

S ¼ 1
4
ð�z1z2

3 þ z1�z2
3 þ z1�z2

2 þ �z1z2
2Þ; ð3bÞ

T ¼ 1
4
ð�z1z2

3 � z1�z2
3 � z1�z2

2 þ �z1z2
2Þi; ð3cÞ

which are all invariants of the 1:1:2 oscillator action and are submitted to relation

2Un;‘ ¼ T 2 þ S2 � ½R2 � ‘2�ðn� RÞ ¼ 0; ð4aÞ

and inequalities

n P R P j‘jP 0: ð4bÞ

It should be also noticed that the reduced system inherits additional finite symmetry prop-
erties from the original system, notably the invariance with respect to ‘ fi �‘ and
T fi �T. Taking these further symmetries and Eq. (4a) into account, we can show that
Hn;‘ is an arbitrary polynomial in just two invariants R and S and that it includes only even
degrees in ‘.
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2.4. Reduced phase space

The phase space Pn,‘ of the reduced system is compact. Specifically, it is just a point
when either n = 0 or |‘| = n = ‘max, it is diffeomorphic to a smooth sphere S2 for
0 < |‘| < n, while for ‘ = 0 (and n > 0) this space is a sphere with one conical singular point
(a ‘‘turnips’’). We represent Pn,‘ in the ambient space R3 with coordinates (S,T,R) using
Eq. (4). We can easily see that Pn,‘ is a surface of revolution about axis R and that it suf-
fices to consider a projection of Pn,‘ on a plane which contains this axis. The plane {T = 0}
chosen in Fig. 5 is particularly convenient in view of the discrete symmetry T fi �T of the
reduced Hamiltonian Hn;‘.

To characterize the singularity of Pn0 at R = S = T = 0, notice that near this point

T 2 þ S2 � nR2;

and therefore Pn0 is tangent to a cone with angle 2 tan�1 2
ffiffiffi
n
p

which intersects {T = 0} in
two rays S ¼ � ffiffiffi

n
p

R; R P 0.

2.5. Model Hamiltonian

In order to construct now the integrable Hamiltonian which preserves exact geometrical
symmetry and approximate dynamic symmetry we can use the polynomial expansion of
the Hamiltonian in terms of dynamical variables R, S introduced in previous section
and in terms of integrals of motion N, L. Moreover, replacing initial six-dimensional phase
space by two-dimensional family of reduced phase spaces parameterized by two values
(n, ‘) of integrals N, L, we can rewrite Hamiltonian in terms of a power series in R, S with
coefficients depending on values (n, ‘) of two integrals of motion.

H ¼ E0ðn; ‘Þ þ aðn; ‘ÞS � bðn; ‘ÞRþ cðn; ‘ÞR2 þ � � � ð5Þ

Each doubly reduced Hamiltonian for fixed (n, ‘) values is given on the corresponding two-
dimensional reduced phase space which is defined in the three-dimensional space of invari-
ant polynomials R, S, T by syzygy (4a) depending on n and ‘ values. In order to describe
the qualitative features of the system we need to analyze the intersection of the reduced
phase space by the constant levels of the Hamiltonian. As soon as Hamiltonian does
not depend on T it is sufficient to study only the intersection of the constant energy level
of the Hamiltonian H = const with the boundary of the T = 0 section of the doubly re-
duced phase space which is given by equation

Fig. 5. Reduced phase spaces Pn‘ of the 1:1:2 resonant systems with axial symmetry shown as projections Vn‘ on
the {T = 0} plane. Shaded area represents the singular space with ‘ = 0; other contours show boundaries of Vn‘

with ‘=‘max ¼ 1
8

(dashed line), 1
4
, 1

2
, and 3

4
.

172 D.A. Sadovskiı́, B.I. Zhilinskiı́ / Annals of Physics 322 (2007) 164–200



Aut
ho

r's
   

pe
rs

on
al

   
co

py

S2 ¼ ðR2 � ‘2Þðn� RÞ: ð6Þ

Thus, the mathematical problem of characterizing qualitative modification of the constant
energy levels under variation of E, ‘, n consists in the study of solutions of two polynomial
equations (5) and (6).

2.6. Critical behavior and structural stability

Both, the reduced phase space and the constant energy level set are two-dimensional
surfaces in the 3D space of invariant polynomials (R, S, T). Thus generically, an intersec-
tion of reduced phase space and the constant energy level consists of one or of several
closed curves. But due to the fact that the constant energy level is independent on T

and the reduced phase space in R, S, T variables has very simple axially symmetric geo-
metrical form it is sufficient to study the intersection of the projection of Pn‘ on T = 0
plane with En,‘(R,S) = const level. This intersection can become exceptional due to two
different reasons:

(i) the intersection includes the singular point R = 0, S = 0 of the reduced phase space
Pn ‘=0, which is possible only for ‘ = 0 case;
(ii) level set En,‘(R,S) = const is tangent to the boundary of the reduced phase space.

Nevertheless, as soon as both, constant energy level set and reduced phase space, are n

dependent, it is possible that within the n-dependent family there exists some special ‘‘crit-
ical’’ value of n = ncrit for which the two abovementioned reasons are simultaneously sat-
isfied. Namely, for n = ncrit the intersection includes the singular point R = 0, S = 0 and at
that point the constant energy level set En,‘=0(R,S) = const is tangent to the boundary of
the projection of the phase space on the T = 0 plane. The so obtained n = ncrit value cor-
responds to the bifurcation of the energy–momentum map because if for n 6 ncrit the
exceptional intersection, which includes the singular R = 0, S = 0 point, belongs to the
boundary of the EM map, then for n > ncrit the value of the EM map corresponding to
exceptional intersection lies inside the EM map. Fig. 6 shows three different situations
which can occur when the family of constant energy levels intersect the boundary of the
projection of the reduced phase space on the T = 0 plane. This figure oversimplifies the
real situation because the constant energy levels and the boundary are represented in
the linearized form. Fig. 6(b) shows clearly that in the linear approximation the intersec-
tion of the constant energy level with phase space boundary at n = ncrit is not generic. One
needs to take into account second order terms to make the situation structurally stable.

We are primarily interested in the qualitative modification which takes place at the crit-
ical point n = ncrit and in any other related qualitative modifications which can appear in
the neighborhood of n = ncrit.

In order to construct the mathematical model which keeps all important terms needed
to describe the generic behavior around the critical point, we can neglect all dependence of
the terms of Hamiltonian on n, ‘ and restrict ourselves with the following system:

H ¼ aS � bRþ cR2; a > 0; b > 0; ð7aÞ
S2 ¼ ðR2 � ‘2Þðn� RÞ: ð7bÞ
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Here, we assume that the constant energy level does not depend explicitly on n and ‘. At
the same time the boundary of the reduced phase space in R, S variables depends on both
n and ‘. Restriction of the Hamiltonian expansion (7a) up to quadratic in R terms (quartic
terms in initial p, q variables) is sufficient to ensure its structural stability under small
deformation. The resonance model without detuning follows from Eqs. (7a) and (7b) by
putting b = c = 0.

3. Scaling transformation near critical point

To see the qualitative structure of the image of the EM map we need to analyze the
common level sets of H and of two integrals of motions, N and L. The point R = 0,
S = 0 is the special singular point of the ‘ = 0 reduced phase space for any n. Its stabilizer
has additional finite Z2 symmetry. If the H = E constant energy-level set includes this
point, the corresponding value (E,n, ‘ = 0) is a critical value of EM. Depending on the
coefficients in (7a) the constant energy level which passes through the R = S = 0 point
can consist of this point only or can consist of a whole family of points of the reduced
phase space. In order to distinguish between these two important cases we need to com-
pare the slope of the energy level with the slope of the boundary of the phase space at
the same point R = S = 0 and to be more precise to compare as well the second derivatives
at the same point.

For the first derivatives we have:

dSEn:L

dR

����
R¼0;‘¼0

¼ b
a
; ð8aÞ

dSb

dR

����
R¼0;‘¼0

¼
ffiffiffi
n
p

: ð8bÞ

where SEn.L and Sb are, respectively, expressions for S found from energy level (7a) and from
reduced space boundary (7b). We suppose below that coefficients a, b in (7a) are positive.

a b c

Fig. 6. Schematic view (linear approximation for reduced phase space boundary and for energy level) of a family
of constant energy levels which crosses reduced phase space. Three different cases are plotted: (a) Critical value of
the EM map associated with singular point of the reduced phase space lies on the boundary of the image of EM
map; (b) Exceptional intersection is tangent to the boundary at singular point; (c) Critical value of the EM map
associated with singular point of the reduced phase space lies inside the image of EM map.
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In a similar way for the second derivatives we have:

d2SEn:L

dR2

����
R¼0;‘¼0

¼ � 2c
a
; ð9aÞ

d2Sb

dR2

����
R¼0;‘¼0

¼ � 1ffiffiffi
n
p : ð9bÞ

When n increases (n is positive by physical reasons) the slope of the boundary increases
and at certain n = ncrit it becomes equal the slope of the energy level. This means that
for n < ncrit the critical value belongs to the boundary of the energy–momentum map,
whereas for n > ncrit the critical value lies inside the energy–momentum map. The corre-
sponding fibers are also naturally qualitatively different. To precise the structure of corre-
sponding fibers we need to look for the value of second derivatives.

Depending on the relative values of second derivatives two different scenarios occur in
the neighborhood of the n = ncrit value.

As soon as we want to analyze the qualitative modifications which occur when n chang-
ing around n = ncrit it is useful to introduce ncrit explicitly and consider small deviations
from it x = n � ncrit in the model equations together with the critical value ccrit of the sec-
ond derivatives and small relative deviations from it c = ccrit(1 + y), which we denote as y.

From (8a), (8b), (9a) and (9b) we find

ncrit ¼
b2

a2
; ccrit ¼

a2

2b
: ð10Þ

Now we replace in the model system (7a), (7b) n and c by ncrit, ccrit, and x and y charac-
terizing small deviations from ncrit and ccrit.

H ¼ aS � bRþ a2

2b
1þ yð ÞR2; ð11aÞ

S2 ¼ R2 � ‘2
� � b2

a2
1þ xð Þ � R

� �
: ð11bÞ

We introduce now scaling transformation

R! b2

a2
R; S ! b3

a3
S; H ! b3

a2
H ; ‘! b2

a2
‘; ð12Þ

which puts the model system (7a), (7b) into a simple form:

H ¼ S � Rþ 1þ y
2

R2; ð13aÞ

S2 ¼ ðR2 � ‘2Þð1þ x� RÞ: ð13bÞ

From the point of view of further formal analysis of the model it turns out that it is suit-
able to change the parameterization and to introduce instead of y another parameter

u ¼ ð2y þ 1Þ1=6
; y ¼ ðu6 � 1Þ=2: ð14Þ

Finally with new parameter u introduced, the system of equations defining the energy level
and the boundary of the ‘‘reduced phase space’’ has the following form:
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H ¼ S � Rþ u6 þ 1

4
R2; ð15aÞ

S2 ¼ ðR2 � ‘2Þð1þ x� RÞ: ð15bÞ

The rest of the paper is essentially the mathematical analysis of the model defined by Eqs.
(13a) and (13b) or by Eqs. (15a) and (15b) in the u-parameterization and the interpretation
of the results of this analysis from the point of view of qualitative features of correspond-
ing classical dynamical system and its quantum analog.

4. Geometrical analysis of the energy–momentum map

By definition, the parameter value x = 0 corresponds to n = ncrit and characterizes the
bifurcation point. Near x = 0 the scenario of the bifurcation depends on the value of y or,
equivalently, on u in the u-parameterization.

In the case of y < 0 (or u < 1) under variation of x near x = 0, the critical value which
was on the boundary of the image of EM map for x < 0 becomes an internal point for
x > 0. We name the corresponding bifurcation supercritical.

In the case of y > 0 (or u > 1) the scenario is more complicated. At x < 0 but sufficiently
close to x = 0 the inverse image of the energy–momentum map corresponding to critical
value consists of two disconnected components. This means that there are two disconnect-
ed fibers of the EM. One of these two fibers contains critical point and the image of the
EM map for this system of fibers has the critical value on the boundary of the image of
EM map.

At x = 0 one of two components disappears and for x > 0 only one component is pres-
ent in the inverse image of the EM map. For x > 0 the critical value is inside the image of
the EM map. We name such bifurcation subcritical.

In the case of small positive values of y (u is slightly greater than 1) the second compo-
nent in the inverse image of the EM map appears only for negative x close to zero.

In order to characterize now the critical values of the EM map we need to find points at
which constant energy level given by (15a) touches the boundary of the phase space given
by (15b). We need also to distinguish between touching points of first, second and third
order. For the three dimensional image of EM the touching points of third order corre-
spond to exceptional (zero-dimensional) critical values. Touching points of second order
correspond to critical values forming one-dimensional lines. At last, first order touching
points correspond on the 3D-image of EM to 2D-boundary regions of critical values.

In order to understand better the 3D-structure of the image of the EM map we start
with its geometrical representation for some typical value of parameter y or u. Detailed
analytical expressions for different strata on the image of EM are given in Appendix A.

4.1. ‘ = 0 section of the image of EM

Let us begin by plotting several 2D-sections of the image of EM map. The global view
of the ‘ = 0 section is shown in Fig. 7.

To see the behavior of the line of singular values near the E = 0, x = 0 point in more
detail we change the scale and represent only critical values corresponding to critical
points due to first-order-touching between energy level and the boundary of the reduced
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space. Depending on the sign of y or on the sign of u � 1 in the u-parameterization scheme
(15), the image of the energy–momentum map has qualitatively different form.

In the case of positive y (or equivalently u > 1) there are two bifurcation points (points
B and O in Fig. 8) on the image of the EM map. First bifurcation (point B) occurs at small
non-zero negative values of E = EB and x = XB, corresponding to R = RB. At this point
the degenerate touching point between the energy level and the boundary of the reduced
space is formed and two families of ordinary touching points bifurcate as x increases. In
the total space this corresponds to appearance of the second disconnected component of
the EM map which we will name the ‘‘second fiber’’. One of these new families of relative
equilibria approaches the singular value E = x = 0 and disappears at point O after collid-
ing with symmetry imposed critical value. All that can be seen in Fig. 8.

In the case of non-positive y (or equivalently u 6 1) there is only one bifurcation point
O at E = x = 0. At this point new family of relative equilibria bifurcates from the singular
critical value of the image of EM map. This situation is shown in Fig. 9.

Fig. 7. Global view of the image of energy-momentum map for ‘2 = 0 calculated for y = 1/10 or u = (1 + 2/10)1/6.
The E = 0 line corresponds to the critical values associated with the singular point S = R = 0 of the reduced phase
space.

Fig. 8. Blowup of Fig. 7. Singular values of the energy–momentum map for ‘2 = 0. Model calculation with y =
1/10 or u = (1 + 2/10)1/6.
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4.2. Arbitrary ‘ = const and x = const sections of EM

The graphical representation of critical lines on the image of EM map for different
‘2 = const sections of the 3D-image is shown in Fig. 10. Every regular point on this line
of critical values corresponds to simple touching between energy level and boundary of
the reduced space for corresponding ‘2 value. Two singular cusp points for each ‘2 = const
section correspond to second order touching (both first and second derivatives coincide). If
we further increase the ‘2 value, these two singular points become closer to each other and
at some particular value of ‘2 they coincide (point A in Fig. 11). The corresponding ‘2 val-
ue specifies with the reduced space which allows the third order touching between energy

Fig. 9. Singular values of the energy–momentum map for ‘2 = 0. Model calculation with y = �1/10 or
u = (1 � 2/10)1/6.

Fig. 10. Sections of energy–momentum space by ‘2 = 0 (black), ‘2 = 10�6 (red), ‘2 = 2 · 10�6 (green) and
‘2 = 4 · 10�6. Model calculation with y = 1/10. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
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level and boundary of the reduced space. Fig. 11 shows what happens when we approach
these particular ‘2 value.

In a similar way we can plot critical values which belong to the x = const section of the
3D-image of the EM map. Corresponding sections are shown in Figs. 12 and 13.

If we look at critical lines on the x = const sections of the image of EM map, then for
negative x sufficiently close to zero we see two disconnected components of the boundary.
Remind that we use graphical representation in terms of ‘ rather than of ‘2. One boundary
is represented by a closed curve. The inverse image of each points inside it corresponds to a
regular torus. Another boundary line also separates points which have regular torus as
inverse image (to the left of the curve on the figure) and which have not (to the right of
the curve). This means that there is region where the complete inverse image of each point
of the EM map has two disconnected regular tori. When x decreases further two bound-
aries touch each other and we have one self-intersection curve. Again any point inside
small triangles possesses two disconnected tori as inverse image. Further decrease of x

leads to shrinking of the region of existence of double valued inverse map and to disap-
pearance of singularities on the boundary.

4.3. 3D-image of the EM map

Now, after looking at different sections of the 3D-image of the EM map we can go to
the complete 3D-representation. At low n (or equivalently at x < 0) the 3D-image has very
simple form of a 3D-body with one vertex and three singular lines on its 2D-boundary.
These singular lines are shown in Fig. 14. At the same time within the scale used in
Fig. 14 it is impossible to represent the most interesting region of the 3D-image of the
EM map near E = x = ‘ = 0 where the subcritical bifurcation leads to the qualitative
modification of the image. This small but important region is shown separately in
Fig. 15. The importance of this region is due to the presence of a part of EM image which
has two disconnected components of the inverse image of EM map.

Fig. 11. Sections of energy–momentum space by ‘2 = 4 · 10�6, ‘2 = 5 · 10�6, ‘2 = 6 · 10�6. ‘2 = 7 · 10�6, ‘2 =
9 · 10�6, ‘2 = 11 · 10�6, ‘2 = 13 · 10�6. Model calculation with y = 1/10. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this paper.)
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Fig. 12. Sections of energy–momentum space by x = �0.003 (red), x = �0.006 (green), and x = �0.008 (blue).
The outside boundary of the image of the EM map is visible only for x = �0.008. For other values of x it is far
away in the scale of the figure. Model calculation with y = 1/10. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this paper.)

Fig. 13. Sections of energy–momentum space by x = �0.0085 (blue), x = �0.01 (red), and x = �0.011 (green).
Model calculation with y = 1/10. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this paper.)
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Fig. 14. Singular lines on the boundary of EM image. Model problem with y = 1/10 or u = (1 + 2/10)1/6. The
detailed representation of the boundary within the region near E = x = ‘ = 0 indicated by a big circle is given in
Fig. 15.

Fig. 15. On the left: Part of the self-overlapping boundary of the 3D-image of the energy–momentum map EM
for a model of slightly detuned 1:1:2 resonance described by Eqs. (13a) and (13b) with y = 1/10 in coordinates
(E,‘,x). Regular EM values lie left and above the boundary. Inverse EM images of points inside the swallow-tail-
like 3D-region have two disconnected components. On the right: Singular lines in the image of the EM map which
give a contour (edges) of the swallow-tail-like region. Values of EM which correspond to the second order
touching of the constant energy level set and the reduced phase space correspond to AO, A 0O, and ABA 0 lines; AC

and A 0C indicate self-intersection of the boundary; OC line corresponds to the main singularity of the 1:1:2
resonance.
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The region with two components of the inverse image (or two fibers) is characterized by
its 2D-boundary, by 1D-singular lines on this boundary and by exceptional points on these
lines. Fig. 15, right shows all exceptional points and lines. Below we use the points A, A 0,
B, C, O to label singular lines and 2D-faces of the boundary of the region with two com-
ponents of the inverse image of EM map. The coordinates of these exceptional points are
listed in Table 1. Derivation of corresponding analytical expressions for 0D-, 1D-, and 2D-
strata on the image of EM map is given in Appendix A.

5. Global analysis of classical system: monodromy and bidromy

Fig. 15, Table 1 and analytical expressions in Appendix A describe the boundary of the
image of energy–momentum map for the problem with slightly detuned 1:1:2 resonance
and all special points and lines on this boundary.

5.1. Fibers of the EM map

On the basis of this description we concluded that this classical system has a special fea-
ture in the case of parameter u slightly grater than 1, namely the existence of the domain of
the regular values in the image of the EM map where the inverse image of each value con-
sists of two disconnected fibers. We denote this ‘‘self-overlapping’’ region by OCAA 0 (see
Fig. 15). Each regular fiber in the inverse images is a regular three-torus. Let us denote
them as T 3

a and T 3
b. One of these tori, say T 3

a degenerates into T 2
a on the internal points

of the 2D-boundaries OAC and OA 0C while another component remains the T 3
b regular

torus at that boundary and can be deformed smoothly along the path crossing this bound-
ary. At the same time the T 3

b torus degenerates into T 2
b at the internal points of the bound-

ary CAA 0 while T 3
a remains regular three-torus at that boundary and can be deformed

smoothly along the path crossing that boundary.
At the internal points of the boundary OAA 0 the two 3D-tori glue together. At the

internal points of the singular lines AC and A 0C, the inverse image is a disjoint union
of two 2D-tori T 2

a � T 2
b. The lines AC and A 0C are formed by the self-intersection of the

boundary. Each of the two components of the inverse image T 2
a � T 2

b can be associated

Table 1
Coordinates of exceptional points on the image of the EM map as a function of parameter u > 0 and
corresponding critical points of the reduced phase space {R, S, T = 0}

Variable Point O Point A Point B Point C Point M

‘2 0 4ð1� u3Þ4

ð1þ u6Þ4
0 0 0

E 0 � u12 � 6u6 þ 8u3 � 3

ð1þ u6Þ3
� ðu2 � 1Þ3

ðu4 � u2 þ 1Þ3
0 0

x 0
�3þ 4u3 � u12

ð1þ u6Þ2
�ðu

4 þ 2Þðu2 � 1Þ2

ðu4 � u2 þ 1Þ2
�ðu

6 � 1Þ2

ð1þ u6Þ2
�1

R 0
2ðu6 � 1Þ
ð1þ u6Þ2

2ðu2 � 1Þ
ðu4 � u2 þ 1Þ2

4ðu6 � 1Þ
ð1þ u6Þ2

0

S 0
8u3ðu3 � 1Þ
ð1þ u6Þ3

2ðu2 � 1Þ
ðu4 � u2 þ 1Þ3

8ðu6 � 1Þ
ð1þ u6Þ3

0
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with a particular degenerate two-torus over the appropriate regular points on the bound-
ary. Such arrangement is a 3D-analog of the situation discussed in the introduction (see
Fig. 4). In particular, the line c in Fig. 4 is the analog of the 2D-fragment AOA 0 of the
boundary in Fig. 16. The line c in Fig. 4 is formed by values of EM map whose inverse
images are 2D-bitori. The 2D-fragment AOA 0 of the boundary in Fig. 16 is formed by val-
ues of 3D EM map whose inverse images are 3D-bitori.

5.2. ‘‘Really closed’’ and ‘‘virtually closed’’ paths in the (E, x, ‘) space

Let us discuss now the deformation of the regular tori as their EM images move along
different paths in the (E,x, ‘) space. We suppose that the path starts at some regular point t0

inside the self-overlapping region. We need to distinguish connected components which we
denote as (t0,a) or (t0,b) and to associate with path one of these components. If the path
remains inside the self-overlapping region in the (E,x, ‘) space and forms a closed loop,
i.e. it returns back to the point t0, the connected component cannot change along this path.
In such a case the same connected component is associated with the initial and the final
points of this closed path in (E,x,‘) space. We call such path together with associated con-
tinued family of tori the really closed path. We can easily generalize this notion to paths
which can leave the self-overlapping region of the (E,x, ‘) space. The only requirement
which should be imposed on the path and the associated component is: the initial and
the final points of the ‘‘really closed’’ path are associated with the same component. It is
clear that in the case when ‘‘really closed’’ path does not leave the self overlapping region
it is homotopic to a point. Generically ‘‘really closed’’ paths can be homotopically non-
equivalent due to the presence of the singular thread on the image of the EM map.

Along with ‘‘really closed’’ paths another class of closed paths can be constructed. We
will name these paths ‘‘virtually closed’’. In order to construct an example of such path we
need to take into account that one of two components present in the self-overlapping

A’

A

B

C

O

b .

s1

s2

.

.
t 0

Fig. 16. Region of the image of EM map whose points have two connected components in their inverse images.
Two homotopically inequivalent paths ðtð1Þ0 � b� s2 � tð2Þ0 Þ and ðtð1Þ0 � b� s1 � tð2Þ0 Þ are shown. Their difference,
i.e. the path ðtð1Þ0 � b� s2 � tð2Þ0 � s1 � b� tð1Þ0 Þ is equivalent to a closed path surrounding once the singular line
O1. Points s1,s2,b are located on the boundaries s1 2 A 0CO, s2 2 ACO, b 2 AA 0C, point t0 is inside the 3D-body.
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region, for example the T 3
a component, can be deformed smoothly out of this region as the

associated path crosses the boundary AA 0C. Another, T 3
b, connected component degener-

ates at this boundary. At the same time the T 3
b component can be deformed smoothly out

of self-overlapping region as the associated path crosses the boundaries OAC or OA 0C

including the line OC. Only T 3
a component degenerates at this boundary. But neither

OAC and OA 0C boundaries nor singular line OC are special for T 3
b component. Note fur-

ther that neither component can be smoothly deformed through the boundary OAA 0

where fusion of two components takes place.
It is quite clear that the path starting at an initial point t0 and going out of self-over-

lapping region can come back to the self-overlapping region either by passing through
the same boundary or across another boundary. Coming back through the same boundary
we return to the same connected component. Coming back to point t0 results in such a case
in getting ‘‘really closed’’ path. If we return back to the initial point t0 through another
boundary we come to the alternative component. The so obtained path has the same initial
and final point t0 in the (E,x, ‘) space, but the initial and the final components are different.
Although this path seems to be closed in the (E,x, ‘) space, the associated components at
initial and final points are different. We name such paths ‘‘virtually closed’’.

Among all ‘‘really closed’’ and ‘‘virtually closed’’ paths there are homotopically non-
equivalent paths. This follows from existence of the singular line O1 which is equally
present for 1:1:2 resonant problem without detuning.

In order to construct homotopically non-equivalent paths it is sufficient to make differ-
ent number of circles around singular line O1 after the path goes out of the self-overlap-
ping region and before it returns back to the initial point t0. The simplest example of two
non-equivalent ‘‘virtually closed’’ paths can be easily constructed (see Fig. 16). Let us
begin at an internal point t0 of the self-intersection region. We take one path which goes
out of this region through point b in the ‘‘bottom’’ and then return back by going above
the OA singular double touching line and by entering inside the self-overlapping region
through point s2 on the ‘‘side boundary’’ OAC. Another path goes out of the self-overlap-
ping region through the same point b but after that goes above the OA 0 singular line and
enters inside by passing through the point s1 on the ‘‘side boundary’’ OA 0C. Obviously,
these two paths are ‘‘virtually closed’’ because initial and final components are different
and they are not homotopy equivalent. Their difference is equivalent to the closed path
surrounding once the singular line 01. The proof of this statement is quite simple. Let
us consider the closed path representing the difference of two initial paths. This path starts
at point t0 on component a. Then it goes through points b and s2 to tb0 and continues fur-
ther through s1 and b to ta0. It is clear that the part s2 � tb0 � s1 of this path can be smoothly
deformed out of two component region because all points of this part belong to b compo-
nent which does not ‘‘notice’’ the boundaries ACO, A 0CO and line OC. In a similar way
the part b� ta0 � b can be smoothly deformed out of the two-component region. The
resulting closed path represents just a closed loop around the singular line O1.

5.3. Bipath and crossing the bitorus boundary

As soon as we have established the correspondence between the regular tori at both
sides of the ‘‘unpenetrable’’ boundary OAA 0, we can try to define the correspondence
between the regular tori in the neighborhood of this boundary at which the two tori glue
together. This enables us to define a procedure of crossing such boundary.
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The first step consists in generalizing the notion of a path associated with one component.
When crossing ‘‘bitorus’’ boundary we leave the region of the (E,x, ‘) space with one com-
ponent and enter the region of the (E,x, ‘) space with two components for each value
(E,x, ‘). Thus we allow for a single path to bifurcate at the boundary, i.e. to transform
one path in (E,x,‘) space associated with single fiber into two paths associated each with
its own components. We consider these two paths as two components of the same bipath.
These two components of the bipath are in some way independent and can be different in
the (E,x, ‘) space. To construct the closed bipath we need to introduce a new operation
which enable us to joint the two components into one on a regular fiber of the EM map.
The schematic representation of the bipath is given in Fig. 17 where in order to simplify
the representation we use the 2D-image of the EM map in (E,m) coordinates. In this
Fig. 17 the regular values of the EM map having one component as inverse image are shown
by light shading, while regular values possessing two disconnected fibers in the inverse image
are shown by dark shading (MNO region). Singular line MN corresponds to bitorus in the
inverse image. Line NO corresponds to degeneration and disappearance of one component,
while another component degenerates and disappears at line MO. Closed bipath starts end
ends at point A. At point B lying on the bitorus line it splits into two components associated
with different fibers. These two components of the bipath go out of the two-fiber regions
through different boundaries (points e and f). Further, two components of the bipath go
to the same regular point D where they fuse into one path joining the initial point A.

5.4. Evolution of cycle bases along bipath and bidromy transformation

Now we need to define the evolution of the basis of cycles of regular tori (basis of the
first homology group) along a so constructed bipath. There are two points which require
special attention. Point corresponding to crossing of the bitorus line (point B in Fig. 17)
and point, where the fusion of two components takes place (point D in Fig. 17). In order
to allow the reasonable evolution of the basis cycles when crossing the bitorus line, we sup-
pose that one cycle gm is globally defined because it is related with the globally defined
action (geometrical or dynamical symmetry). As another cycle we take double cycle 2ge

which forms figure eight on the bitorus line. When the bipath splits into two components,
the associated double cycle transforms into two single cycles for two separate components

N

M

A BD

Oe

f

Fig. 17. Construction of a closed bipath with point A as initial and final point. Point B is the point of bifurcation
into two components BeD and BfD. Point D is the point of fusion of two components into one path DA. Light
shading corresponds to regular values of the EM map with one component in the inverse image. Dark shading
corresponds to regular values of the EM map with two disconnected components.
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2ge ¼ g0e þ g00e . Thus, after returning to the point of fusion D the two components have
cycle bases ðgm; g

0
eÞ and ðgm; g

00
eÞ. These two sets of cycle bases have one common cycle.

Now the fusion of two components of a bipath into one corresponds at the level of cycle
basis to the following transformation:

ðgm; g
0
eÞ � ðgm; g

00
eÞ ¼ ðgm; g

0
e þ g00eÞ: ð16Þ

The transformation between the initial cycle basis and the final cycle basis gives the bidromy
transformation associated with the chosen bipath. In fact this transformation was intro-
duced only for some subgroup of the first homology group, but as soon as the initial (and
the final) point is a regular one we can easily extend the transformation to the complete
homology group. This transformation is unimodular, but it may has fractional coefficients.

Extension of the discussed above bipath construction and bidromy transformation to
our initial 3D-problem is straightforward. We choose the basis of the homology group
of regular torus {g1,g2,g3} in the one-component-region in such a way that after a defor-
mation of this basis along a path in the {E,n, ‘} space till the critical value associated with
the bitorus, one of the basis cycles, say g3, becomes figure eight and splits into two cycles
after the path enters the two-component-region and bifurcates into the two-component
bipath. At the same time two other basis cycles {g1,g2} deform smoothly because they
are related to two actions, n, ‘. Remind that ‘ is the global action because it is due to glob-
al geometrical symmetry. Another integral of motion, n, is also a global action due to con-
struction of the integrable model by the normalization.

As soon as splitting of one basis cycle into two is not a well defined procedure we
choose as the initial basis in the one-component region the basis of the subgroup of the
homology group which has the form {g1,g2,2g3}. The so chosen system of cycles forms
the basis of the index 2 subgroup of the homology group of regular tori in the one-com-
ponent region. After crossing the line of critical values, i.e. passing through the bitorus line
the system of basis cycles {g1,g2,2g3} transforms into two systems of basis cycles for two
regular tori fg1; g2; g

0
3gb0 and fg1; g2; g

00
3gb00 associated with two component of a bipath

which have appeared after a bifurcation of the initial path at the bitorus line. Now for each
fiber (i.e. for each of the two connected components of the inverse image of the EM map)
the indicated system of cycles forms a basis of the whole homology group.

Further deformation of the two cycle bases can be done independently along two dif-
ferent components of the bipaths but we follow the evolution of two bases along these dif-
ferent components together. Each component of the bipath goes only through regular tori.
But within the two-component region these two tori belong to different fibers and, conse-
quently in order to leave the two-component region one component of the bipath should
go out through the ‘‘side boundary’’ (AOC or A 0OC on Fig. 15, right) while another com-
ponent of the bipath should go out through the ‘‘bottom boundary’’ (ACA 0 on Fig. 15,
right). Both components of the bipaths return to the initial point. Now the basis of the
same homology group of the same regular torus is associated with each component of
the bipath. These two bases are not necessarily identical because they are associated with
paths which are not homotopically equivalent. Moreover, these two bases are generically
different from the initial basis {g1,g2,g3} of the homology group of the initial regular
torus. The simplifying fact which we can use when writing explicitly the final bases to both
paths is the persistence of the cycles associated with the two global actions, n, ‘. Only the
third basis element can vary when returning back to the initial point. Let us denote the two
bases associated with the same regular torus at the end of the two components of the
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bipaths as fg1; g2; g
s
3g and fg1; g2; g

b
3g. Here the gs

3 cycle is the third basis element of the
homology group of the regular torus deformed along a component of the bipath going
out of two-component region through the ‘‘side’’ boundary. The gb

3 cycle is the third basis
element of the homology group of the regular torus deformed along a component of the
bipath going out of two-component region through the ‘‘bottom’’ boundary.

Now in order to compare the two bases fg1; g2; g
s
3g and fg1; g2; g

b
3g of the homology

group of the final regular fiber in the one-component region with the basis {g1,g2,2g3}
of the subgroup of the homology group chosen at the initial point we need to ‘‘fuse’’
two bases into one. This procedure should be in some sense reciprocal with respect to split-
ting of the basis into two bases when passing the singular bitorus. We suggest to define the
‘‘fusion’’ of two bases as the operation which gives instead of two bases fg1; g2; g

s
3g and

fg1; g2; g
b
3g of the full homology group of the regular torus, the basis of an index two sub-

group fg1; g2; g
s
3 þ gb

3g of the homology group of the same regular torus.
Finally, we can compare the initial basis {g1,g2,2g3} with the final basis

fg1; g2; g
s
3 þ gb

3g. Both these bases are defined for regular tori which belong to one-compo-
nent region of the image of the EM map. This allows us to define the transformation of the
system of cycles of the regular torus induced by the deformation along the bipath as ‘‘bidr-

omy’’ transformation.
The initial and the final bases are bases for subgroups of the same homology group and

consequently these bases can be expressed as combinations with integer coefficients of basis
cycles of the full homology group of the regular torus. The determinant of the matrix of trans-
formation from the basis of the group to the basis of the subgroup equals the index of the
subgroup, i.e. two in our case. At the same time, the matrix of transformation between initial
and final bases has determinant 1, but generically it has fractional coefficients. We call this
matrix the bidromy matrix associated with the ‘‘bidromy’’ transformation. The bidromy
characterizes the transformation of the ‘‘passable basis’’ of cycles of a regular torus associ-
ated with a ‘‘bipath’’ which crosses the line of critical values representing bitorus.

We note that we introduced the new operation of ‘‘splitting’’ and ‘‘fusion’’ of bases of
homology groups to define the bidromy. In our particular case this operation relates the
basis of the subgroup of index 2 of the homology group of regular torus with two bases
of the total homology group. We formally write this operation as:

fg1; g2; ga þ gbg $ fg1; g2; gag � fg1; g2; gbg ð17Þ

This operation can be done for a regular torus and for a special kind of a singular torus,
the bitorus. Applying this operation to bitorus is associated with the bifurcation of the sin-
gle path into two components of the bipaths. The reason for introducing such operation is
intuitively clear. It is necessary to generalize the notion of monodromy to more complicat-
ed situations, when the path crosses the boundary separating regions of critical values with
one-component and two-component inverse images of the EM map. We do not discuss in
this paper a rigorous mathematical definition of this operation and of the related concept
of ‘‘bidromy’’. Instead, in the next section we demonstrate very appealing manifestations
of bidromy in one corresponding quantum problem.

6. Quantum monodromy and quantum bidromy

We now describe how such specific structure of classical toric fibration as ‘‘bidromy’’
manifests itself in the joint energy–momentum eigenvalue spectrum of the corresponding

D.A. Sadovskiı́, B.I. Zhilinskiı́ / Annals of Physics 322 (2007) 164–200 187



Aut
ho

r's
   

pe
rs

on
al

   
co

py

quantum problem. In order to simplify the analysis, let us restrict the system to ‘ = 0 and
consider the respective section of the image of the EM map together with the quantum
lattice as shown in Fig. 18. The lattice in Fig. 18 is computed for the Hamiltonian (13a)
and (13b) with �h = 0.0002 and N = 4910, . . . , 5010, where �hN = n = 1 � x. In this ‘ = 0
section, the two component region forms the 2D domain BCO. Our analysis of the clas-
sical system suggests that the joint quantum energy–momentum spectrum can be unfolded
as a regular Z2 lattice which self-overlaps in the region BCO. In this latter region we have
two sublattices which correspond to two fibers in the inverse image of classical EM map.
Indeed these sublattices can be seen clearly in Fig. 18, and we can also see that one of the
sublattices can be continued smoothly out of the self-overlapping region BCO through its
right side boundary CO, whereas the other sublattice continues smoothly through the
bottom boundary BC. Far outside BCO the two sublattices join smoothly and become
one lattice. It follows that all quantum states represented by the lattice in Fig. 18 can
be assigned using one system of global quantum numbers. However, states with close ener-
gy–momentum and polyad characteristics in the overlap region BCO can have very differ-
ent quantum numbers if they belong to different sublattices.

The lattice in Fig. 18 stimulates another more complicated conjecture on the possibility to
transfer a quantum cell across the merger line BO (a singular line at which the preimage of the
classical EM value splits into a pair of regular tori). This quantum construction replicates
essentially the classical ‘‘bidromy’’ transformation introduced in the previous section.

We begin with a double cell which splits into two cells after crossing the merger line BO.
The new cells belong to two different sublattices. At the same time, the path along which
we follow the evolution of the cells splits into two: one goes up around vertex O and the
other follows down and turns around B. In fact, instead of a standard path we have the
more complicated construction of ‘‘bipath’’. The ‘‘bipath’’ is characterized by a bifurca-
tion point where the single path splits into two components of bipath. Each of the two cells
is now designated to its own path (or more exactly to its component of the ‘‘bipath’’), and
we should follow their evolution simultaneously. After our cells return back (each along its
own component of ‘‘bipath’’), the two branches of ‘‘bipath’’ fuse together forming a single
path where the resulting cells can be arranged as shown in Fig. 18, i.e. by having one com-
mon side. After that we need a quantum analog of the ‘‘fusion’’ operation to fuse them
into a single double cell and to compare the latter to the initial double cell. The transfor-
mation between the initial and final double cells defines the quantum bidromy matrix. In
particular, the ‘‘bidromy’’ transformation between the initial and final cells for the exam-
ple shown in Fig. 18 can be written in the matrix form as:

1
2

0

1 2

� �
: ð18Þ

The appearance of 1
2

in (18) is the consequence of the fact that only cells doubled in the ‘‘E-
direction’’ can follow the bipath and cross the singular line OB. At the moment of crossing
the bipath bifurcates and the cell splits into two cells in such a way that the total volume
of two cells remains equal to the volume of the initial double cell. The same conservation
of volume takes place at the moment of the second bifurcation associated with the fusion
of the two components of ‘‘bipath’’ into a single path, where we reconstruct the single cell
from the two cells arriving from two branches of the ‘‘bipath’’. The conservation of volume
manifests itself as the requirement that the determinant of the bidromy matrix is 1.
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 1.000

n

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

E × 104

O

C

B

Fig. 18. Quantum spectrum (blue dots) of a slightly detuned 1:1:2 resonant oscillator (given by Eqs. (13a) and
(13b) and y = 1/10) with ‘ = 0 in the (E,n) region corresponding to the existence of two classical fibers. Values of
h = 0.0002 and N = 4910, . . . , 5010 are used in quantum calculations, where hN = n = 1 � x. Elementary cells
represent a tentative interpretation of bidromy in terms of cell transportation admitting splitting and fusion of
cells at the branching points of the bipath. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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Certainly, in order to justify such construction, the operation of splitting and fusion of
quantum cells associated with bifurcations of ‘‘bipath’’ should be mathematically
approved. The invariance of the ‘‘bidromy’’ transformation on the choice of the ‘‘bipath’’
should also be proven. We leave these questions open. We point out only to the fact that
for the analyzed example, new qualitative characteristics of the pattern formed by the joint
spectrum lattice are introduced naturally and are described in a rather simple and visual-
ized form.

7. Conclusions

We like to comment that 1:1:2 resonant molecular systems with bidromy are not very
likely to exist among known molecular systems with Fermi resonance. Thus all such sys-
tems we know undergo the supercritical bifurcation. In CO2, where detuning b is anoma-
lously small, this bifurcation occurs for n well below the value n ¼ 3

2
of the ground state; in

CS2 it happens at the level of the first overtone. However, the Fermi resonance and the
three degrees of freedom are by no means necessary for the system to have bidromy. It
is also possible to observe this phenomenon in systems with two degrees of freedom [36]
and resonance 1:1.

Naturally, a generalization of the bidromy notion to ‘‘multidromy’’ can be done in a quite
straightforward way in the case of problems with more complicated singularities associated
with splitting or fusion of several tori [32]. One of such appealing more complicated concrete
problems is the Manakov top. But ever before going to such complications, there are a lot of
more simple questions to analyze and to justify especially from the point of view of mathe-
matically rigorous foundation. So the most important and urgent next step is to construct
the simplest, in some sense ‘‘elementary’’ or universal model problem with bidromy using
as example the dynamical system with two degrees of freedom only [37].

Appendix A. Critical values of the energy–momentum map

In this appendix, we give the details of the analytical derivation of equations describing
critical values of the EM map for the integrable 3D-system of the 1:1:2 resonant oscillator
with detuning studied in the main text. This analysis is based on the study of the system of
Eqs. (13a,13b) describing the relative position of the constant energy level set of the Ham-
iltonian and the boundary of the reduced phase space.

A.1. ‘ = 0 case

In order to illustrate our approach we start this analysis with one particularly simple
case, corresponding to ‘ = 0. In such a case (13a,13b) in u parameterization takes the fol-
lowing form:

H ¼ S � Rþ u6 þ 1

4
R2; ðA:1aÞ

S2 ¼ R2ð1þ x� RÞ: ðA:1bÞ

One obvious critical point of the EM map corresponds to R = S = 0. It is due to the sin-
gularity of the reduced phase space for ‘ = 0. In order to find other critical points of the
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EM map we need to find the R, S values at which the energy level defined by (A.1a) touch-
es the boundary defined by (A.1b). The mathematical condition for such touching is:

oSEn:L

oR
¼ oSb

oR
; ðA:2Þ

where SEn.L is the expression for S found from energy level Equation (A.1a) and Sb is the S

expression found from the boundary Equation (A.1b). After calculating derivatives,

oSEn:L

oR
¼ o

oR
E þ R� u6 þ 1

4
R2

� 	
; ðA:3Þ

oSb

oR
¼ 1

2S
o

oR
R2ð1þ x� RÞ

 �

; ðA:4Þ

we need to use once more the boundary equation (A.1b) in order to eliminate S from the
resulting equation and to get the polynomial equation

ðu6 þ 1Þ2R3 þ ð�u12 � 6u6 þ 4� xu12 � 2xu6 � xÞR2

þ ð�4� 8xþ 4xu6 þ 4u6ÞRþ 4xþ 4x2 ¼ 0; ðA:5Þ

which gives the positions of touching points between energy levels and the boundary for
given values of integral x and of parameter u. This equation is cubic in R and quadratic in
x. It is also polynomial (of degree 12) in u. Two solutions for x(R,u) as a function of R and
of parameter u can be used to construct the parametric representation E(R,S(R,x(R))),
x(R) of the critical values on the image of EM map, i.e. in the plane (E,x), using R as
parameter. For these two solutions x1,2(R;u) we have

x1;2ðR; uÞ ¼ 1
8
R2ðu6 þ 1Þ2 þ R� 1

2
Ru6 � 1

2
� 1

8
16� 32Ru6 þ 8R2ð3u12 þ 2u6 � 1Þ
�

�8R3u6ð1þ u6Þ2 þ R4ð1þ u6Þ4
�1=2

: ðA:6Þ

We can easily distinguish these two solutions through their behavior at R = 0. The solu-
tion which go to 0 as R fi 0 describes the appearance of new critical points for x close to 0.
Another solution, which goes to x = �1 for R fi 0 describes the boundary near the equi-
librium point.

These two solutions can become degenerate if the discriminant of the quadratic in x

equation becomes zero. Expressing R as a function of u for these degeneracy points we find
that only the doubly degenerate solution

Rdegen ¼
2

u6 þ 1
;

2

u6 þ 1
; ðA:7Þ

is relevant.
This means that when we construct parametric representation of E(R), x(R) we should

be accurate passing the point R = 2/(u6 + 1), where two solutions for x1,2(R,u) degenerate.
We can now look at Eq. (A.5) as on the cubic equation in R. When two solutions of this

cubic equation become degenerate the discriminant of this cubic equation becomes zero
and at the touching point between energy level and the boundary both the first and the
second derivatives coincide.

Putting discriminant of cubic in R equation equal to zero gives equation of degree 5 in x

which can be factorized and completely solved. The equation itself has the form:
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16ðxu8 � 2xu6 þ 3xu4 � 2xu2 þ xþ 2� 4u2 þ 3u4 � 2u6 þ u8Þ
� ð4þ 7xu4 þ 2u16xþ u16x2 þ 4xþ 6xu6 þ 2u14 þ u16 þ 8u2

þ 4u6 þ x2 þ 2xu12 þ u12 � u8 þ 3xu8 þ 4xu14 þ 2x2u14 þ 4x2u8

þ 10u4 þ x2u4 þ 2x2u2 þ 2x2u6 � 2u10 þ 2u10x2 þ u12x2 þ 8xu2Þ
� ðu6 � 2þ xu6 þ xÞ2 ¼ 0: ðA:8Þ

Among all five solutions,

X 1;2 ¼
2� u6

ðu2 þ 1Þðu4 � u2 þ 1Þ ;

X 3 ¼ �
ðu4 þ 2Þðu2 � 1Þ2

ðu4 � u2 þ 1Þ2
;

X 4;5 ¼ �
2u12 þ 3u4 þ 4� i6

ffiffiffi
3
p

u4

4ðu4 � u2 þ 1Þ2ðu2 þ 1Þ2
;

ðA:9Þ

the solutions X4,5 are irrelevant, because they are complex except at u = 0, but at u = 0
they correspond to X4,5 = �2 which is impossible for the initial model with x P �1.
The physically interesting one is the following solution

X B ¼ �
ðu4 þ 2Þðu2 � 1Þ2

ðu4 � u2 þ 1Þ2
; ðA:10Þ

which gives the value of x = XB at which two new branches of critical points appear. This
point is denoted as point B in Fig. 8.

The corresponding value of R = RB at the extremal x value follows from equation for
touching points (A.5) by substituting in this equation x by the XB value. The equation
takes the form:

ðRþ 2� 4u2 þ u4 þ 2Ru6 � 2u6 þ Ru12ÞðRu8 � 2Ru6 þ 3Ru4 � 2Ru2 � 2u2 þ Rþ 2Þ2 ¼ 0:

ðA:11Þ

There are two solutions, but only one is relevant. We can choose the needed solution by
imposing requirement that the first derivative by R of the equation for touching points
(A.5) should be also fulfilled at the same point. This follows from the fact that at points
where the discriminant is zero, the polynomial and its first derivative have the same root.
In other words the discriminant of a polynomial is proportional to the resultant of this
polynomial and its derivative.

3ðu6 þ 1Þ2R2 þ ð�2u12 � 12u6 þ 8� 2xu12 � 4xu6 � 2xÞR� 4� 8xþ 4xu6 þ 4u6 ¼ 0:

ðA:12Þ

Substituting into Eq. (A.12) XB from Eq. (A.10) we transform this equation into the prod-
uct of two factors

ðRu12 � 2u6 þ 2Ru6 � 2u2 þ Rþ 2ÞðRu8 � 2Ru6 þ 3Ru4 � 2Ru2 � 2u2 þ Rþ 2Þ2 ¼ 0:

ðA:13Þ

The common factor for (A.13) and (A.11) gives the needed solution which is:
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RB ¼
2ðu2 � 1Þ
ðu4 � u2 þ 1Þ2

: ðA:14Þ

Now using (A.10) and (A.14) we calculate values of S and of energy at the extremal point.

SB ¼
2ðu2 � 1Þ
ðu4 � u2 þ 1Þ3

; ðA:15Þ

EB ¼ �
ðu2 � 1Þ3

ðu4 � u2 þ 1Þ3
: ðA:16Þ

Note that the choice of the parametric representation should be checked if the region of R
values includes value corresponding to degeneration of two solutions. We illustrate the
possible error in improper continuation of the parametric solution over the zero of the dis-
criminant in Fig. A.1.

In order to characterize the region of (E,x) plane where two disconnected fibers exist we
need to precise the position of the point where critical line intersects E = 0 axis (point C in
Fig. 8). The position of this point satisfies the following system of equations:

Fig. A.1. Singular values of the energy-momentum map for ‘2 = 0. Model calculation with y = 3/5 or u = (1 +
6/5)1/6. Degeneration of two X1,2 solutions takes place for such u at R = 5/8. This figure illustrates the effect of
improper continuation of the parametric representation through the point of the zero discriminant. Blue lines
should be used to continuer the red and the green lines chosen at small R. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this paper.)
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S ¼ Rð1� ðu6 þ 1ÞR=4Þ; ðA:17Þ
S2 ¼ R2ð1þ x� RÞ; ðA:18Þ
SðRð1þ u6Þ � 2Þ ¼ Rð3R� 2x� 2Þ: ðA:19Þ

Here (A.17) is the equation for energy level with E = 0, (A.18) is the equation for the
boundary of the ‘‘reduced phase space’’, and (A.19) is the equation specifying that the
energy level and the boundary are tangent.

Putting (A.17) into (A.18) and (A.19) we get apart from obvious solution (R = 0, S = 0)
valid for any values of x the system of equations on R and x:

x ¼ 1� u6

2
Rþ ð1þ u6Þ2

16
R2; ðA:20Þ

2xþ 3ðu6 � 1Þ
2

R� ð1þ u6Þ2

4
R2 ¼ 0: ðA:21Þ

The nontrivial solution giving the coordinates of point C is

RC ¼
4ðu6 � 1Þ
ð1þ u6Þ2

; X C ¼ �
ðu6 � 1Þ2

ð1þ u6Þ2
: ðA:22Þ

The corresponding value of S is

SC ¼
8ðu6 � 1Þ
ð1þ u6Þ3

: ðA:23Þ

We remind that on the image of the EM map this point (point C) has EC = 0 and ‘C = 0
coordinates.

As a function of u, the so obtained R value has a maximum at u6 = 3. This means that
for u6 = 3 the distance between zero singular point and point where the new local solution
appears is maximal in R. For u6 = 3 the position of the extremal point (point B) of the
energy momentum diagram is

EBðu6 ¼ 3Þ ¼ � ðu2 � 1Þ3

ðu4 � u2 þ 1Þ3
� �0:019687; ðA:24Þ

X Bðu6 ¼ 3Þ ¼ � ðu
4 þ 2Þðu4 � 1Þ2

ðu6 þ 1Þ2
� �0:2974: ðA:25Þ

The position of the extremal point is in fact not far from the point of intersection with sin-
gular line. Moreover, the extremal energy as a function of u has minimum at u ¼

ffiffiffi
2
p

.

A.2. ‘ „ 0 case

In the case of arbitrary nonzero ‘ the initial system of Eqs. (15a, 15b) can be easily
rewritten in the form of equation on the touching points between the energy level and
the reduced phase space boundary as it was done earlier in the ‘ = 0 case. But now instead
of the Eq. (A.5) obtained in the case of ‘ = 0, similar equation for arbitrary ‘ has more
complicated form
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ðu6 þ 1Þ2R5 þ ð4� u12 � xu12 � 6u6 � 2xu6 � xÞR4 þ ð�8xþ 4xu6 � 2‘2u6 � ‘2

� ‘2u12 � 4þ 4u6ÞR3 þ ð4x2 þ ‘2xþ ‘2xu12 þ 2‘2xu6 þ 4xþ 6‘2u6 � ‘2 þ ‘2u12ÞR2

� 4‘2ð1þ xu6 þ u6ÞRþ ‘2ð‘2 þ 4xþ 4Þ ¼ 0: ðA:26Þ

This equation is of degree 5 in R but only quadratic in x and in ‘2. This means that we can find
for fixed ‘2 value the relation between x and R by solving quadratic equation and find for
fixed x values the relation between ‘2 and R again by solving simple quadratic equation.

In the case of nonzero ‘2 the boundary of the image of the EM map is defined by Eq.
(A.26) in terms of (R,‘2,x) variables and parameter u. This equation describes all the sur-
face boundary. At the same time except simple (first order) touching points between ener-
gy level and boundary of the reduced phase space, there are also second order touching
points where Eq. (A.26) has two degenerate roots and third order touching points where
Eq. (A.26) has three coinciding roots. There are only isolated points of the third order
touching and one-dimensional lines of points corresponding to second order touching.

A.3. Exceptional points of triple touching

We start by finding isolated points of the third order touching. In order to do that we
use the fact that the equation of degree 5 with one triply degenerate root can be written in
the form:

R5 þ ð�3t � sÞR4 þ ð3t2 þ 3tsþ pÞR3 þ ð�t3 � 3t2s� 3tpÞR2 þ ðt3sþ 3t2pÞR� t3p ¼ 0:

ðA:27Þ

In (A.27) we denote by t the triply degenerate root and by s and p the sum and product of two
other roots. From the comparison of Eq. (A.27) with touching Eq. (A.26) we get the system of
five equations by putting equality between corresponding coefficients of R-polynomials.

Then we eliminate consecutively variables s, p, ‘2 from this system of equations. Two
resulting equations depend on variables t and x and on parameter u. One of the resulting
equations is cubic in x, another is quartic in x. (Their degree in t is respectively 5 and 9.) In
order to eliminate x we calculate the resultant of these two equations in x. (For applica-
tions of resultant to solving polynomial equations see, for example [33–35].) The so
obtained resultant is a polynomial in t of degree 29 which can be factorized and written
in a rather simple form

294912u18t5ðt þ 2þ 2tu6 � 2u6 þ tu12Þ2ðt2 þ t2u12 þ 2t2u6 þ 4t þ 4� 4tu6Þ4

� ð�24tu12 � 4þ 12t2u6 � 16u6 þ 12u12 þ 18t2u12 � 12tu18 � 12tu6

þ 3t2u24 þ 12t2u18 þ 3t2Þ4ðtu6 þ t � 2Þ6: ðA:28Þ

Each factor in resultant is maximally quadratic in t. All solutions can be easily found. The
solution which we are interested in should go to 0 when u goes to 1. That solution for t is
the solution for the value of R corresponding to third order touching point between energy
level and the boundary of reduced phase space. We denote the corresponding point by A.
For RA we get

RA ¼
2ðu6 � 1Þ
ð1þ u6Þ2

: ðA:29Þ
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Now by substituting the so obtained RA value into the polynomial equation resulting after
eliminating s, p, ‘2 we obtain the corresponding xA value and further consecutively ‘2

A, SA,
and EA values, which are listed in Table 1.

A.4. Singular lines of double touching

In order to find singular lines which correspond to points of second order touching
between energy level and the reduced phase space boundary we follow the same strategy
as we used in the previous subsection for points of third order contact.

We use again Eq. (A.26) as a starting point. As soon as this equation is supposed to
have one doubly degenerate root, it has the form

R5þð�2t� sÞR4þðt2þ 2tsþ p2ÞR3þð�t2s� 2tp2� p3ÞR2þðt2p2þ 2tp3ÞR� t2p3 ¼ 0;

ðA:30Þ
where t is the doubly degenerate root, s = t3 + t4 + t5 is the sum of three other roots which
we denote by t3, t4, t5, p2 = t3t4 + t3t5 + t4t5, and p3 = t3t4t5. We get easily system of five
equations from the equality of corresponding coefficients in R-polynomials (A.26) and
(A.30). Eliminating consecutively from this system of equations s, p2, p3 we arrive at
two polynomial equations depending on ‘2, x, t variables and parameter u. The so ob-
tained equations are only quadratic in ‘2 and x but of degree 4 and 5 in t. Calculating
resultants of these two equations with respect to ‘2 and x, we get two new polynomial
equations. One depends on t, x, another on t, ‘2. In both cases polynomials can be decom-
posed in factors which are at most quadratic in x and in ‘2. This means that we can easily
write down the explicit parametric representation for this curves in the form (‘2(R;u),
x(R;u)). As soon as equations for x and for ‘2 are quadratic in R we have two solutions
and the physically interesting for us now is the solution which goes to zero as R fi 0.
We denote the corresponding solution as x2 and ‘2

2 in order to indicate that these solutions
correspond to second order touching points and represent them in the following form:

x2 ¼
1

16u6
�ðu6 þ 1Þ4R3 þ 6ðu6 � 1Þðu6 þ 1Þ2R2 � 12ðu6 � 1Þ2R� 8ðu6 þ 1Þ


þðu6 þ 1Þ 4þ 4ð1� u6ÞRþ ðu6 þ 1Þ2R2
h i3=2

�
; ðA:31Þ

‘2
2 ¼

1

4u6
�ðu6 � 1Þðu6 þ 1Þ2R3 þ 6ðu12 þ 1ÞR2 � 12ðu6 � 1ÞRþ 8


� 4þ 4ð1� u6ÞRþ ðu6 þ 1Þ2R2
h i3=2

�
; ðA:32Þ

From (A.31, A.32) we recalculate immediately the corresponding S and E values.

E2 ¼
1

8u6
ðu6 þ 1Þ3R3 þ 6ðu6 þ 1ÞR2 � 12ðu6 � 1ÞRþ 8


� 4þ 4ð1� u6ÞRþ ðu6 þ 1Þ2R2
h i3=2

�
; ðA:33Þ

S2 ¼
1

8u6
ðu6 þ 1Þ3R3 þ 2R2ð3þ 2u6 � u12Þ þ 4Rð3� u6Þ


þ8� 4þ 4ð1� u6ÞRþ ðu6 þ 1Þ2R2
h i3=2

�
: ðA:34Þ
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It is easy to verify that by substituting into ((A.31)–(A.34)) values of R corresponding to
points 0, A, B we get, respectively, values of x, ‘2, E, S in corresponding points. These val-
ues are given in Table 1.

Let us note that expressions for x2; ‘
2
2;E2 have polynomial in R part and the square root

part. The expression under the square root is the same in all formulae. This means that we
can construct two linearly independent combinations of x2; ‘

2
2;E2 which do not include

square root and are completely polynomial. For example, we can take

4E2 � 2‘2
2 ¼ R2 Rð1þ u6Þ2 þ 3ð1� u6Þ

 �
; ðA:35Þ

4E2ð1þ u6Þ þ 8x2 ¼ 3R Rð1þ u6Þ2 þ 4ð1� u6Þ
 �

: ðA:36Þ

A.5. 2D boundary of the image of EM map

In order to construct the 2D-boundary of the image of EM map we need to represent
the equation of the boundary in a suitable parametric form. To get such representation
from three initial equations describing respectively energy level, reduced phase space
boundary and touching condition:

E ¼ S � Rþ u6 þ 1

4
R2; ðA:37Þ

S2 ¼ ðR2 � ‘2Þð1þ x� RÞ; ðA:38Þ
Sð�2þ Rð1þ u6ÞÞ þ 2Rþ 2Rx� 3R2 þ ‘2 ¼ 0; ðA:39Þ

we eliminate S from (A.37–A.39) and get the system of two equations depending on R, x,
‘2, E and parameter u.

ðR2 � ‘2Þð1þ x� RÞ � R� 1

4
R2ð1þ u6Þ þ E

� �2

¼ 0; ðA:40Þ

R� 1

4
R2ð1þ u6Þ þ E

� �
�2þ Rð1þ u6Þ
� �

þ 2Rþ 2Rx� 3R2 þ ‘2 ¼ 0: ðA:41Þ

Now by eliminating from (A.40,A.41) either E or x (we calculate respectively resultant
with respect to E or x variable) we get one equation depending on x, ‘2, R variables
and another equation depending on E, ‘2, R variables. As soon as the first equation is qua-
dratic in x and the second is quadratic in E, we easily get parametric representation of the
boundary surface in the form (E(R, ‘2),x(R, ‘2)).

Eb ¼
1

4R
‘2Rð1þ u6Þ � 2ðR2 þ ‘2Þ
�

þðR2 � ‘2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4Rð1� u6Þ þ R2ð1þ u6Þ2

q �
; ðA:42Þ

xb ¼
1

8R2
R4ð1þ u6Þ2 þ 4R3ð2� u6Þ


� R2½‘2ð1þ u6Þ2 þ 4� þ 4R‘2u6 � 4‘2

þðR2 � ‘2Þð2� Rð1þ u6ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð1þ u6Þ2 þ 4Rð1� u6Þ þ 4

q �
: ðA:43Þ
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Using this parametric representation we construct the 3D view of the boundary surface as
shown in Fig. 15.

A.6. Lines of self-intersection

We now proceed to the analytic description of the line of self-intersection of the bound-
ary of the image of EM map. We write the system of equations valid only for the points
lying on the self-intersection line of the boundary. As soon as all points on the boundary
are represented in (A.42,A.43) in parametric (Eb(R, ‘2), xb(R, ‘2)) form with R and ‘2 as
parameters the points on the line of self-intersection are characterized by the fact that
the same point in E, x, ‘2 space can be obtained with two different values of parameters.
So, we need to find such R1 and R2 values that

EbðR1Þ ¼ EbðR2Þ; ðA:44Þ
xbðR1Þ ¼ xbðR2Þ: ðA:45Þ

Eqs. (A.44, A.45) depend on R1, R2 and ‘2. General idea is to eliminate ‘2 and to get the
equation describing the relation between R1 and R2. From the technical point of view it is
simpler initially to introduce auxiliary variable ZR which is related with R by simple qua-
dratic equation

Z2
R ¼ R2ð1þ u6Þ2 þ 4Rð1� u6Þ þ 4: ðA:46Þ

ZR is in fact the essential R-dependent part of the discriminant of the quadratic Eqs.
(A.40,A.41). After introducing ZR(R1) and ZR(R2) we get the system of polynomial equa-
tions.

Eliminating ‘2 from polynomial Eqs. (A.44, A.45) by calculating their resultant we get
the polynomial equation relating R1, R2, ZR(R1), ZR(R2) which together with (A.46)
enable us to eliminate ZR(R1) and ZR(R2) by calculating consecutively two resultants.
The final resultant which gives the relation between R1 and R2 has especially nice form

256ðR1 � R2Þ6 R1ð1þ u6Þ2 þ R2ð1þ u6Þ2 þ 4ð1� u6Þ
 �2

¼ 0: ðA:47Þ

This means that the relation between R1 and R2 is linear

R1 þ R2 ¼
4ðu6 � 1Þ
ð1þ u6Þ2

: ðA:48Þ

It is easy to verify that for the point A the both values of R coincide R1 = R2 = 2(u6 � 1)/
(1 + u6)2 whereas for point C the two values of R are 0 and 4(u6 � 1)/(1 + u6)2. This means
that in order to find all points on the self-intersection line we need to vary R between
2(u6 � 1)/(1 + u6)2 and 4(u6 � 1)/(1 + u6)2 or equivalently between 0 and 2(u6 � 1)/
(1 + u6)2.

The next step is to use the so found relation between R1 and R2 and to show that for
these values of R we have ZR(R1) = ZR(R2). Putting these relations into (A.44) gives us the
expression of ‘2 as a function of R and ZR for points on the self-intersection line.

ð‘2Þs�i ¼
RðZR � 2Þ Rðu6 þ 1Þ2 þ 4ð1� u6Þ

 �
ðu6 þ 1Þ2ðZR þ 2Þ

: ðA:49Þ
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In (A.49) the ZR stands for positive solution of (A.46). Now by putting (A.49) into equa-
tion of the energy of the boundary points (A.42) we get the explicit expression for the ener-
gy of points on the self-intersection line.

Es�i ¼
R ZRð1þ u6Þ � 2ð3� u6Þð Þ Rðu6 þ 1Þ2 þ 4ð1� u6Þ

 �
4ðu6 þ 1Þ2ðZR þ 2Þ

: ðA:50Þ

In a similar way we get the expression for the x coordinates of points on the self-intersec-
tion line.

X s�i ¼
R2ðu6 þ 1Þ3 þ 4Rð1� u12Þ � 2þ 4u6 � ZRð1� u6Þ2

ðu6 þ 1Þ2ðZR þ 2Þ
: ðA:51Þ

Finally expressions ((A.49)–(A.51)) give the representation of the self-intersection line as a
function of R. The parameter R should vary either between 0 and 2(u6 � 1)/(1 + u6)2 or
between 2(u6 � 1)/(1 + u6)2 and 4(u6 � 1)/(1 + u6)2 in order to cover once all points on
the self-intersection line.

We can also represent points on the self-intersection line in an alternative way express-
ing ‘2,E,x as a functions of ZR.

ð‘2Þs�i ¼
ðZR � 2Þ2

ð1þ u6Þ2
; ðA:52Þ

Es�i ¼
ðZR � 2ÞðZRð1þ u6Þ þ 2u6 � 6Þ

4ðu6 þ 1Þ2
; ðA:53Þ

X s�i ¼ �
3þ u12 � ZRð1þ u6Þ

ðu6 þ 1Þ2
: ðA:54Þ

Moreover for all self-intersection points we can express their ‘2 and E coordinates explic-
itly as functions of x.

ð‘2Þs�i ¼
ð1� u6Þ2

ð1þ u6Þ2
þ x

 !2

; ðA:55Þ

Es�i ¼ x2 ð1þ u6Þ
4

þ x
ðu6 � 1Þ

2
þ ðu

6 þ 3Þðu6 � 1Þ3

4ðu6 þ 1Þ3
: ðA:56Þ

In (A.55) and (A.56) x varies between its values for xA and xC points xA 6 x 6 xC (see Ta-
ble 1).
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