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A new method for energy-level calculations of the H-atom in a superstrong magnetic field is proposed. The method is
based on perturbation theory. The finite-difference technique is used to solve the resulting equations.

Recently the existence of a superstrong magnetic
field (SMF) (~1012 G) near surfaces of neutron stars was
supposed. This caused an increasing interest in the
problem of the properties of matter in such fields
[1-4]. The nonrelativistic motion of an electron in
the field of a fixed nucleus and in the presence of a
SMF is the most simple problem to study the effects
of a SMF. The well-known relation £(Z, B) = Z2 X
E(1,B/Z2) reduces this problem to calculation of the
H-atom energy levels for a wide range of magnetic
fields. Here £(Z, B) is the energy of a one-electron
atom with nuclear charge Z in the presence of an ex-
ternal magnetic field B. Nowadays the energy levels of
the H-atom in a SMG are known with rather high ac-
curacy [3,4], but the methods applied to solve this
problem become inefficient under a more realistic
formulation of the latter or under application to many-
electron systems.

In this note we propose a new method for calcula-
tion of the energy levels of the H-atom in a SMF,
which uses perturbation theory (PT). A considerable
simplification of the calculations is achieved by making
use of the finite difference (FD) technique. We suppose
the method proposed to be more suited for various gen-
eralizations, particularly for taking into account the
motion of the nucleus and relativistic corrections.

The equation describing the nonrelativistic motion
of an electron in the field of an infinitely heavy nucleus
and an external uniform magnetic field directed along
the Oz axis have the form

192 1232 1 2 2. p2a2
{_2622 2ap2+8[(4m —1)p—%+B2p?]

—Z)(p? +z2)1/2} Fz,p)=(E — 5Bm) F(z, p). (1)

The function F(z, p) satisfies the boundary conditions
F(z,p)=0,

Here z and p are the polar coordinates of the electron,
m is the quantum number of the projection of the
angular momentum on the Oz axis, B is the strength
of the magnetic field in units of B, = cle[3M?/h3
=2.35 X 10% G, M and ¢ are the mass and the charge
of the electron. We separate the total hamiltonian into
a zero-order part and the perturbation:

ifz=2000rp=0,00. )

H=Hy+V, 3)
Hy=H,+H,, 4)
H; =—0.502/0p2 +0.125[(4m2 — 1) p~2 + B2p?]
+0.5Bm, (5)
Hy = -0.582/3z2 - Z[(p2, +z2)1/2 | (6)
V=Z[(p2,+z)2 ~ Z|(p? + 22)1/2 (7

to take into account that the electron motion for
large B is well localised near the cylindrical surface of
radius p,, = [(2m + 1)/B]1/2 [1]. Here H| is the ha-
miltonian for the free motion of the electron in the
x—y plane in the presence of a uniform magnetic
field. The hamiltonian H, describes the motion of
the electron in a one-dimensional Coulomb potential
which is cut at p,, . The z and p variables may be sep-
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arated in the zero-order operator. This simplifies con-
siderably the solution of the problem via PT. The
given choice of Hy leads to better convergence of the
perturbation series for higher B values. For example,
the third-order correction for the ground-state energy
for B = 208y, is about 1% of E, whereas for B = 2000
X By itis of order 10~3% of Eyy. The corresponding ratio
of the first-, second- and third-order corrections is,
respectively, 2: 3: 0.1 for B=20By and 1 : 0.1 :
0.001 for B =20008. Thus for B> 1010 G it is suf-
ficient to calculate the energy through the third-order
of PT.

The third-order energy correction may be easily
calculated if the first-order wave function F(1(z, p)
is known. F(1(z, p) satisfies the inhomogeneous dif-
ferential equation

[Hy(p) + Hy(2) — Eg) FO(z,p)=(E, ~ V) FO(z,p) |

(8)
where F(U(z, p) and FO(z, p) satisty the boundary
conditions (2). We represent F{(1)(z, p) in terms of a
series expansion using the basis {f,,,,,(0)&;(z)}. Here
Jmn(p) are the exact functions for Landau’s states
[7] which are orthonormalized without weight func-
tion p, and g, (2) are the eigenfunctions of H, in the
FD approximation. The same approach was used
earlier for the solution of the atomic pair radial equa-
tions [6] and yielded very accurate results. The eigen-
value problem for the H, operator takes the form

[-0.58%/822 - Z/(p2, + z)2] fr(D) =€ [ 2) . (9)
F1 ()= fr(—==)=0. (10)

To apply the FD approximation to eq. (9) we replace
the infinite domain of f3(z) by a finite one by intro-
ducing the new variable x (—a7 < x < 1),

x = arctg(az) . (1)

We divide the interval (—37, 37) by NV + 2 internal
points into N + 3 equal parts. The functions f;(z) are
equal to zero in the points x = i%n due to the bound-
ary conditions. By appropriate choice of the param-
eter a in eq. (11) we make the unknown functions
negligible at the first and the last internal points. Such
a condition enables us to use without any difficulties
the fourth-order FD approximation for the second
derivative operator
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FI0) = gh 2 [~ 2) +16fG — 1)
- 30f(G) + 16+ 1) — £ +2)] . (12)

Here f(7) is the value of the function f at the ith grid
point, 7 is the step of the FD scheme. Using eq. (12)
we reduce the problem (9), (10) to the eigenvalue
problem for an N X N five-diagonal matrix. Given the
eigenvectors of this matrix, the coefficients of the
series expansion of F(1)(z, p) may be easily calculated.
Thus the first-order correction for the wave function
with quantum numbers m, 1, k includes the function
Finn(P) 81 (2) with the coefficient

RS Vo I — B (13)

n'k' "
where

Vi?llc,n'k' = <fmn'(p) gk’(z)| 4 f;mz(p) gk(z)> . (14)

A simple trapezoidal rule must be used to perform the
integration over the z variable in (14). The integration
over p is performed using Gauss—Laguerre formulae.
To increase the accuracy we use Richardson’s extra-
polation [5]. This procedure includes the solution of
the problem for several # values and the extrapolation
to h = 0. We take the h-dependence of the energy in
the form

E(hy=E+EhY+E"h6 + ... (15)

The energy depends also on the knot number # in the
Gauss—Laguerre quadrature formula:

E(Uny=E+Q/n)E"+(1/n)2E" + ... (16)

This enables us to put n = eo.

The method described was used to calculate the
ionisation potentials for the ground and several excited
states of the H-atom in a wide range of magnetic fields.
The results are listed in table 1. To obtain these results
a series of grids with N = 50, 60, 70, 80 and the qua-
drature formula with » = 38, 40, 42 were used. The
obtained results are in good agreement with the best
values known up to date. The most significant error
in our results is due to a nonoptimal distribution of
the grid points in the z-variable. It may be reduced by
a suitable choice of the transformation (11). We did
not use this possibility because the accuracy of the
obtained results is quite sufficient in the frame of the
employed approximation. In other words, the correc-
tions to the energy from the motion of the nucleus
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Table 1
Ionisation energies (in au) for several states of the H-atom in a magnetic field B (in units of By). m, n, k are the quantum

numbers characterising the states of the H-atom in a magnetic field and showing from which states of the zero-order hamiltonian
they are generated.

n m k B -
29) 2 20 200 2000
0 a) 0 1 1.022 221534 4.72703 9.30467 10
0 0 1 1.02221 1.014 32 2.214 46 4.729 04 9.27405
0 0 2 0.297 70 0.297 50 0.41335 0.476 54 0.49563
0 0 3 0.174 03 0.17408 0.22379 0.267 84 0.300 72
0 0 4 0.096 94 0.096 82 0.114 05 0.12213 0.121 76
0 -1 1 0.599 59 0.599 28 1.465 46 3.34715 6.95180
0 —-1 2 0.24527 0.24521 0.376 12 0.461 82 0.492 20
0 -1 3 0.142 54 0.14247 0.198 86 0.24897 0.289 81
0 -1 4 0.087 28 0.108 85 0.12028 0.12122
0 -2 1 0.47122 047112 1.19362 2.80202 5.96863
0 -2 2 0.21744 0.35219 0.45058 0.489 29
0 -2 3 0.12868 0.186 37 0.23847 0.28218
0 -2 4 0.081 66 0.105 33 0.118 86 0.120 77
2) The results in the first column and in the first row were obtained in refs. [3] and [4], respectively.
and relativistic effects are expected to be larger than [3] H.C. Praddaude, Phys. Rev. A6 (1972) 1321.
the errors in our results. f4] J. Simola and J. Virtamo, J. Phys. B11 (1978) 3309.

[5] L. Richardson and J. Gaunt, Trans. R. Soc. (L.ondon)
A226 (1927) 299.
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