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1. Introduction

The main goal of the qualitative theory of excited quantum finite particle

systems is to describe and to classify generic qualitative phenomena which

can be presented in families of Hamiltonian dynamical systems depending

on a number of control parameters. The basic tools of such analysis are

quantum-classical correspondence, symmetry group actions, topological as-

pects (for a review see [1–4] and references therein). Initially the accent of

the qualitative analysis was put on the “quantum bifurcations” [5–7] and

the redistribution of energy levels between bands [8–11] in the energy spec-

trum under the variation of some control parameters. At the end of the

nineties Richard Cushman brings to the attention of physicists the Hamil-

tonian monodromy phenomenon. The monodromy was known to exist in

several simple classical mechanical problems like spherical pendulum [12,13]

and was tentatively suggested to be of certain importance for quantum

problems [14]. Soon after, the presence of monodromy was demonstrated

for a number of different integrable approximations for concrete physical

systems like coupled angular momenta [15,16], hydrogen atom in external

fields [17–19], H+

2 molecular ion [20], CO2 molecule [21,22] and many other
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simple atomic and molecular systems. As soon as all these real physical

systems are quantum, the notion of “quantum monodromy” is needed. It

was introduced in [23,24] and the interpretation of quantum monodromy

as a certain “defect” of the lattice formed by joint spectrum of several

commuting observables for quantum problem was suggested [4,25].

2. Singularities of energy-momentum maps and

monodromy

In its simplest form the Hamiltonian monodromy [13,26] appears for classi-

cal completely integrable problems with two degrees of freedom [12,27,28].

Such dynamical systems can be considered as integrable toric fibrations

defined by two integrals of motion in involution [29]. Typical simplest im-

ages of energy-momentum (EM) maps shown in Fig.1 consist of regular

values and singular values. The inverse images of regular values are two-

dimensional tori (one or several) [30]. Singular values on the boundary of

the EM map image correspond to lower dimensional tori. Typical isolated

singular values (codimension two singularities) which appear generically for

Hamiltonian dynamical systems with two-degrees of freedom are associated

with the so called pinched torus (one of the generating circles of the torus

is shrinked to a point, Fig.2a) [12,27]. The presence of an isolated singular

fiber makes toric fibration non-trivial. The monodromy describes the global

twisting of the family of tori parameterized by a closed path going through

regular values of the EM map of the integrable system. It can be considered

as an automorphism of the first homology group of regular fibers associ-

ated with the homotopy equivalent class of closed loops on the regular part

of the image of EM map. From the dynamical system point of view the

monodromy is the first obstruction to the existence of global action-angle

variables for completely integrable problems [13,26].

Pinched torus singularity is structurally stable under small perturba-

tions which preserve the integrability of the problem. That is why the

presence of monodromy is important from the point of view of physical

applications. Moreover, having a topological origin, the monodromy should

in some sense persist even under small non-integrable perturbation. This

fact was recently proven for nearly integrable system in the style of KAM

theorem [31].

For a family of integrable systems depending on parameters, the position

of a singular value on the image of EM map can change and, in particu-

lar, this singular value can touch the boundary of the EM map (compare

sub-figures (a) and (b) in Fig.1). The corresponding qualitative modifica-
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Fig. 1. Typical images of the energy momentum map for completely integrable Hamil-
tonian systems with two degree of freedom in the case of: (a) - all internal points are
regular, no monodromy; (b) - isolated singular value with integer monodromy, (c) - “is-
land” formed by second component with nonlocal monodromy, and (d) - “island” formed

by second component with trivial monodromy. [Dashed line - “bitorus” singularity.]

tion of the image of EM map (often named as bifurcation diagram [29])

is the Hamiltonian Hopf bifurcation [18,32]. Another possible qualitative

modification which can happen with isolated singular value is another kind

of bifurcation which leads to formation of second connected component

(or a second fiber). Two components fuse together at a singular line (see

Fig.1c,d). Each regular point at that line has a singular “bitorus” as inverse

image (see Fig.2b). Note, that the Hamiltonian Hopf bifurcation leads to

the formation of an island (second leaf) on the image of the EM map

which can be surrounded by a closed loop possessing the same monodromy

as the initial singular (pinched) torus (compare sub-figures (b) and (c) in

Fig.1). The corresponding quantum problem possesses two different lattices

in the two-component region which fuse together along the singular line.

Such structure appears in quadratic spherical pendulum [18], LiCN, HCN

molecules [33,34], hydrogen atom in external fields [19,35]. At the same

time, it should be noted that the “island” formed by the second component

can be formed without an initial singular pinched torus. In such a case there

are only two exceptional singular values on the singular boundary of “is-

land” associated with the two ends of the “bitorus” line. The corresponding

fibers are singular tori shown in Fig.2c. The monodromy associated with

the closed loop around such an island is trivial (identity).

The standard definition of Hamiltonian monodromy requires the exis-

tence of a closed loop in the plane of values of integrals which goes only

through regular values of the EM map. An important generalization of

this notion was recently proposed which allows the existence of some one-

dimensional singular strata which can be crossed by a loop. The correspond-

ing singular fibers are curled tori (Fig.2d). The restriction imposed by the

existence of such strata leads to the possibility to define monodromy only

for certain subgroups of the first homology group of regular fibers because
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a b c d

Fig. 2. Two dimensional singular fibers in the case of integrable Hamiltonian systems
with two degrees of freedom (left to right): a - pinched torus, b -bitorus, c - singular
torus, and d - curled torus.

a b c

Fig. 3. Typical images of the energy momentum map for completely integrable Hamil-
tonian systems with two degree of freedom in the case of fractional monodromy (black
point correspond to essential singularity): (a) - singular line is formed by curled tori;
(b) - “island” formed by second connected component with one of its boundary being a
circle with nontrivial stabilizer (fuzzy fractional monodromy [40]); (c) - “island” formed
by second component (non-local fractional monodromy [35]).

only a subgroup of cycles can go through the singular stratum. The result-

ing fractional monodromy was first introduced in [36,37] for a problem of

nonlinearly coupled resonant oscillators and was illustrated immediately on

quantum example by the evolution of a multiple (double) cell along a closed

path crossing once the singular stratum. Much more detailed analysis of the

fractional monodromy is given in several recent publications [37–40].

In its simplest version, the fractional monodromy is defined for closed

paths which do not cross singular strata of the bitorus type, i.e. singular

fibers associated with transformation of one regular torus into two regu-

lar tori. At the same time, similar to the case of integer monodromy, the

pinched curled torus, i.e. the fiber corresponding to singular value at the end

of “curled torus line”, can be deformed into an island formed by a second

connected component. In such a case, the nonlocal fractional monodromy

which is illustrated in Fig.3c arises. In this case the essential singularity,

namely the pinched curled torus, gives the second component attached to
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the main leaf through the bitorus line (see an example of the formation of

such structure in the case of hydrogen atom in external fields in [35].) An-

other possibility of formation of second component is shown in Fig.3b. Here

the essential singularity remains on the main leaf, and the second compo-

nent is attached to the main leaf through the bitorus line. This situation was

the subject of Nekhoroshev’s study of arbitrary fractional monodromy [40].

He has shown that locally, close to essential singularity, the notion of frac-

tional monodromy can be conserved even if the closed path crosses the

bitorus line where the discontinuity of actions takes place. The presence of

these discontinuities results in the appearance of “fuzzy” fractional mon-

odromy. The fuzziness becomes less pronounced when the crossing point

between closed loop and the bitorus line approaches an essential singular-

ity.

3. Bidromy

Another possibility to cross the bitorus line and to go from the region of EM

map with one connected component as inverse image into the region with

two connected components was suggested by Sadovskii and Zhilinskii [22,41]

on the basis of their study of a realistic physical model describing three-

dimensional nonlinear oscillators in the presence of axial symmetry with

1:1:2 resonance and small detuning between a doubly degenerate mode and

a non-degenerate one, which corresponds e.g. to the Fermi resonance in the

CO2 molecule. In this problem the two-components and the bitorus line are

again present in some region of the EM map image, but their arrangement

now is completely different (see Fig.4). In fact, the two components are

formed due to self-overlapping of one regular leaf of the EM map. As Fig.4

schematically shows, the two fibers (b′, b′′) associated with the same values

of the integrals are two different regular tori, which can be deformed one

into another along a path going entirely through regular fibers. Such path

starts and ends at different components and, consequently, it is not closed

even if its initial and final points have the same values of the integrals. In

such situation the interesting possibility of defining a “bipath” appears [22].

Let the “bipath” start at point a (Fig.4) and go through regular tori till

point c at the bitorus line. At that point the path ac bifurcates into two

component path. Each sub-path [(cb′) and (cb′′)] evolves through regular

tori on different components in the region of self-overlapping. The two sub-

paths of the bipath go independently through regular tori till the initial

point where they fuse. The only singularity on the bipath is the bitorus c.

Point a is special, but the corresponding fiber is regular.
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Fig. 4. Schematic representation of a bipath associated with bidromy.

Fig. 5. Energy momentum diagram for the Manakov top together with joint spectrum of
mutually commuting operators for the corresponding quantum problem (taken from [44]).
Inverse images of regular points in four regions consist of two, two, two and four regular
tori. Evolution of a quadruple cell along a closed path surrounding the central singularity
consists in splitting of quadruple cell into two double cells when entering into region with
four components. The transformation between the initial and the final cell is trivial.

The following transformation of quantum cells of the joint spectrum

lattice is suggested to be associated with such a bipath [22]. We start at

a with the double cell which splits into two cells belonging to the different

components when crossing the bitorus line. Further evolution of each cell

is regular till the final point where two cells should fuse together. The

resulting cell can be compared with the initial one. The transformation

between initial and final cells is named the bidromy transformation. It is

conjectured that this transformation does not depend on the place where

the bipath crosses the bitorus line. It is quite important to note that in the

case of the “island” monodromy similar crossing of the bitorus line leads to

a result which apparently depends on the position of the crossing point.

The Manakov top problem [42–44] gives an another interesting example

of the EM map with an even more complicated system of connected com-
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ponents (see Fig.5). The recent paper [44] uses a construction similar to

“bipath” and bidromy, which allows to define the evolution of a multiple

quantum cell along a “multicomponent” path. Curiously, the generalized

monodromy defined in this case becomes trivial, in spite of using rather

complicated multi-paths.

4. Conclusions

We briefly reviewed the possible generalizations of the monodromy con-

cept which lead to fractional monodromy and bidromy. While presently the

mathematically rigorous definition of fractional monodromy seems to be

properly formulated, the description of “bidromy” is just at its initial stage.

Further mathematical constructions are necessary, and quite demanding, in

order to propose mathematically satisfactory tools which allow to treat the

new qualitative features in dynamics which were heuristically described on

several examples of quantum molecular models.
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