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Abstract—Recent developments associated with old technique of generating functions and invariant
theory which I have started to apply to molecular problems due to my collaboration with Yu.F. Smirnov
about 25 years ago are discussed. Three aspects are presented: the construction of diagonal in polyad
quantum number effective resonant vibrational Hamiltonians using the symmetrized Hadamard product;
the decomposition of the number of state generating function into regular and oscillatory contributions and
its relation with Todd polynomials and topological characterization of energy bands; qualitative aspects of
resonant oscillators and fractional monodromy as one of new generalizations of Hamiltonian monodromy.
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1. HISTORICAL INTRODUCTION

At the end of 1980s I began my collaboration
with Yurii Fedorovich Smirnov. We both worked at
that time in Moscow State University. He worked
at Physics Department (Nuclear Physics Research
Institute), myself—at Chemistry Department. The
reason of our collaboration was our mutual inter-
est in applications of invariant theory, in particular
of the Molien generating function technique, to
construction of effective Hamiltonians for nuclear
models (main field interest of Yu.F. Smirnov) and to
molecular systems (my proper field of research) [1, 2].
Yu.F. Smirnov guided me through mathematical
aspects of classical invariant theory and through
completely unfamiliar to me at that time generating
function technique. I tried to formulate mathematical
ideas of invariant theory in a way most directly related
to natural questions arising in my study of qualita-
tive theory of highly-excited finite particle quantum
systems. We also started to work on new possible
applications of another modern technique, quantum
algebra, to molecular and nuclear systems [3], but
at the beginning of 1990s I left Moscow and settled
in France, whereas Yu.F. Smirnov moved to Mex-
ico. We continued to meet and to discuss scientific
problems but had no occasion to publish something
together. Nevertheless, the subject that we have
started together with Yu.F. Smirnov becomes one of
the powerfull tools which I used during last 20 years
in relation to different problems of qualitative theory
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of highly-excited quantum molecular systems [4–9].
Some of these problems I present in the current paper
which I devote to the memory of Yurii Fedorovich
Smirnov.

2. HADAMARD PRODUCT
OF GENERATING FUNCTIONS

I start with simple molecular example which
nevertheless has many common points with gen-
eral effective vibrational Hamiltonians in molecular
or nuclear physics. Let us consider vibrations of
methane molecule CH4, which has equilibrium con-
figuration of Td symmetry. There are one nondegen-
erate νA1

1 , one doubly degenerate νE
2 , and two triply

degenerate νF2
i , i = 3, 4, vibrations, which moreover

satisfy special resonance condition ν1 : ν3 : ν2 : ν4 =
2 : 2 : 1 : 1. Assuming slight anharmonicity, the
excited vibrational states arrange into so-called vi-
brational polyads formed by groups of nearly degen-
erate vibrational states (polyads) characterized by the
same effective number of quanta N = 2n1 + n2 +
2n3 + n4. In order to construct effective vibrational
Hamiltonian describing inter-polyad structure, we
need to take into account all properly symmetrized
operators formed from harmonic oscillator creation
and annihilation operators{ [(

a+
1

)s1 ×
(
a+

2

)s2 ×
(
a+

3

)s3 ×
(
a+

4

)s4
]Γ

×
[
(a1)

t1 × (a2)
t2 × (a3)

t3 × (a4)
t4

]Γ

}A1
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satisfying additional restriction 2s1 + s2 + 2s3 + s4 =
2t1 + t2 + 2t3 + t4 which follows directly from the
resonance conditions. Along with Td geometrical in-
variance imposed on the Hamiltonian by physical re-
quirements, the invariance with respect to time rever-
sal should typically be imposed as well. The difference
between spatial symmetry and time-reversal invari-
ance is technically important because elementary cre-
ation (annihilation) operators in most cases could be
chosen as transforming according to irreducible rep-
resentations of the symmetry group, whereas time-
reversal operation transforms creation operators into
annihilation and vice versa.

The crucial initial point is the Molien theorem [4,
10–14] which in its simplest form enables one to
construct the generating function for the number of
irreducible representations of a given type in the de-
composition of the N th symmetric power of one ir-
reducible representation. More exactly, for the finite
group G, for the initial representation Γi and for the
final representation Γf the generating function

MG(Γf ← Γi;λ) = |G|−1 (1)

×
∑
g∈G

χ̃Γf (g)det (In − λΓi(g))−1 =
∞∑

N=0

CNλN

gives the numbers CN indicating how many times the
final representation Γf appears in the decomposition
of the N th symmetric power of the initial representa-
tion Γi. In (1) |G| is the order of the finite group G,
χΓ is the character of the irreducible representation
Γ, tilde means complex conjugation. λ is a dummy
variable. This generating function typically can be
written in the form of a rational function of some
special form ∑

k ckλ
k

(1 − λd1)(1 − λd2) · · · (1 − λds)
,

which has symbolic meaning specifying existence of
a certain number of functionally independent denom-
inator invariants and a number of linearly independent
though algebraically dependent numerator invariants.
This symbolic interpretation gives the description of
the integrity basis [4] (or in other words, the ho-
mogeneous system of parameters [15]). An alterna-
tive interpretation of generating function can be done
in terms of a set of generators (which are typically
functionally dependent), a set of relations (syzygies)
between them, a set of relations between relations,
etc. [16].

Calculation of the generating functions for the
number of invariants or covariants constructed from
elementary tensors transforming according to a given
irreducible or reducible representation of finite groups
is just a relatively simple task as soon as the character

table is known. A less trivial problem is the con-
struction of generating function for operators which
are diagonal within polyads. This can be achieved by
extending the geometrical symmetry group with the
dynamical symmetry responsible for the resonance or
by constructing the needed generating function from
two generating functions, one for creation operators,
another for annihilation operators. The nontrivial part
consists in introducing the important restriction on
the numbers of creation and annihilation operators
which leads to operators diagonal within polyads.
Such construction was realized, for example, in [17].
More recently a slightly different approach was pro-
posed which is based on the construction known as
Hadamard product of formal power series [15, 18–
20]. The advantage of this approach is due to the
possibility to take into account in a simple way an
additional symmetry requirements imposed simulta-
neously on creation and annihilation operators, like
invariance with respect to time reversal, and to repre-
sent the answer again in the rational function form.

Let us remind here that the Hadamard product
of two formal power series f(z) =

∑
n≥0 fnzn and

g(z) =
∑

n≥0 gnzn is defined as their term-by-term
product [15, 18–20]

f(z) � g(z) =
∑
n≥0

fngnzn. (2)

The following fact is known: the Hadamard product of
two rational functions is a rational function [18]. This
statement allows to convert the formal power series
into a rational function form.

We start with an extremely simple example of two
A modes in the 1 : 1 resonance with trivial symmetry
group. The generating function for creation (or equiv-
alently for annihilation) operators takes the form de-
pending on two dummy variables (λ, k) which count
independently the degree of creation operators and
the associated modifications of the polyad quantum
numbers:

g(A ← 2A,λ, k) =
1

(1 − λk)2
(3)

=
∞∑

n=0

(n + 1)λnkn.

Now in order to construct the generating function for
diagonal operators we need to form the power series
in k with coefficients being squares of coefficients
in (3). This operation is exactly the Hadamard
product (square) of formal power series [15, 18–20].
We denote the Hadamard product by �k and its
application to generating function (3) gives for the
Hadamard square

1
(1 − λk)2

�k
1

(1 − λk)2
(4)

PHYSICS OF ATOMIC NUCLEI Vol. 75 No. 1 2012



GENERATING FUNCTIONS 111

=
∞∑

n=0

(n + 1)2λ2nkn =
1 + λ2k

(1 − λ2k)3
.

The degree of auxiliary variable λ counts now the total
degree of creation and annihilation operators. At the
same time the variable k counts Δn associated with
only creation (or only annihilation) operators forming
the diagonal operator.

Formula (4) follows directly from the identities
(where t replaces the λ2k)

d

dt
t
d

dt

(
1 + t + t2 + t3 + . . .

)
=

∞∑
n=0

(n + 1)2tn, (5)

d

dt
t
d

dt

(
1

1 − t

)
=

1 + t

(1 − t)3
. (6)

In order to take into account only time-reversal in-
variant operators we need to use instead of simple
Hadamard square the symmetrized Hadamard square
[(g(λ) �k g(λ) + g(λ2)]/2 which is an analog of a

symmetrized square of an irreducible representation.
As soon as normal Hadamard square is known, the
calculation of the symmetrized square meets no diffi-
culties. Thus, for the generating function (3) its sym-
metrized Hadamard square, counting the number of
diagonal time-reversal invariant operators, becomes

1
2

[
(g �k g) + g(λ2)

]
=

1
2

(
1 + λ2k

(1 − λ2k)3
+

1
(1 − λ2k)2

)
=

1
(1 − λ2k)3

.

The nontrivial character of k dependence appears
in the case of any k1 : k2 resonances different form
1 : 1. We give as an example the 2 : 1 : 1 resonance
between nondegenerate A1 and doubly degenerate E
modes of tetrahedral molecules.

The total generating function describing all diag-
onal time reversal and Td-invariant operators con-
structed through arbitrary intermediate representa-
tions has the following form

g(A1, TR,ΔN = 0,← A1 ⊕ E (2 : 1);λ, k) (7)

=
1 + λ7k4 + λ8k5 − λ12k7 − λ13k8 − λ20k12

(1 − λ2k) (1 − λ2k2) (1 − λ3k2) (1 − λ4k2) (1 − λ6k3) (1 − λ9k6)
.

The generating function (7) is given in its simplest
most reduced form which has six terms in the denom-
inator and both positive and negative contributions in
the numerator. Naturally, there should be only five
functionally independent invariants for this problem
and consequently the six terms in the denominator
correspond to a system of invariants related by syzy-
gies. We do not want to discuss here the explicit
construction of a system of syzygies. This example
is given in order to demonstrate that even in the case
of relatively simple generating functions the structure
of the associated module of invariant functions can be
rather complicated.

3. DENSITY OF STATE FUNCTION
AND TOPOLOGY OF ENERGY BANDS

The generating function for the number of states
within vibrational polyads formed by resonant oscil-
lators is an extremely interesting object from com-
pletely different points of view.

First of all, the number of states in polyads, in the
case of nontrivial resonance relation between vibra-
tional frequencies, is a quasipolynomial, i.e. this func-
tion can be split into a smooth polynomial part and

an additional oscillatory contribution, whose period
is related to the resonance condition [4–6, 21]. The
generating function technique allows us to extract
directly from the total generating function both reg-
ular polynomial and oscillatory contributions to the
density of states.

Namely, the generating function for the number of
states in polyads formed by d1 : d2 : . . . : dk resonant
oscillators can be written as

gd1:d2:...:dK
(t) (8)

=
1

(1 − td1)(1 − td2) · · · (1 − tdK )
.

The coefficient CN in the formal series

gd1:d2:...:dK
(t) =

∑
N

CN tN , (9)

can in its turn be represented in the form

CN = aK−1N
K−1 + aK−1N

K−1 + . . . (10)

+ a0 + oscillatory part,

with aj being the polynomials of di exposants [4]

aK−1−i(d1, d2, . . . , dK) (11)
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Fig. 1. Oscillatory part of the density of states for 3 : 5 : 7 resonance oscillators.

∼ 1
(K − 1 − i)!

Toddi([d1, d2, . . . , dK ]).

The oscillatory part of the number of state function
has complicated form related to the problem of count-
ing the lattice points of rational polyhedra [22, 23], but
again it can be represented with a number of the same
Todd polynomials each of which now reproduces only
part of values of oscillatory function for certain integer
values of arguments.

Figure 1 shows an example of oscillatory con-
tribution to the number of state function for three
oscillators in the 3 : 5 : 7 resonance. It is interesting
to see that a series of shifted parabolic dependencies
recover all oscillatory contributions. Moreover, the
quadratic polynomial turns out to be the same as the
quadratic polynomial describing the regular polyno-
mial contribution.

The appearence of Todd polynomials forces us to
think about a topological interpretation and this is
really the case. To see that we can use the deforma-
tion quantization approach which gives the following
expression for the number of quantum states [24, 25]
(the so-called general index formula):

Tr1̂ =
∫

Ch(V )Ch(h)Todd(M). (12)

Here, Tr1̂ gives the number of states for the vector
bundle V over manifold M characterized by its rank
and Chern numbers; Todd(M) is the Todd polynomial
for the manifold M , i.e. the Todd polynomial for the
tangent fibre bundle over M ; Ch(V ) is the Chern
character of the vector fibre bundle V ; Ch(h) is the
Chern character for the quantization of the trivial line
bundle over M .

The relation between the topology of the bands and
the number of states within the band, which follows

directly from the index formula (12), is supported by
the description of the rearrangement of bands within
the semi-quantum model [7, 26, 27].

Another interesting aspect of generating functions
for the number of states within vibrational polyads can
be illustrated by examinating two simple and quite
similar examples of vibrational resonances, namely
the three-degree-of-freedom oscillators with reso-
nance conditions 1 : 1 : 2 and 1 : 2 : 2. In both cases,
the reduction of the classical problem is based on the
harmonic approximation and takes into account the
integral of motion corresponding to the total action
of harmonic problem. From the point of view of
topology, the reduced classical phase spaces are, in
both cases, the weighted projective spaces P{1,1,2}
and P{1,2,2}, respectively. The singularity structure
of these reduced spaces is naturally quite different. It
is interesting to note that there is certain equivalence
between P{1,2,2} space and a standard complex pro-
jective space CP2, which is a reduced space for triply
degenerate harmonic oscillator. At the same time, the
P{1,1,2} space is essentially different [28, 29].

Working with generating functions for the num-
ber of states, it is easy to formulate an equivalent
proposition. Let us start with the 1 : 2 : 2 resonance
example. We can rewrite the generating function for
the number of states in this case as follows

g1:2:2 =
1

(1 − t)(1 − t2)2
= 1 + t + 3t2 (13)

+ 3t3 + 6t4 + 6t5 + . . . =
1 + t

(1 − t2)3

=
1

(1 − u)3
+ t

1
(1 − u)3

.

A formal Taylor series expansion of the generating
function (13) shows clearly that looking separately
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Fig. 2. Typical images of the energy–momentum map for completely integrable Hamiltonian systems with two degrees of
freedom in the case of (from left to right) integer monodromy, fractional monodromy, nonlocal monodromy, and bidromy. Values
in light shaded area lift to single 2-tori; values in dark shaded area lift to two 2-tori.

Fig. 3. Two-dimensional singular fibers in the case of integrable Hamiltonian systems with two degrees of freedom (left to
right): singular torus, bitorus, pinched and curled tori.
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Fig. 4. Quantum joint spectra for typical regions of the image of energy–momentum map for 2D-integrable problems. From
left to right: regular lattice, lattice with an isolated defect, lattice with two-component region.

on even and odd polyads we find exatly the same
numbers as in the case of triply degenerate oscillator.
The same effect can be seen after rearrangement of
the initial generating function into a sum of two terms
with denominator coinciding with the denominator of
generating function for the 1 : 1 : 1 oscillator (after
replacing t2 = u).

The same kind of transformation applied to the
generating function for the 1 : 1 : 2 oscillator gives
more complicated contributions

g1:1:2 =
1

(1 − t)2(1 − t2)
(14)

=
1 + 2t + t2

(1 − t2)3
=

2t
(1 − u)3

+
1 + u

(1 − u)3
.

We have again (after replacing t2 = u) different terms
with the same denominator (1 − u)3, which is similar
to the 1 : 1 : 1 oscillator problem. At the same time,
one of two terms has nontrivial numerator, (1 + u).
The nontrivial numerator is present for bands over
complex projective space in the case of quantization
of topologically nontrivial vector bundles (according
to general index formula). The relation between the
generating function for the number of states (over

PHYSICS OF ATOMIC NUCLEI Vol. 75 No. 1 2012



114 ZHILINSKII

CP 2) written in the form

A + Bu + Cu2

(1 − u)3

and the topology of the fiber bundle over CP 2 has the
following form (see [7, 26])

r = A + B + C,

c1 = −B − 2C,

c2 = −B/2 − 2C + B2/2 + 2BC + 2C2,

where r is the rank and c1, c2 are the first and second
Chern classes of the fiber bundle.

Returning now back to the interpretation of the
decomposition of generating function (14) for the
1 : 1 : 2 resonance, we can state that the internal
structure of polyads formed by oscillators in the 1 :
1 : 2 resonance is equivalent to superposition of two
trivial bands over CP2 space for odd polyads and to
superposition of two bands (one with trivial topol-
ogy and another with nontrivial first Chern class,
c1 = −1) for even polyads. Namely, on the basis of
this concrete example it is possible to formulate a
general tentative interpretation of the internal struc-
ture of polyads.

The internal structure of polyads for general res-
onance (over weighted projective space) can be de-
scribed as formed by several polyads over standard
projective space but with nontrivial topological prop-
erties (Chern classes).

4. FRACTIONAL MONODROMY
AND DEFECTS OF LATTICES

In this section I want to demonstrate how the
generating function formalism and, in particular, the
splitting of the number of state functions into regu-
lar and oscillatory contributions turns out to be the
stimulating argument for introducing a new notion
of fractional monodromy. For this I need first to
remind several facts about standard (integer) Hamil-
tonian monodromy for completely integrable classical
Hamiltonian systems, and about its quantum analog
and its relation to defects of regular lattices.

For classical integrable Hamiltonian systems with
two degrees of freedom the image of the correspond-
ing energy–momentum map contains regular and
singular values (see Fig. 2). In order to stress that
different images of energy momentum map are quite
characteristic for concrete physical problems we pro-
vide here physical examples for each of four images:
(i) a particle in a “mexican hat” potential [30]; (ii) two
nonlinear oscillators in the 1 : (−2) resonance [31];
(iii) quadratic spherical pendulum [32], or LiCN
molecule [33]; (iv) three-dimensional oscillator with

Fig. 5. Construction of the 1 : (−1) lattice defect starting
from the regular Z2 lattice. Dark grey quadrangles show
the evolution of an elementary lattice cell along a closed
path around the defect point.

1 : 1 : 2 resonance or vibrational stretching modes of
CO2 like molecule [34].

Whereas inverse images of the regular values are
always regular tori, the inverse images for singular
values are topologically different objects (shown in
Fig. 3).

The presence of isolated singular values (like in
Fig. 2, left) leads to an obstruction to the existence
of global action–angle variables in spite of the fact
that the problem is completely integrable one. A
typical generic example of an isolated critical value
of the energy–momentum map for classical dynamic
systems with two degrees of freedom is a so-called
pinched torus (see Fig. 3). Due to its presence, the
toric fibration over any closed contour surrounding
critical value should be nontrivial. This nontrivial
character of classical integrable (almost) toric fibra-
tion is known under the name of Hamiltonian mon-
odromy [35, 36]. In order to see, in the simplest
way, the manifestation of Hamiltonian monodromy
in corresponding quantum systems we can analyze
the joint spectrum of mutually commuting quan-
tum observables. The joint spectrum is a quan-
tum equivalent of the classical energy momentum
map. For two-degree-of-freedom systems, any sim-
ply connected region of regular values of classical
energy–momentum map is represented in quantum
mechanics as a locally regular lattice of commun
eigenvalues of two commuting integrals of motion.

Critical value manifests itself in quantum joint
spectrum as a special defect of regular lattice [37]. To
see the effect of a defect we can check the evolution
of the elementary cell of the lattice while it makes a
closed loop surrounding the critical value [38]. Fig-
ure 4 demonstrates the Hamiltonian monodromy by
comparing the initial cell with the final cell. The
matrix transforming initial cell into final one is the
quantum monodromy matrix.

The construction of the “monodromy defect” of
a regular lattice (as it is shown in Fig. 5) is based
essentially on the “cutting and glue” procedure widely
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Fig. 6. Construction of 1 : 2 rational lattice defect. Left: Elementary cell does not pass (the result is ambigouos). Right:
Double cell passes unambigously.
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Fig. 7. Quantum fractional monodromy for two coupled angular momenta.

used in solid state physics in order to explain the
structure of dislocations and disclinations [39]. The
main feature of the construction consists of removing
a slice from the regular lattice in such a way that the
number of removed points with a given value of one of
the integrals of motion varies linearly with the value of
that integral. The mathematical origin of such con-
struction is the Duistermaat–Heckman theorem [40]
which formulates, in particular, that the volume of
reduced phase space for integrable system with two
degrees of freedom is a piece-wise linear function of
the integral value. In quantum mechanics the volume
of the reduced phase space should be replaced by the
number of quantum states for the reduced problem.
It is interesting to note, that so constructed “ele-
mentary monodromy defect” is quite different from
standard dislocations, disclinations, and other defects
suggested and studied in solid state physics. The
natural question, which appears together with an in-
terpretation of Hamiltonian monodromy as a defect of
regular lattice, is: how can we generalize the “ele-
mentary monodromy defect” and the notion of Hamil-
tonian monodromy itself just by trying to generalize
the concept of lattice defects and at the same time

keeping in mind the realization of lattice as a joint
spectrum of several commuting operators? Here it
is just the time to remind the typical for molecular
problem oscillatory behavior of the density of state
function. Instead of removing a wedge from the reg-
ular lattice with the number of removed states being
the linear function of the integral of motion, we can
remove more complicated wedge with the number of
removed states being the quasi-polynomial function
(having ocsillatory contribution) of the integral of mo-
tion. The simplest situation of such kind corresponds
to oscillatory contribution with period 2. Naturally,
in this case the gluing of the cut after removing the
wedge should lead to linear rather than point defect
(in the case of two-dimensional lattices).

The construction of the rational 1 : 2 defect is
shown in Fig. 6. It is clear, that in the presence
of such fractional defect the elementary cell cannot
unambigously cross the defect line. In the case of
1 : 2 fractional defect the elementary cell can take two
different forms after crossing the defect line depending
on the place of crossing point. At the same time,
looking at the evolution of the double cell during

PHYSICS OF ATOMIC NUCLEI Vol. 75 No. 1 2012
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crossing the defect line, one can see that the result
is completely independent of the crossing point.

A formal interpretation of the monodromy matrix
in terms of elementary cell transformation leads in
such a case to monodromy matrix with fractional
entries. Nevertheless, one should not forget that
the elementary cell itself is not passable through the
fractional cut. Only multiple cells are passable and
writing monodromy matrix in terms of multiple cells
(or, in more mathematical terms, in terms of a sub-
group of the homology group) leads naturally to a
monodromy matrix with integer entries. This allows
us to give another description of the fractional defect,
namely, the fractional defect (which has codimension
one) can be removed by going to the sublattice with
bigger “elementary” cells. These “bigger” cells are,
in fact, multiple cells of the original lattice, and these
multiple cells are passable from the point of view of
fractional defect under study.

From the classical dynamics point of view the
topological structure of critical fibers associated with
fractional defect line is the curled torus, shown in
Fig. 3. The appearence of corresponding singularity
in integrable fibration is due to nonlinear resonance
between two modes. The simplest mathematical
model of fractional defect is related to two nonlinear
oscillators with 1 : (−2) resonance [31]. Similar sin-
gularity can equally appear in models of coupling of
two angular momenta (see Fig. 7). Detailed analysis
of such model problem with interaction of two angular
momenta leading to fractional monodromy defect was
done in [41] by using the effective Hamiltonian

H =
1 − λ

|S| Sz (15)

+ λ

(
1

|S||N|SzNz +
1

2|S||N|2
(
N2

−S+ + N2
+S−

))
,

written in terms of two angular momenta N =
(Nx, Ny, Nz) and S = (Sx, Sy, Sz). As a more re-
alistic example, we can cite such simple and in the
same time fundamental physical system as hydrogen
atom in presence of static electric and magnetic
fields which was recently shown to possess many
different qualitative effects [42] including fractional
monodromy and a new, recently introduced notion of
bidromy [43].

5. CONCLUSION

I would like to note in the conclusion that the gen-
erating function technique, being rather old mathe-
matical tool, remains unfortunately until now a rel-
atively exotic method which has a few applications
in molecular and atomic physics. At the same time
the generating functions are at the intersection of a

number of quite different mathematical fields. We
have mentioned combinatorics, topology, symmetry,
dynamical systems. We hope that this multidisci-
plinary aspect of generating function will stimulate
various application in molecular physics and in nat-
ural science in general.
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