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Abstract—Simultaneous unitary transformations of the effective Hamiltonian and the effective
dipole moment are studied via an irreducible tensor formalism for the v,, v, dyad of tetrahedral
molecules. Large unitary transformations relating resonance and isolated band models are
treated by taking into account the non-leading contributions and multiple commutators. The
unitary equivalence of different parameter sets of the effective dipole moment is explicitly
shown for the v,, v, bands of *CH,.

1. INTRODUCTION

Analysis of modern, high-resolution vibration—rotation spectra and conversion of the rich
experimental data into useful molecular information usually involves the use of rather complicated
effective tensor operators. The construction of these operators for quasi-degenerate vibrational
states of spherical top molecules requires extensive use of symmetry properties.! The parameters
of the effective operators arc phenomenological spectroscopic parameters defined by experimental
data fitting.

An important property of the effective operators is the existence of a special class of unitary
transformations relating those operators that reproduce a given set of energy levels to the same
accuracy.’” Study of the parametric family of effective operators is frequently called ambiguity
analysis.

We write the unitary transformation U of any effective tensor operator X in the following form:

Ut =exp(iS"), S*=Y 587,
7
X=YxX{, X°=YxX{, ()
k i
K5 = (UA)~'XS(UA) = XO + [184, X + (iS4, [iS4, X + -+ -

The operator X is transformed into X with a new set of phenomenological parameters X, instead
of x,. The upper indices in Eqg. (1) designate the irreducible representation of the molecular
symmetry group. In the transformation of the effective Hamiltonian, both the U and S operators
are totally symmetric with respect to the molecular symmetry group. The parameters s, of the
unitary transformation should be sufficiently small to preserve the classification of the terms of the
transformed H in the order of the smallness parameter.’

Calculation of the unitary transformations (1) for highly symmetrical spherical-top molecules
may be greatly simplified by using specially developed methods for rovibrational tensor commu-
tator calculations based on a graphical technique for angular momentum recoupling, the
symmetrized form of Wick’s theorem,*’ and general reduction of the tensor products of the
rotational operators.*” We apply this technique to a study of the ambiguity problem.

The ambiguity analysis of the effective operaters for the widely studied v,, v, dyad of spherical
tops is of great importance. The v,, v, states can be adequately described using various effective
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model operators. Both the models of isolated v,, v, and that of resonance v,, v, are possible.
Parameters of corresponding effective operators are strictly different. The family of effective
Hamiltonians for the v,, v, dyad has been studied in detail, and the unitary equivalence of various
model Hamiltonians demonstrated.*'! Here, we present the theoretical analysis of effective model
dipole-moment operators'>'* used for quantitative (within 1-3%) description of absolute intensities
of rovibrational transitions of the v,, v, bands.

The transformation from the initial dipole moment to the effective moment is produced by the
same unitary operator as that relating the complete and the effective Hamiltonians.'*" If the
effective Hamiltonian possesses some ambiguity due to a parametric family of unitary transforma-
tions, the same unitary transformation should be applied to the effective dipole moment operator.
Thus, we discuss in Sec. 2 the unitary transformation of the effective Hamiltonian. The analysis
of the effective dipole moment is given in Sec. 3. We demonstrate in Sec. 3 that the effective
dipole-moment operators' are unitarily equivalent.

[t should be noted that we use in the present work the tensor operators URXS®), which were
introduced in Ref. 10 and differ from TX¥®, as defined by Champion,' by neglecting some
numerical factors. Relations between the corresponding parameters v and ¢ are given in detail in
Ref. 10.

2. TRANSFORMATION OF THE EFFECTIVE MODEL HAMILTONIAN
FOR THE v,,v, DYAD

Use of the unitary transformations (1) requires the calculation of rovibrational commutators.
The basic commutators are those of [iS, H] type. These are calculated in Ref. 10 for the effective
Hamiltonian of the v,, v, dyad. Table IT of Ref. 10 enables us to include all contributions to the
transformed Hamiltonian H for operators of orders 1'-1° as well as the main contributions for
the diagonal operators of order 1*. At the same time, we may easily construct contributions from
multiple commutators.

In the present paper, we limit ourselves to two important terms of the generator of the unitary
transformation®'°

S =SSN 4 5T, @

Parameters of the generator (2) are mainly due to the difference between the transformed and the
initial parameters of the v;, v, Coriolis coupling.!® The value of the s}{""’ parameter may be

calculated (with an accuracy of about 1%) from the relation
ﬁgiﬂ) — u;g,ﬂ) — —Ség'F’)(A + 6_”2u3‘fi‘m)

A= 2—1/2u(2)$].41) _ 3"""2ugf?""') =v,—v,. (3)

Analysis of the main contributions to the operator U3$* allows us to write similar expressions

for the second parameter of the generator. This procedure requires the calculation of the following
commutators:

sy o)+ aese, T apoune | | @
k=24 -

l",zzf; uzlzfz — QS‘ZZF“ :a 7 4 s‘l 1.F 5
254' J 2,4' ) 2!4' ( / ) 4“:4l ? 254 1 . ( )

We determine from Egs. (3, 5) the parameters of the generator (2) and describe the family of
effective Hamiltonians with an accuracy up to A°-Ai%
To investigate the variation of the diagonal Ai'-1* parameters, we calculate the commutator®*!

S, U] ©)

Due to the large value of A ~ 100-200 cm !, the resonance parameters are negligibly influenced
by the nonleading contributions and contributions from multiple commutators, On the other hand,
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taking into account these contributions to the diagonal parameters enables us to describe some
important qualitative features of the parameter variation rather than simply increase the accuracy
of calculation.”® In particular, the variation of the diagonal Coriolis interaction parameter u}*’
is completely caused by the nonleading contribution from the commutator (6). Nonleading
contributions are formed from terms of the general rovibrational commutators [see Eq. (7) of Ref. 7
and Appendices in Refs. 7-9] that include the commutators of the rotational operators. The
nonleading contribution to the operator U}’ derived from the commutator (6) leads to the
following relation:

A — Wl = (2/3) Pl s . ™

If the unitary transformation (1) is sufficiently large, the variations 45¢® — u$4%® are essentiatly
nonlinear due to large contributions from the multiple commutators. The most important multiple
commutator for the 1'-i? parameters is

1] . . i . .

3| tosien oo, § ugouge] | - —@peeser v @)
k=24 -1

Taking into account the double commutator (8), we describe properly the whole region of the u}}-*

parameter variation

QYT — ulE = QU3 S — (A3 VY ©®

To verify Eq. (9), we use the analysis of the experimental data for the v,, v, dyad of CH, given
in Tables I and I1I of Ref. 11. The single interaction parameter «}}“" was used in these treatments
and it was fixed at different values in a wide interval, thus giving interesting information about
the parametric family of the effective Hamiltonians. Starting from the effective Hamiltonian for
the isolated band model [#1}" = 0], we obtain from Egs. (3,9)

&

37 =l — (A67) @Y,

T = (4 + (3 A2 (R, (10)
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Fig. 1. Variation of £, under transition from the isolated v,, v, band model to the resonance v,, v,
model. The points are the values from Ref. 11. The solid line presents calculations from Eq. (10). The
dotted line refers to empirical data.
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Table 1. The family of effective Hamiltonians for the dyad v,, v, of '*CH, according to Ref. 11, The table
shows the variation of the parameter ¢}’ and of invariant combinations under transition from the
isolated v,, v; model to the resonance model.

Parameter Values of spectroscopic parameters in cm“1
l(l,Fll
ty 4 0.* -3.* ~6.% -9.1* -9.52% -10.%* -12.,*
l(l,Fll
ty 4 10.2459 $10.2571 [10.2901 }10.3445 }10.3533 }10.3634 |[10.4073
Eq.(10) 10.2459% [10.2554 ]10.2840 |[10.3336 |10.3418 {10.3518 [10.3984
: . : - -1 i
Invariant values of invariant combinations in 10 1 cm dgifziign
T -1.089 -1.083 -1.047 -1.026 -1.020 -1.013 -0.977 10%
I 0.899 0.891 0.855 0.834 0D.828 0.821 0.786 12%
Eq. (11} 0.0422 0.0424 0.0426 0.0427 0.0427 0.0426 0.0424 12

Equation (10) is compared with data from Ref. 11 in Fig. 1 and in Table 1. Tt follows clearly that
Eqgs. (3) and (9) provide a quantitative description of the w}{f variation.

The same approach but based on calculation of the double commutator (8) enables us to analyse
the parametric family of the diagonal g>J*-operators. Equations (33) and (15) of Ref. 11 follow
directly from the commutator (8). We may now introduce the coefficient C |-V = 2"%/3 in addition
to those of Ref. 11 in order to characterize the variation of the ¢1{"" parameter.

Another example demonstrating the importance of nonleading contributions is the construction
of invariant combinations of the spectroscopic parameters.'""* If only leading contributions are
taken into account for the derivation of an invariant combination,'! the resulting combination may
vary within 10% as the result of a unitary transformation. Invariant combinations which take into
account the nonleading contributions are generally rather complicated, except for the foliowing
combination of scalar parameters:'

1= (2/3)72ud%" + ui¢0 = — (o, /2 + 30, /4). (11)

Using the notation of Sec. VII of Ref. 11, the invariant (11} has the form [ = —(2/9)(I] + I)). As
may be seen from Table 1, the proposed invariant combination (11), in contrast to 17, I; etc.,
remains practically invariable under unitary transformations.

3. UNITARY TRANSFORMATION OF THE EFFECTIVE DIPOLE MOMENT
OPERATOR FOR THE v,, v, DYAD

Construction of the effective dipole-moment operator for the v,, v, dyad of tetrahedral molecules
is considered in Ref. 14 in detail. To simplify the tensor calculations, we use in this article the
parameters m 5% which are defined as coefficients before corresponding tensor operators without
any additional factors:

M(F;) — Z m?(K.G)M?(K.G); M?(K‘G) = (saslﬁ,, )RQ(K,G))FQ, (12)

where g =24, s=(—-) PA=A4+ A" PA=i(A—-A").
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Comparison of Eq. (12) and of the tensor operators introduced by Loete'>' leads to the following
relation betweem m{*® and the P parameters of Refs. 12, 14:

MUK = [G )~ &KE) (13)
q q L

To reproduce the experimental intensity data for the v,, v, bands, Loete et al'* use only three
parameters for the effective dipole moment in the resonance-band treatment, whereas seven
parameters of orders 4%-A? are introduced for the isolated-band model to take into account the
mixing of the v, and v, states properly. Ambiguity of these parameters is due to the possibility of
a unitary transformation with the generator (2).'%"

The unitary transformation of the effective dipole moment operator differs slightly from that of
the effective Hamiltonian due to dipole-moment symmetry properties. The effective dipole moment
is not totally symmetric in the molecule-fixed frame. For tetrahedral molecules, it has F,-type
symmetry. Therefore, the general expression for the irreducible tensor commutators is more
complicated, viz.

(M9, S0 = [(VE: R )%, (V4 R% Y410
= ly_ NG +G + —12 _ G s I 2 G’ G” G
St O RO WS GAAY

« (V% VISR, RO + [V, VOIE[RY, RO (49

A brief derivation of Eq. (14) is given in the Appendix. We use Eq. (14) to calculate the
rovibrational commutator of the tensor operators, i.e.
[M©, U = M2 56, 8k K S° (15)
The vibrational part of the commutator (13) is
[aqu )7 (a:(Gp)aSGl ))Gj]g = aqpéG‘G, [GJ]UZ[GE]_ l‘/2( _)Gp 6 +G'aI(GJ )(GJ Gp Gr) +oo ]
[, (a7 8 NOIE = +8,,800, [G.1(G,17'%8, GG, G+ (16)

where (G, G,G,) is the 3G-triangle symbol that equals 1 if the G,, G,, G; satisfy the triangle
condition and is zero otherwise. We write in Eq. (16) explicitly only the terms that are necessary
for a description of the unitary transformation in the v,, v, block: g, p, r = 2, 4. Calculation of the
rotational commutator [R%&:6) R &GN js explained in detail in Appendix of Ref. 7. All
rovibrational commutators necessary for a study of the effective dipole moment up to A? terms are
given in Table 2.

Table 2. The commutators [i8, M] of the effective dipole moment and the generator of the unitary
transformation for the v,, v, block.

1(1,7)) 2(2,7,)
nf m/ss 55,4 53,4
of MS(O,AI) (3_%)M;t1,F1) _(3_%)H§(2,F2)
1(1,F;) _y LU1L,F) 2(2,F,)
1 | M, -6 )M, + (1/2)m,
1(1,F;) -1 L(1,Fy) 2(0,a,)
1| m, (67%)M, + (1/3)M, +
N 2(2,8) 1 2(2,F,)
(2%/3)M, - (372,

tCommutators in this row possess a trivial rotational part and are equivalent to that of Ref. 6.
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Table 3. Unitary transformation of the effective dipole moment for the v,, v, dyad, including terms
llp to Az; 7 == (3-- l,’Z)mg(OuIl! — (6-— 1/2)m‘=U.FI)‘

HSE(K’G) contributions to UG | 8K, G from
q G q
n| g 2K,G) ils,M]_ (i%/2)[5,[s,H]_]_
a1 & 0(0,&1) not transformed
HOLF)) MOLF) HLFD
1] 4 l(l,Fl) 24 ., (67 %) (32!4 VEZ(6 )2}
l(l,?i) i(l,?l) i(l,?i}
bl i 4
1 Z l(l,FI) 32’5; ¥ 1‘52,"-&- H w5 (~1712}
l(l,Fl) 1(1,F,) l(l,F])
. z
21 4 2(0,/\}_3 s;_,’4 my (1/3) (5294 172{1/86)
](I,Fl) 1(]'Fl) ; I(l,Fl) . 1
2 4 2(2,E) 52’4 m, (2%/3) (52’4 YEZ(24/6)
ULF) HLFD HLED)
2] & 2(2.6—'2} 2.4 my {(-37%/23 (52,4 PPR{-3 08
l(l,Fl) l(l,Fl) 1(1,F1) l(l,Fl) :
23 z -
2] 2 E(Z,Fe} 5.4 m, (1/2) - (52,4 m (6 °/4)
202,F,) 0(0,A))
Sk my, (37%)

To describe the variation of the effective dipole-moment parameters properly under large unitary
transformations from an isolated to a resenance model, multiple commutators must be taken into
account. The most important of these is the double commutator with the operator S}¢0. The
contributions from single and double commutators are listed in Table 3, which was obtained by
using Table 2.

To verify the theoretical expressions, we compare the two effective dipole-moment operators
of Ref. 14. We use the values of the S-generator parameters obtained in Ref. 10 for trans-
formation from the resonance-band model® to the isolated-band model.! These values are
typical for the transformation considered [see Table VIII of Ref. 10]. Without any adjustable
parameters, we have transformed the resonance-band dipole moment to the isolated-band
mode! using Table 3. Parameters of the operator obtained are given in the central column of
Table 4. These are in reasonable agreement with that of the isolated-band model of Ref. 14,
except for mi. The ml"H variation under a unitary transformation is due to non-
leading contributions only, which is of the same order as the variation of the A° par-
ameters. Therefore, the disagreement is probably caused by a very limited number of adjustable
parameters in the resonance model of Ref. 14. Consequently, as follows from Table 4, the
effective dipole moments for the resonance and the isolated band models are in essence unitary
equivalents.

We present another form of the utilization of Table 3. We may study the dependence
of the m®%® parameters on u}{", which is easily obtained from Egs. (3, 5) and Table 3. The
results are given in Fig. 2, with the isolated-band parameters taken as the initial values. It should
be noted that the effective parameters of the v, band (m¥*%) behave quite differently from
those of the v, band (m$%®), The m¥*? parameters resemble the diagonal parameters of
the Hamiltonian w59, whereas the m$*% parameters resemble the nondiagonal interaction
parameters #5oc",



Table 4. Comparative analysis of parameters for the effective dipole moment for the v,, v, bands
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of CH,.
MQ(K,G) resonance transformed isolated
q model from values T model from D
n g QK,G ) Ref.l4 Ref.14
0 4 O(O.Al) 0.56216(57) 0.56216 0.56216(86) 10°
4 l(l,Fl) -0.1778(63) -0.1749 -0.,1478(75)
-3
V] 21a,r | -0.1336021) | 0.884 0.658(10) 10
4 2(0,A;) oFf 0.23 0.25(3)
4 2{2,B) 0¥ 0.32 0.30(3) _5
2 1n
4 2(2,F2) 0% -0.20 -0.31(3)
2 2(2,F2) 0¥ -1.58 -1.60(8)

fParameters of S-generator are taken from Table VIII of Ref. 10.
{Fixed at zero value in Ref. 14.

Finally, Table 3 allows us to construct several simple invariant combinations of the effective
dipole-moment parameters. These are:

I.; — msm,A,) _ 2-1/2m£{2,5)’

I = (1/2m304 4 371207,

1 _ 2A2.6) 112,,,2(2,F)
I =(1/2)mi%5 + (2/3)" i, (17)
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Fig. 2. Variation of the effective dipole-moment parameters of orders i' (left-hand side) and i?

(right-hand side) under unitary transformation for the v,, v, dyad of '*CH,. The parameters are denoted

by numbers as follows: (1A) m{-F), (1B) rﬁ}“-zg)— r;z(z}‘::”, (2) m5), (3) mP®AY, (4) m¥BB_(5) mi®,
meTa),

QS.RT. 426—)
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4. CONCLUSIONS

In order to perform the analysis of effective rovibrational operators a calculation technique based
on an irreducible tensor formalism*'® was used. We have demonstrated the high efficiency of this
technique for highly symmetrical, spherical-top molecules. The effective Hamiltonian and dipole
moment for the v,, v, dyad have been studied in detail using simultaneous unitary transformations.
The unitary equivalence of the effective dipole-moment operators' for a model of the resonance
bands v,, v, and for that of the isolated bands v, v, of the *CH, molecule is shown. The irreducible
tensor calculation technigue used in the present paper has other important applications.

Acknowledgemenis—The authors are indebted to M. Loete for useful discussion and for access to Ref. 17 prior to
publication.
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APPENDIX
Calculation of Rovibrational Commuiators

The formulae (14) for the general rovibrational commutator are based on the usual recoupling
formulae

(VSRS )(VERGH] = Z ((G.G,)G(G,G)A,1G|(G.G,)G (G,G)G G >
x [(V9'VE)S(RE R, (Al)

The corresponding Clebsch—Gordan coefficient may be easily evaluated by using the following
graphical technique:

(GGG~
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(G[G"”
[G,]'”

= (_)GU +G, +G+

¢ (GG (G’ G" G

GI% \G, G, G,)‘ (A2

Equation (14) follows immediately by substituting Eq. (A1) for the definition of the irreducible
tensor commutator, i.e.
[(VG' RG’ )G, (VGj RG, )A, ]E — [(VG“ RG, )G(VG, RGJ )AI]G _ (_)G +G+A [(VGJ RG-‘ )A, (VG” RG,. )G]G’

where (—)¢+%+ A =1,
The tensorial rovibrational commutator may be reduced to rotational and vibrational commu-
tators of the general form

G, G, G
1 i 2 12

[(VOI RC2)0r, (VO RS )]G =3 Y. (GLllGLIIXIYD'A G, G, G,
xr X Y G

x {[VE, VO [R®, RA]Y + VO, VERERS RHL). (A3)

Equation (A3) may be simplified to Eq. (14) by setting G;, = 4,.



