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Abstract--Simultaneous unitary transformations of the effective Hamiltonian and the effective 
dipole moment are studied via an irreducible tensor formalism for the v2, v4 dyad of tetrahedral 
molecules. Large unitary transformations relating resonance and isolated band models are 
treated by taking into account the non-leading contributions and multiple commutators. The 
unitary equivalence of different parameter sets of the effective dipole moment is explicitly 
shown for the v2, v4 bands of ~2CH4. 

1. INTRODUCTION 

Analysis of modern, high-resolution vibration-rotation spectra and conversion of the rich 
experimental data into useful molecular information usually involves the use of rather complicated 
effective tensor operators. The construction of these operators for quasi-degenerate vibrational 
states of spherical top molecules requires extensive use of symmetry properties/ The parameters 
of the effective operators are phenomenological spectroscopic parameters defined by experimental 
data fitting. 

An important property of the effective operators is the existence of a special class of unitary 
transformations relating those operators that reproduce a given set of energy levels to the same 
accuracyY Study of the parametric family of effective operators is frequently called ambiguity 
analysis. 

We write the unitary transformation U of any effective tensor operator X in the following form: 

f 
UA'=exp(iSA~), Sa~=~s jS ;  ', 

x o :  

:~G = (u~)-,xG(u~,) = x G + [is~,, xo]G + ½[isA,, [is~,, x~]~_]~_ + . . . .  

(1) 

The operator X is transformed into ~ with a new set of phenomenological parameters ffk instead 
of xk. The upper indices in Eq. (1) designate the irreducible representation of the molecular 
symmetry group. In the transformation of the effective Hamiltonian, both the U and S operators 
are totally symmetric with respect to the molecular symmetry group. The parameters sj of the 
unitary transformation should be sufficiently small to preserve the classification of the terms of the 
transformed i:rl in the order of the smallness parameter) 

Calculation of the unitary transformations (1) for highly symmetrical spherical-top molecules 
may be greatly simplified by using specially developed methods for rovibrational tensor commu- 
tator calculations based on a graphical technique for angular momentum recoupling, the 
symmetrized form of Wick's theorem, 4'5 and general reduction of the tensor products of the 
rotational operators. 6'7 We apply this technique to a study of the ambiguity problem. 

The ambiguity analysis of the effective operators for the widely studied v2, v4 dyad of spherical 
tops is of great importance. The v:, v4 states can be adequately described using various effective 
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model operators. Both the models of  isolated 1,'2, Y4 and that of resonance v2, Y4 are possible. 
Parameters of  corresponding effective operators are strictly different. The family of effective 
Hamiltonians for the v2, v4 dyad has been studied in detail, and the unitary equivalence of  various 
model Hamiltonians demonstrated. 8-~ Here, we present the theoretical analysis of  effective model 
dipole-moment operators 12'14 used for quantitative (within 1-3%) description of  absolute intensities 
of rovibrational transitions of  the v2, v4 bands. 

The transformation from the initial dipole moment to the effective moment is produced by the 
same unitary operator as that relating the complete and the effective Hamiltonians. 12:3 If  the 
effective Hamiltonian possesses some ambiguity due to a parametric family of  unitary transforma- 
tions, the same unitary transformation should be applied to the effective dipole moment operator. 
Thus, we discuss in Sec. 2 the unitary transformation of  the effective Hamiltonian. The analysis 
of  the effective dipole moment is given in Sec. 3. We demonstrate in Sec. 3 that the effective 
dipole-moment operators ~4 are unitarily equivalent. 

It should be noted that we use in the present work the tensor operators U,~!~ "G), which were 
introduced in Ref. 10 and differ from TO~K,G) "k,m , as defined by Champion, ~ by neglecting some 
numerical factors. Relations between the corresponding parameters u and t are given in detail in 
Ref. 10. 

2. T R A N S F O R M A T I O N  OF THE E F F E C T I V E  MO D EL H A M I L T O N I A N  
FOR THE v 2, v4 DYAD 

Use of the unitary transformations (1) requires the calculation of rovibrational commutators. 
The basic commutators are those of  [iS, H] type. These are calculated in Ref. 10 for the effective 
Hamiltonian of  the v2, v4 dyad. Table II of  Ref. 10 enables us to include all contributions to the 
transformed Hamiltonian l-rl for operators of orders 21-- ,~  3, a s  well as the main contributions for 
the diagonal operators of  order 24 . At the same time, we may easily construct contributions from 
multiple commutators.  

In the present paper, we limit ourselves to two important terms of  the generator of the unitary 
transformation 9:° 

S A t  - -  o l ( I , F I ) ~ I I ( I , F I )  _[._ c2(2,F2)~2(2,F2) 
- -  o 2 ,  4 ~.32, 4 0 2 .  4 ,..32, 4 . (2) 

Parameters of the generator (2) are mainly due to the difference between the transformed and the 
init ial parameters of the rE, v4 Coriolis coupling) ° The value of the ~l(t,r0 parameter may be a 2,4 

calculated (with an accuracy of about 1%) from the relation 

/~I(I ,FI)  ~, I(I,FI) _ _ c  I ( I , F I ) ( A  -L. (a-| /2,~jl( l ,Fl)~ 
2,4 - -  ~2 ,4  ~ o2,4 k ~  t v ~4 ,4  ) 

A = 2-'/2u°!°"~') -- a-,,2,,0~0,A,) 
J " 4 , 4  = V2 - -  ~'4'  (3) 

Analysis of  the main contributions to the operator lr20.F2) allows us to write similar expressions ~'~ 2,4 

for the second parameter of the generator. This procedure requires the calculation of  the following 
commutators: 

ist(I,F,)sI(I,F,) U I ( I , F , ) u I ( I , F , ) I  ± F;~2(2,F2)~2(2.F 2) , , 0 ( 0 , a i ) l i ' 0 ( 0 , a , ) l  
2,4 2.4 , 4,4 4,4 J - TL,-E,4 -,2.4 , ~ "k,kk=z.4 ~k,k J_ (4) 

which leads to the expression 

/" 1 / ' ) ~ , ,  I(I,FI) ~ I(I.FI ) (5) "2,4'32(2'F2) - -  "2,4"'2(2'F2) : A S ~ !  2'F2) "}- \'tt"¢"1"4,4 02,4 ' 

We determine from Eqs. (3, 5) the parameters of  the generator (2) and describe the family of  
effective Hamiltonians with an accuracy up to 23-24. 

To investigate the variation of  the diagonal 21-23 parameters, we calculate the commutator  9-t~ 

[iS~!~,F,), l r,(,,r,)] "2,4 J - .  (6 )  

Due to the large value of  A --- 100-200 cm-~, the resonance parameters are negligibly influenced 
by the nonleading contributions and contributions from multiple commutators. On the other hand, 
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taking into account these contributions to the diagonal parameters enables us to describe some 
important qualitative features of  the parameter variation rather than simply increase the accuracy 
of  calculation. ~° In particular, the variation of  the diagonal Coriolis interaction parameter ,,](LF,) ~ 4 , 4  

is completely caused by the nonleading contribution from the commutator (6). Nonleading 
contributions are formed from terms of  the general rovibrational commutators [see Eq. (7) of  Ref. 7 
and Appendices in Refs. 7-9] that include the commutators of  the rotational operators. The 
nonleading contribution to the operator ,LJ4. 4I'II(I'FI) derived from the commutator (6) leads to the 
following relation: 

• I(I,FI) ,, I(I,F I ) __ [ ' ) / " 4 ~ I / 2 , , I ( I , F I ) ~ I ( I , F  I ) 
4,4 - -  ~4,4 - -  \ z . t . . , ]  ~2,4 '02,4 • (7) 

If the unitary transformation (1) is sufficiently large, the variations ,~n(x.G) .,n(x.a) "k.k - -  "k.k are essentially 
nonlinear due to large contributions from the multiple commutators. The most important multiple 
commutator for the 2 l -2  2 parameters is 

..o,o.,,,,o(o.,)l 1 2 L 2 , 4  ~"~ 2 ,4  , , _ L,~2.4 ~J2.4 ' k =E2,4 "k,k "Jk,k J_ j_  =--(A/Z)(s~!I'FI))2[iSI!I'FI), U l ! 4  [ ' r , ) ]  . ( 8 )  

Taking into account the double commutator (8), we describe properly the whole region of  the ,, ]0.F~) ~ 4 , 4  

parameter variation 

1(LF,) ..'(LF,)__ tv/a~,/2..,(Lr,).,(,.r,) (A/2)(2/3)I/2(SI!~.F,))Z. 
4,4 - -  ~ 4 , 4  - -  \ ' ~ ' / " 1  ~ 2 , 4  ° 2 , 4  - -  (9) 

To verify Eq. (9), we use the analysis of  the experimental data for the v2, v4 dyad of CH, given 
in Tables II and III of  Ref. 11. The single interaction parameter , ,  l ( l ' F l )  was used in these treatments ~ 2 , 4  

and it was fixed at different values in a wide interval, thus giving interesting information about 
the parametric family of  the effective Hamiltonians. Starting from the effective Hamiltonian for 
the isolated band model [ u l !  l ' f ~  = 0], we obtain from Eqs. (3, 9) 

I ( I , F I )  , ,  I ( I , F I )  _ _  (A61/2)-Itul(|,FI)~2 
4,4 ~ ~ 4 , 4  \ 2,4 1~ 

• I ( I , F I )  f l ( I .F  I ) A O l / 2 3 - 1 [ t l ( l , F l ) ~ 2  
4,4 = "4,4 +(3,_,= ] \ '2.4 ] • (lO) 

I~40  

10.38 

10.36 

"7 
E 10.34 

~4-, ~ 10.32 

10.30 

10.28 

10.26 

m 

12CH4 ' " " . . /  

.-S 
~ I I I t 

-2  - 4  -6  - 8  -10 
t l t ~ ,F  I 2,4 ) c m ' l  

Fig. 1. Variation of  "4.4tl(l'FI) under transition from the isolated v:, v 4 band model to the resonance v2, v 4 
model. The points are the values from Ref. l l. The solid line presents calculations from Eq. (10). The 

dotted line refers to empirical data. 
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Table 1. The family of effective Hamiltonians for the dyad v 2, h of  ~2CH4 according to Ref. 11. The table 
shows the variation of the parameter ,m.e,~ and of invariant combinations under transition from the ~4,4 

isolated v 2, h model to the resonance model. 

-i 
Parameter Values of spectroscopic parameters in cm 

I(I,F 1 ) 
t2, 4 0.* -3.* -6.* -9.1" -9.52* -i0.* -12.* 

I(I,F 1 ) 
t4, 4 10.2459 10.2571 10.2901 10.3445 10.3533 10.3634 10.4073 

Eq.(10) 10.2459 10.2554 10.2840 10.3336 10.3418 10.3518 10.3984 

Invariant 

Ii 

Eq.(ll) 

Values of invariant combinations in I0 -I cm -I 

-1.089 

0.899 

0.0422 

-1.083 

0.891 

0.0424 

-1.047 

0.855 

0.0426 

-1.026 

0.834 

0.0427 

-1.020 

0 . 8 2 8  

0.0427 

-1.013 

0 . 8 2 1  

0.0426 

-0.977 

0.786 

0.0424 

maximum 
deviation 

10% 

12% 

1% 

Equation (10) is compared with data from Ref. 11 in Fig. 1 and in Table 1. It follows clearly that 
Eqs. (3) and (9) provide a quantitative description o f  the •4.4" I(I'FI) variation. 

The same approach but based on calculation of  the double commutator  (8) enables us to analyse 
the parametric family o f  the diagonal qZJ<operators. Equations (33) and (15) of  Ref. 11 fol low 
directly from the commutator  (8). We may now introduce the coefficient C ~t~,F,) = 2~/2/3 in addition 
to those of  Ref. 11 in order to characterize the variation of  the ,re,F,) parameter. ~4,4 

Another example demonstrating the importance of  nonleading contributions is the construction 
of  invariant combinations of  the spectroscopic parameters. ":5 If only leading contributions are 
taken into account for the derivation o f  an invariant combination,  ~l the resulting combination may 
vary within 10% as the result o f  a unitary transformation. Invariant combinations which take into 
account the nonleading contributions are generally rather complicated, except for the following 
combination of  scalar parameters:'5 

I = (2/3)l":U2(°'A')2.2 + *'4,4"2(0'AI) = - (c~2/2 + 3~4/4) • (11) 

Using the notation of  Sec. VII of  Ref. 11, the invariant (11) has the form I = - (2 /9) (11  + 14). As 
may be seen from Table 1, the proposed invariant combination (11), in contrast to I~, I~ etc., 
remains practically invariable under unitary transformations. 

3. U N I T A R Y  T R A N S F O R M A T I O N  OF THE E F F E C T I V E  D I P O L E  M O M E N T  
O P E R A T O R  FOR THE v 2, v4 D Y A D  

Construction of  the effective dipole-moment operator for the h ,  v4 dyad of  tetrahedral molecules 
is considered in Ref. 14 in detail. To simplify the tensor calculations, we use in this article the 
parameters mq n~x'G), which are defined as coefficients before corresponding tensor operators without 
any additional factors: 

M(F2) = Z ""qml)(K'G)~lIfl(K'G)'-'-q ~ .._q]%/1[ f~(K'G) = ( aq (G ) R~(K )F 2, (12) 

where q = 2 , 4 ;  s = ( - )  K * A = A + A  + e A = i ( A - A + ) .  
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Comparison of Eq. (12) and of the tensor operators introduced by Loete12'14 leads to the following 
relation betweem ...qm n(r'G) and the i~q r'G)(r2), parameters of Refs. 12, 14: 

m~ Ic'G) = EG~] -1 :2 /~ .c ) .  (13) 

To reproduce the experimental intensity data for the v2, v4 bands, Loete et a114 use only three 
parameters for the effective dipole moment in the resonance-band treatment, whereas seven 
parameters of orders 2°-;t: are introduced for the isolated-band model to take into account the 
mixing of  the v 2 and v4 states properly. Ambiguity of  these parameters is due to the possibility of  
a unitary transformation with the generator (2). 16"17 

The unitary transformation of  the effective dipole moment operator differs slightly from that of 
the effective Hamiltonian due to dipole-moment symmetry properties. The effective dipole moment 
is not totally symmetric in the molecule-fixed frame. For  tetrahedral molecules, it has F2-type 
symmetry. Therefore, the general expression for the irreducible tensor commutators is more 
complicated, viz. 

[M<G), S(A,)]E = [(V~, - Re )5 (v ~' R °' Y' ]~- 

=½(--)~' +G" +G[G']-I/2 ~G'.G" (-)G"([G'][G"])'/2( G', G"G~, 

X (IV G', VGs]G_'['RG', RGs]G+"-.F [V Gr, VGs]G'[R Gr, RG']G') G. (14) 

A brief derivation of  Eq. (14) is given in the Appendix. We use Eq. (14) to calculate the 
rovibrational commutator  of  the tensor operators, i.e. 

[M(O), S(A~)]~_ = i M a ,  (r ,  .G, ), ~Q,  (r ,  ,o, )]a_. (15) 
t -"  - q  ~ p , t  

The vibrational part of the commutator (15) is 

[a(q Gq), (a+(~') a~'))~']~' = 6qp6G,c, [G,]I/2[G,]-1/2(-) G, +G~ +G,a <G,)(G,G,G,) +..., 

[ A+(G¢ ) (a+(G'°)a(Gt)~Gs]G' "~(~qp(~G'Gp a} - q  - , , ' p  - " t  j j +  = [ G s ] l / 2 [ G p ] - l / 2  (Gp)(G,  G p G , )  + ' " ,  (16) 

where (GIG2Ga) is the 3G-triangle symbol that equals 1 if the GI, G2, G3 satisfy the triangle 
condition and is zero otherwise. We write in Eq. (16) explicitly only the terms that are necessary 
for a description of  the unitary transformation in the v2, v4 block: q,p, t = 2, 4. Calculation of  the 
rotational commutator [R n,(K,.~,), Rn'(K"~s)] °"± is explained in detail in Appendix of Ref. 7. All 
rovibrational commutators necessary for a study of  the effective dipole moment up to 4 2 terms are 
given in Table 2. 

Table 2. The commutators [iS, M] of the effective dipole moment and the generator of the unitary 
transformation for the v2, v 4 block. 

n M / S 

0(0,A 1 
0 # M 4 

I(I,F 1 
1 M 4 

I(I,F 1 
1 M 2 

I(I,F 1 ) 

$2,4 

) _! I(I,F 1 ) 
(3 2)M 2 

) _! I(I,F 1 ) 2(2,F 2) 
-(6 2)M 2 + (I/2)M 2 

½ I(I'FI) 2(0,A 1 ) 
(6 -)M 4 + (I/3)M 4 + 

! 2(2,E) _~ 2(2,F2) 
(22/3)M 4 - (3 2/2)M 4 

2(2,F 2 ) 

$2,4 

_~ 2(2,F 2 ) 
-(3 2)M 2 

?Commutators in this row possess a trivial rotational part and are equivalent to that of Ref. 16. 
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Table 3. Unitary transformation of  the effective dipole moment for the v 2, v 4 dyad, including terms 
up to 22; Z = (3-1/2)m~4 °''~') - -  (6-1/2)m t(l'Ft), 

M~(K,G) 
q 

n q ~(K,G ) 

0 40(O,A I ) 

1 4 I(I,F 1 ) 

1 2 I(I ,F 1 ) 

2 4 2(O,A I ) 

2 4 2(2,E) 

2 4 2(2,F 2) 

eon t r l bu t ions  to ~9(K,G) _ m~(K,G) from q q 

i[s,M]. (~I2)[S,[S,M]_]_ 
" i , ,  

not transformed 

1( I ,F  1) I (1 ,FI ) (6_½) 1( I ,F I )  ! 
s2, 4 m 2 (s2, 4 )2Z(6-~/2) 

I ( I 'F I )  I ( I 'F I )  2 I(I'FI)(_1112 ) 
s2, 4 Z (s2, 4 ) m 2 

1(I,F I) 1(1,F I) I(I,F I) 
s2, 4 m 2 (1/3) (s2, 4 )2Z(I/6) 

1(1,F I) 1(i I(1,F I) 
s2, 4 m 2 'FI)(2½/3) (s2, 4 )2Z(2~/6) 

I(1,F 1) 1(I,F 1) ~ I(I,F I) 
s2, 4 m 2 ( -3 - r / 2 )  (s2, 4 )2Z(-3-2/4)  

I ( I , F  I )  l ( l , F l )  
2 2 2(2,F 2) s2, 4 m 4 (1/2) - 

2(2,F 2) O(O,A I )  _~ 
-s2, 4 m 4 (3 ) 

L(I 'F1)  2 I ( I ' F L )  ' 
( s2 ,  4 ) m 2 (6-~/4)  

To describe the variation of the effective dipole-moment parameters properly under large unitary 
transformations from an isolated to a resonance model, multiple commutators must be taken into 
account. The most important of these is the double commutator with the operator ~,2,4~1°'r°. The 
contributions from single and double commutators are listed in Table 3, which was obtained by 
using Table 2. 

To verify the theoretical expressions, we compare the two effective dipole-moment operators 
of Ref. 14. We use the values of the S-generator parameters obtained in Ref. 10 for trans- 
formation from the resonance-band model ~s to the isolated-band model) These values are 
typical for the transformation considered [see Table VIII of Ref. 10]. Without any adjustable 
parameters, we have transformed the resonance-band dipole moment to the isolated-band 
model using Table 3. Parameters of the operator obtained are given in the central column of 
Table 4. These are in reasonable agreement with that of the isolated-band model of Ref. 14, 
except for m t(I'F0. The m] (Lro variation under a unitary transformation is due to non- 
leading contributions only, which is of the same order as the variation of the 22 par- 
ameters. Therefore, the disagreement is probably caused by a very limited number of adjustable 
parameters in the resonance model of Ref. 14. Consequently, as follows from Table 4, the 
effective dipole moments for the resonance and the isolated band models are in essence unitary 
equivalents. 

We present another form of the utilization of Table 3. We may study the dependence 
,,~o,eo which is easily obtained from Eqs. (3, 5) and Table 3. The of the ma~ (x'°) parameters on -2.4 , 

results are given in Fig. 2, with the isolated-band parameters taken as the initial values. It should 
be noted that the effective parameters of the v4 band (ma4 (K'°)) behave quite differently from 
those of the v2 band (m2nCx'°)). The m~ x'o) parameters resemble the diagonal parameters of 
the Hamiltonian u n~x'o) whereas the mt~ (x'o) parameters resemble the nondiagonal interaction q~q 

parameters u ~  K'°). 
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Table 4. Comparative analysis of parameters for the effective dipole moment for the v 2, v 4 bands 
of t2CH4. 

581 

Mfl(K,G) 
q 

q D(K,G ) 

4 0(0,A 1 ) 

4 I(I,F 1 ) 

2 I(I,F 1 ) 

4 2(0,A 1 ) 

4 2(2,E) 

4 2(2,F 2 ) 

2 2(2,F 2 ) 

resonance 

model from 

Ref.14 

0.56216(57) 

-0.1778(63) 

-0.1336(21) 

0:t: 

O* 

O* 

O* 

transformed isolated 

values % model from D 

Ref.14 

0.56216 

-0.1749 

0.684 

0.23 

0.32 

-0.20 

-1.58 

0.56216(86) i0 -I 

-0.1478(75) 

10 -3  
0.658(10) 

0.25(3) 

0.30(3) 

-0.31(3) 

-1.60(8) 

?Parameters of S-generator are taken from Table VIII of Ref. 10. 
:[:Fixed at zero value in Ref. 14. 

10 -5 

Fina l ly ,  Tab le  3 a l lows us to cons t ruc t  several  s imple invar ian t  c omb ina t i ons  o f  the effective 
d i p o l e - m o m e n t  pa ramete rs .  These  are: 

II4 = m ] (°'A' ) - 2- t /Zm](Z'e) ,  

124 = ( 1 / 2 ) m  4 2(°'a~ ) + 3 - 1/2 m 42(2,F2), 

13 = (1/2)m4 2(2,e) + ( 2 / 3 ) ' / 2 m ]  (z,F2). (17) 

,,.,, 

? 
o 

0.70 - 

O.6O 

0.50 

0.40 

0 .30  

0.20 

0 . 1 0  

0 . 0 0  

- 0 . 1 0  

- 0 . 2 0  

- 0.30 

- 0 . 4 0  
0 

0.2 
2CH4 0.0 

- 0 . 2  

-0 .4  

C~ - 0 . 6  

'0 ~~-0.8 
-I.0 

t A  - 1 . 2  

- 1 . 4  

I I - 1 . 6  
- 5  - 1 0  0 

I I 
- 5  - 1 0  

1(1,F 1 ) 
~ 2 , 4  C1~-1 

Fig. 2. Variation of the effective dipole-moment parameters of orders 21 (left-hand side) and 2 2 
(right-hand side) under unitary transformation for the v:, v4 dyad of ~2CH4. The parameters are denoted 
by numbers as follows: (1A) m~ (l'F'), (IB) t ~  (I,r') rn~ (l'r') (2) rn~ (l'~'), (3) m~ °'a'), (4) m~ :.g) (5) rn~ 2"v2) 

(6) m~ (~,~2) 

QS,R.T. 42/6--J 
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4. C O N C L U S I O N S  

In order  to per form the analysis o f  effective rovibrat ional  operators  a calculation technique based 
on an irreducible tensor formalism 4-~° was used. We have demonst ra ted  the high efficiency o f  this 
technique for highly symmetrical,  spherical-top molecules. The effective Hamil tonian  and dipole 
momen t  for the v 2, v4 dyad  have been studied in detail using simultaneous unitary t ransformations.  
The unitary equivalence o f  the effective d ipole-moment  operators  14 for a model  o f  the resonance 
bands  v 2 , v4 and for that  o f  the isolated bands v2, v4 o f  the tECH4 molecule is shown. The irreducible 
tensor calculation technique used in the present paper  has other  impor tan t  applications. 

Acknowledgements--The authors are indebted to M. Loete for useful discussion and for access to Ref. 17 prior to 
publication. 
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A P P E N D I X  

Calculation o f  Rovibrational Commutators 

The formulae (14) for the general rovibrat ional  commuta to r  are based on the usual recoupling 
formulae 

[(VG, R G, )G(VC, R c, )Am ]c = ~ ([(G,, G,)G(G, G~)A, ]GI[(G,,G,)G '(G,Q)G"]G ) 
G'.G" 

x [(VG'VG')G'(R~'R~')~"]~. (A1) 

The corresponding  C l e bsc h -Gorda n  coefficient may  be easily evaluated by using the following 
graphical technique: 

G A1 

G' G" 

([O] [G'] [G"])- ' /~ 

G~ 

@ 
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G 

@ @ 
G, 

([G'][G"]) ~/2 G,.([G'I[G"])~/2 (G" G" G) (A2) 
[G,] '/~ = ( - )~ '  +~* +~+ [G,] '/~ \G ,  G,, G, " 

Equation (14) follows immediately by substituting Eq. (A1) for the definition of the irreducible 
tensor commutator, i.e. 

[(V6, RGr )G, (V 6, RGs )A, ]G_ = [(vG~. R G, )G(vG s RGs ).41 ]G _ ( _ )G + G + A, [(V G, RG, )A, (vG~, R G, )G]~7, 

where (_)G+G+A, = 1. 
The tensorial rovibrational commutator may be reduced to rotational and vibrational commu- 

tators of the general form 

[(v~'a~) ~'~,(v~R~')~']~-I y ' (GG~ G~ G,:\ 
- 2  xy([G,2][G34][X][Y])'/2, G4y ~ 4 )  

x {[V G., V~3]X[R ~2, RG4] r_ + [V G,, VG3]X[R ~2, a~,]+r }. (A3) 

Equation (A3) may be simplified to Eq. (14) by setting G34 = A 1. 


