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Abstract
We present a one-parameter family of systems with fractional monodromy,
which arises from a 1:2 diagonal action of a dynamical symmetry SO(2). In a
regime of adiabatic separation of slow and fast motions, we relate the presence
of fractional monodromy to a redistribution of states both in the quantum and
in the semi-quantum spectra.

PACS numbers: 03.65.Sq, 02.40.Yy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we consider a simple one-parameter family of Hamiltonian which is a slight
generalization of the well-known example of spin–orbit coupling. This latter model has been
the object of several studies [1, 6–8], demonstrating the presence of integer monodromy for
some interval of parameter values.

We remind here that Hamiltonian monodromy is a generic property of classical integrable
systems, intensively studied and popularized by Cushman [5] and described in detail by
Duistermaat in 1980 [9]. In a classical dynamical system with two degrees of freedom,
the Hamiltonian monodromy can typically appear in one-parameter families through the
Hamiltonian Hopf bifurcation [10]. It was shown later that there is a correspondence between
the appearance of monodromy within a one-parameter family of classical Hamiltonians and
the redistribution of bands in the spectrum of the associated quantum problem [6, 11]. The
appearance of Hamiltonian monodromy in the classical system also indicates the presence of
a topological bifurcation in a semi-quantum description [12].

Our model has fractional monodromy which is a recent generalization of the integer
monodromy concept [13–16]. This is the first example of a system with this property on a
compact phase space.

1751-8113/07/4313075+15$30.00 © 2007 IOP Publishing Ltd Printed in the UK 13075

http://dx.doi.org/10.1088/1751-8113/40/43/015
mailto:M.S.Hansen@mat.dtu.dk
mailto:frederic.faure@ujf-grenoble.fr
mailto:zhilin@univ-littoral.fr
http://stacks.iop.org/JPhysA/40/13075


13076 M S Hansen et al

If we suppose that one angular momentum is much larger than the other, then the first
one has a slower motion compared to the second one. One gets a slow–fast dynamic that
can be analyzed using a semi-quantum description (the fast motion is quantum while the slow
motion is classical). This gives line bundles over the ‘slow’ classical phase space, whose
topology is characterized by Chern indices. These line bundles have a nice interpretation for
the exact quantum spectrum: the energy levels form different groups named bands. Each band
is associated with a line bundle, and the exact number of levels in each band is given from the
Chern index of the bundle using an index formula. These topological phenomena have already
been observed and analyzed in other situations [7, 28]. Here, we show how the presence of
fractional monodromy is related to the locus of topological bifurcations of the bundles, which
imply a change of the Chern indices and redistributions of levels between bands.

Compared to the spin–orbit model already studied in [1, 6–8] where there is a 1:1 diagonal
action of the group SO(2), here the major change is a 1:2 diagonal action of the symmetry
group SO(2), and this is responsible for fractional monodromy.

This paper is a part of the ongoing study of global properties of integrable systems on
the one side [14, 17–20] (especially in the context of molecular physics [2, 3, 6, 21–25]) and
adiabatically coupled systems [7, 26–28] on the other side.

In sections 1–3 we present the model and discuss the fractional monodromy phenomenon
in the classical model, using the generalized moment map. In section 4 we study the quantum
model and discuss the quantum manifestation of fractional monodromy in the joint spectrum.
In section 5 we suppose an adiabatic regime where one angular momentum is much larger
than the other, and discuss the topological interpretation of redistributions of levels between
bands.

2. Presentation of model

2.1. Hamiltonian with a dynamical 1:2 symmetry action of SO(2)

Very often global properties of the dynamical model under study are due to the symmetry of the
physical problem under consideration. Let N = (Nx,Ny,Nz) ∈ R3, S = (Sx, Sy, Sz) ∈ R3

with fixed |N| =
√

N2
x + N2

y + N2
z and |S| =

√
S2

x + S2
y + S2

z be two (effective) angular
momenta living on S2 × S2. The model we study in this paper admits a diagonal 1:2 group
action of SO(2) defined by

SO(2) × (S2 × S2) → S2 × S2

(φ;N+, N−, Nz, S+, S−, Sz) �→ (N+ eiφ,N− e−iφ,Nz, S+ e2iφ, S− e−2iφ, Sz),
(1)

where N± = Nx ± iNy, S± = Sx ± iSy . The action defined by (1) can be considered as an
a priori condition imposed by the physical model. As soon as the group action is given, a
generic Hamiltonian can be constructed as a linear combination of polynomials invariant under
the group action (1). This leads to a Hamiltonian which has a SO(2) symmetry generated by

Jz = 2Sz + Nz (2)

(i.e. such that [Hλ, Jz] = 0):

Hλ = 1 − λ

|S| Sz + λ

(
1

|S‖N|SzNz +
1

2|S‖N|2
(
N2

−S+ + N2
+S−

))
, 0 � λ � 1. (3)

Here λ is a coupling parameter. It can be due to an external magnetic field, for example,
recall that the amplitudes |S|, |N| are held fixed and in this paper, we only consider the case
|N| > 2|S|4.
4 A preliminary study of the case |N| < 2|S| has been initiated in [29].
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The SO(2) symmetry generated by Jz = 2Sz + Nz rotates simultaneously N and S about
their respective z-axes. In [6] the SO(2) action on the phase space S2 × S2 was 1:1 diagonal
but now the asymmetric appearance of N and S implies that while N is rotated by an angle φ,
S is rotated by 2φ.

2.2. Quantum description and the semi-classical limit

We begin by a presentation of the quantum system and deduce after the classical one in the
semi-classical limit5.

Let N, S be the angular momentum operators [31] generating an irreducible representation
of su(2) × su(2) in a Hilbert space H = HN ⊗ HS of dimension (2N + 1)(2S + 1). N, S

are the respective angular momentum quantum numbers taking integer or half-integer values.
Similarly Ĥ λ, equation (3), is the Hamiltonian operator. The quantum description is given by
the Schrödinger equation (with h̄ ≡ 1)

i
dψ(t)

dt
= Ĥ λψ(t), (4)

where ψ(t) is a vector in H. To study the semi-classical limit of large quantum numbers
N, S � 1, we introduce the normal symbol of Ĥ [34]

〈N, S|Ĥ λ|N, S〉 = Hλ + O(h̄N,S), (5)

which is a power series in h̄N = 1/(2N), h̄S = 1/(2S). Here |N, S〉 are SU(2) coherent states
often used to study the semi-classical limit of angular momentum dynamics.

Keeping only the first term of (5) we have a classical Hamiltonian, Hλ, which is the
principal symbol of Ĥ λ. The dynamics is approximately described by classical angular
momenta N, S moving according to Hamilton’s equations of motion [4]:

d

dt
N = h̄N∂NHλ ∧ N,

d

dt
S = h̄S∂SHλ ∧ S, (6)

on the phase space S2 ×S2. Putting h̄N,S → 0 illustrates how the semi-classical limit is related
to the limit of adiabatically slow motion. Under the additional assumption N � S giving
h̄N � h̄S , Hamilton’s equations (6) describe the dynamics of an adiabatically coupled system
with the motion of N being much slower than that of S.

3. Classical description: structure of the generalized moment map

3.1. Second integral of motion

The SO(2) symmetry gives rise to a second integral of motion Jz, equation (2), which is the
projection of the total angular momentum J = 2S + N onto the z-axes. Together Hλ, Jz define
a one-parameter family of integrable systems with two degrees of freedom.

3.2. Reduction of symmetry, space of orbits

The symmetry of the system can be used to reduce the number of degrees of freedom. This is
done by mapping each orbit of the SO(2) action on S2 × S2 onto the three-dimensional space
of orbits. As the group action is not transitive, this is an example of the so-called singular
reduction [5] based on the theory of invariants [5, 6, 35].

5 Several quantum systems may give rise to the same classical system. See e.g. [30] for an example.
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Figure 1. Left: the space of orbits of the SO(2) action. The boundary is given by φ = 0. The
vertical plane is a section for constant Jz. Middle: a typical section for Nz = −|N|, |Sz| < |S|.
This is a part of the continuous family of singular spaces. The singular orbit at the intersection of
the boundary and the constant energy level set has a Z2 stabilizer. Right: a singular section for
Jz = 2|S| − |N|. The singular orbit situated at the intersection of the constant energy level set and
the boundary (critical orbit) has the stabilizer SO(2).

The idea is to see Hλ, Jz as made up of SO(2)-invariant polynomials

θ1 = Sz, θ2 = Nz, θ3 = N2
−S+ + N2

+S−,

φ = N2
−S+ − N2

+S−,

satisfying the algebraic relation [35]

φ2 = θ2
3 − 4

(
S2 − θ2

1

)(
N2 − θ2

2

)2
. (7)

An orbit of the SO(2) action (1) can be characterized by the value of the three algebraically
independent invariants θi, i = 1, 2, 3, and the sign of the linearly independent, but algebraically
dependent through (7), invariant φ. The space of orbits can then be visualized in a (θ1, θ2, θ3)-
coordinate system as a closed body defined by

θ2
3 − 4

(
S2 − θ2

1

)(
N2 − θ2

2

)2 � 0. (8)

The space of orbits is shown in figure 1 (left). Its interior points correspond to two orbits
distinguished by the sign of φ while the boundary points correspond to a single orbit.

There are three equivalence classes of orbits forming different strata in the initial 4 D-phase
space, which are as follows:

• Generic circular orbits with a trivial stabilizer (4 D regular stratum).
• A continuous family of orbits for Nz = ±|N| and |Sz| < |S| with the stabilizer Z2 (2 D

critical stratum). These orbits are half as long as a generic orbit.
• Four isolated critical orbits for (Sz,Nz) = (±|S|,±|N|) with the stabilizer SO(2) (0 D

critical stratum).

3.3. Generalized moment map

The most natural way to characterize qualitatively the classical dynamics for an integrable
model is to introduce the generalized moment map [4, 36, 37]

Fλ = (Hλ, Jz) : S2 × S2 → R2, (9)
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Figure 2. Image Bλ of the generalized momentum map (9) for different values of the external
parameter λ. For λ ∼ 1/2, there are critical values inside B1/2 and the system has fractional
monodromy.

which maps the compact phase space to a bounded domain Bλ ⊂ R2 which can be expressed
as the union of regular and critical values of (9) Bλ = Br

λ ∪ Bc
λ. Quite naturally, the shape of

Bλ depends on the parameter λ as figure 2 shows.
The generalized moment map defines a fibration over Bλ: for fixed b ∈ Bλ the dynamics

takes place on the fiber F−1
λ (h, j). Here and later on we use j to denote possible values of Jz.

From the Arnold–Liouville theorem, it is known that the fiber over a regular value b ∈ Br
λ

is a 2-torus [4] (since S2 × S2 is compact). We denote it here as a regular fiber. The critical
strata in the phase space are mapped via (9) to the critical values bc ∈ Bc

λ. These critical values
can form isolated points inside the image of the generalized moment map, boundary lines or
special points on the boundary, and even lines of critical values situated inside the image of
the generalized moment map. Critical values which belong to the boundary of the image
correspond typically to tori of lower dimension (circles or points). Critical values situated
inside the image have nontrivial inverse images [19, 38, 39].

For λ = λ∗ = 1/2 some of the critical values are found in the interior Bλ∗ , and such
values correspond to nontrivial fibers responsible for the appearance of fractional monodromy
[13–15].

It is convenient to make a coordinate transformation in the space of orbits

Jz = 2Sz + Nz = 2θ1 + θ2, Kz = Sz − 2Nz = θ1 − 2θ2, (10)

where Kz is the variable varying on Jz sections.
Figure 1 shows singular Jz sections together with constant level sets of energy. It is easy

to see geometrically that in order to have critical values on the image of the energy–momentum
map inside the domain of regular values, it is necessary that the energy level going through the
singular orbit intersects the boundary of the orbit space at the singular orbit. In other words,
we need to compare the slope of the constant energy level at the singular orbit with the slope
of two boundary lines of the Jz-constant section at the singular point on the boundary.

It should be noted that at the critical orbit the geometrical form of the Jz section
±(−2|N|+ |S|−Kz)

3/2 implies that the two boundary lines form a cusp and have the same zero
slope. Due to that, the energy section going through the critical point intersects the boundary
only if the energy section has itself the zero slope at the critical orbit and this can happen only
for λ = 1/2. The typical images of the energy momentum map for λ < 1/2, λ = 1/2, λ > 1/2
are shown in figure 2. We do not go into details of the evolution of the line of singular values
(dashed red line in figure 2) near λ = 1/2 which are related to the possible appearance of a
second connected component in the inverse image of the generalized moment map. We note
that such complications (as compared with a more simple scenario of the appearance of integer
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Figure 3. The local setup in the image of the generalized moment map Bλ∗ when the system has
fractional monodromy. The line lc of critical values is the projection of the critical stratum formed
by curled tori [13, 14]. The critical value bc is the projection of curled pinched torus which is the
fiber with the critical point (0, 0,−|N|), (0, 0, |S|). The figure is done for the ratio J/S = 15/2.

monodromy [6] through the Hamiltonian Hopf bifurcation [16]) are only due to the presence
of the cusp singularity in the space of orbits. Moreover, it is not essential for the appearance
of the line of singular values together with the end point inside the generalized moment image
as shown in figure 2 (center) which is responsible for the presence of fractional monodromy.

3.4. Integer monodromy: holonomy of the lattice bundle

For each regular value b ∈ Br
λ, the periodicity of the Arnold–Liouville tori defines a 2 D-lattice

Lb isomorphic to the regular lattice Z2 [4]. Over critical values bc ∈ Bc
λ, the fiber is singular

and we no longer have a well-defined lattice. To detect the presence of singular fibers, it is
sufficient to consider the lattice bundle [5]

L :
⋃
b∈�

Lb → Br
λ, (11)

restricted to a loop � : [0, 1] → Br
λ in Br

λ. This loop passes only through regular values.
As �(0) = �(1) lifting of � induces an automorphism on fibers, Aut(Lb=�(0)) ∈ SL(2, Z).
The bundle L|� depends only on the homotopy type of � such that we only have to consider
equivalence classes of loops (the fundamental group), π1

(
Br

λ

)
. The monodromy map is now

defined as

µ : π1
(
Br

λ

) → SL(2, Z), (12)

which is an example of the holonomy concept [5, 32]6. Note that here L is a flat bundle, i.e.
its curvature tensor vanishes.

When the system has an isolated critical value, π1
(
Br

λ

) = Z. The corresponding
monodromy map depends on the topology of the singular fiber and results in the transformation
of basis cycles of regular tori which can be expressed as a linear combination with integer
coefficients. This gives standard integer monodromy [9, 5, 38].

As opposed to numerous known examples of integer monodromy in the literature, we no
longer have isolated critical values. This is shown in figure 3 where the critical value

bc = Fλ((0, 0, |N|), (0, 0,−|S|)) (13)

6 Holonomy has become a unifying concept in physics, e.g. the Berry phase is seen as the holonomy of a U(1)-bundle
[26, 40].
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of the generalized moment map is connected to a line, lc, of critical values. In such a case
we have π1

(
Br

λ

) = 0 for every λ as is seen from figure 2, so there is no integer monodromy.
However, a suitable restriction of the monodromy map (12) allows one to use closed paths
which cross a critical line and surround a critical value bc. Transformation of the basis cycles
of regular tori after their parallel transfer along such closed paths leads to the new notion of
fractional monodromy [13–16].

3.5. Fractional monodromy: restriction of basis cycles

To determine the fractional monodromy map, we have to describe how the fibers are
continuously modified as we go along the closed path � in the base space Bλ of the integrable
fibration and how the line of critical values can be crossed using only a subgroup of cycles
generating the fibers.

The local setup in Bλ is sketched in figure 3. In order to understand the evolution of basis
cycles of tori along the contour �, we need to note that the trajectories of Jz are closed and
well defined along all �. They are due to the SO(2) symmetry of the problem and can be used
to represent γ1, the first of the two cycles generating the first homology group of the regular
fibers.

The second cycle γ2 is chosen as the intersection of fibers with an auxiliary plane. Details
of this construction are given in figure 7 of [14]. To pass continuously along � this cycle has to
be a double loop. The applicability of the previous discussion of fractional monodromy [14]
to the case of the model Hamiltonian (3) studied in the present work is confirmed by reducing
the present model (Hλ, Jz) into the normal form of fractional monodromy presented in [14].
This is done in appendix A.

Due to the splitting of one of the basis cycles when crossing the singular stratum, the
monodromy map is only defined for an index 2 subgroup of the first homology group of regular
fibers. This is the essence of fractional monodromy. The relation between the initial basis
cycles γ1,2 and the final basis cycles γ ′

1,2, at the end of the cyclic evolution along �, can be
written in the matrix form as [13](

γ ′
1

2γ ′
2

)
=

(
1 0

−1 1

)
︸ ︷︷ ︸

µcl

(
γ1

2γ2

)
. (14)

A formal extension of the monodromy map to the basis of the whole homology group of
regular fibers introduces fractional coefficients and a monodromy matrix

µcl =
(

1 0

−1/2 1

)
∈ SL(2, Q). (15)

This implies that the preimage F−1
λ∗ (�) does not factorize as T2 × S1 and hence the

momentum map is not a principal T2-fiber bundle [5]. There is then no unique way of labeling
tori in a vicinity of the pinched curled torus, and no global set of action-angle coordinates can
be introduced.

4. Quantum monodromy

The Einstein–Brillouin–Kramer (EBK) quantization introduces quantum numbers by picking
out a set of regular tori [31]∫

γk

p dq = 2πh̄(nk + αk/4), k = 1, 2, (16)
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Figure 4. Modifications of the joint spectrum as λ varies, λ = 0 → 1. The bands are labeled
σ = −S, . . . , S from the bottom up. Here S = 4, N = 40. For λ = 1/2 there is fractional
quantum monodromy due to the presence of the line of critical values inside of the image of the
moment map. As 1/2 > λ → λ > 1/2 there is a modification of the band structure due to the
displacement of the line of critical values from the upper side of the boundary of the moment image
towards the lower side, passing through the interior (see figure 2). For λ = 0, there are N = 2S + 1
states on each line, whereas for λ = 1, there are Nσ = (2S + 1) + 4σ states on the line σ , as is
explained below.

where γk are basis cycles, generators of the tori, and αk are Maslov indices. Given this,
it is no surprise that classical monodromy manifests itself in quantum systems as quantum
monodromy. The existence of this property was first demonstrated on the quantum spherical
pendulum [41] and later defined as the dual of classical monodromy [18]7.

The EBK rules lead to a 2 D-lattice of quantum states—or joint spectrum—in Bλ. From
(16) the distance between consecutive quantum states decreases as h̄ → 0. Our model is
a coupling of two angular momenta S and N with effective Planck constants h̄S and h̄N ,
respectively. The assumption S � N leads to h̄N � h̄S and to the existence of two scales
in the joint spectrum. This explains the local band structure easily observed in figure 4. We
label the bands by the quantum number of Sz, σ = −S, . . . , S.

For λ = 0, the joint spectrum forms globally a regular lattice which possesses a well
defined (up to a similarity transformation with the SL(2, Z) matrix) elementary cell over the
whole lattice. This means that there exists a global labeling of states. The lattice remains to
be regular (just in a slightly deformed form) for the λ-dependent family of integrable systems
up to λ ∼ 1/2. At λ = 1/2 the presence of a one-dimensional defect is clearly seen within
the regular part of the lattice. This defect results in a modification of the bands. For λ = 1 we
again have a globally regular lattice but now with a different band structure.

For λ ∼ 1/2, the effect of the defect on the lattice is characterized (up to conjugation) by
an element µqm determined in the following way (see figure 5):

7 This is only strictly true in the semi-classical limit. In such a case, the distance between consecutive points in the
spectrum goes to zero and we recover a continuous description.
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Figure 5. Joint spectrum for S = 8, N = 40 and λ = 1/2 which shows the effect of fractional
monodromy. Left: the global view of the joint spectrum. Right: parallel transport of the double
cell along a closed path crossing once the line of critical values and surrounding the critical
value (Jz = 2S − N, E = 0) of the generalized moment map. For S = 8, N = 40 we have
Jz/(2|S| + |N |) = −3/7 ≈ −0.4286.

• Make a choice of cell. To pass the line defect the cell should be doubled in the Jz direction.
This is the quantum analogue of the restriction imposed on the choice of passable cycles
in section 3.5. Cell doubling is not necessary in the case of integer monodromy [6].

• Moving along the path � between initial and final points, the elementary cell does
not change as long as the path remains within the class of homotopically trivial paths.
However, after translation along a path � as shown in figure 5 we return with a different
cell. A rescaling as done in section 3.5 gives

µqm =
(

1 1/2
0 1

)
∈ SL(2, Q), (17)

which is the quantum monodromy matrix (after a formal rescaling of the cells)8.

The nontriviality of monodromy shows that no unique set of quantum numbers exists
which can be used to label states in the joint spectrum [42]. This is of special importance for
molecular physics where effective quantum numbers are typically introduced on the basis of
experimental spectral information using extrapolation within effective models.

4.1. Decomposition into sub-lattices

Let j label the eigenvalues of Jz, the second integral of motion, nd Nj be the dimension of
the associated eigenspace, i.e. the number of states with Jz = const in figure 4. The number
of states function (figure 6) is a quasi-polynomial, i.e. polynomial in j with coefficients being
periodic in j :

Nj =
{

2S + 1, |j | � N − 2S
1
2

(
J − |j | + 1

2 (3 + (−1)J+|j |)
)
, otherwise.

(18)

8 Here we observe the duality between classical and quantum monodromy explicitly as µqm = tµ−1
cl [18].
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Figure 6. The number-of-states function Nj is a quasi-polynomial (full line). The existence of
two length scales in the system is due to the 1:2 diagonal SO(2)-action. Retaining only the linear
term, i.e. restricting to either even (◦) or odd (•) values of j , results in two subsystems with integer
monodromy.
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Figure 7. Index 2 sub-lattice of the joint spectrum for odd values of Jz. This sub-ladtticed
possesses only one isolated critical value. The path encircling this critical value is characterized
by integer monodromy. The situation is similar for even Jz.

This reflects the existence of two different scales in the system. A large-scale behavior is
associated with the polynomial part, whereas a small-scale behavior is characterized by the
oscillating term. This is a direct consequence of the 1:2 diagonal SO(2) action as described in
section 2.1.

Restricting ourselves to only even or odd values of Jz amounts to ignoring the oscillating
part of (18). This gives integer monodromy on each index 2 sub-lattice of the joint spectrum
as is shown in figure 7. Disregarding the small-scale behavior, our system reduces to two
systems with 1:(−1) resonance of the type found in [6].

Integer monodromy on index 2 sub-lattices should be compared with the monodromy
matrix (14), i.e. before the formal rescaling of the restricted basis cycle. This is another way
of showing how fractional monodromy can be seen as integer monodromy for an appropriate
subset of basis cycles.

4.2. Quantum monodromy and redistribution of states

Returning to figure 4, we observe that the breaking of the band structure is related to the
appearance of monodromy and to a rearrangement of bands seen as a transfer of states from
the lower to the upper bands. Counting the number of states before and after a modification
of the position of the singular stratum on the image of the generalized moment map gives

�Nσ = 4σ, σ = −S, . . . , S, (19)

where Nσ is the number of states in the σ th band (labeled from the bottom up).
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5. Semi-quantum description: Chern index

In this section we give a different interpretation of the redistribution of states, observed in
figure 4. This will be done with a topological interpretation of the number of states within
each band. For that purpose, we will derive and explain the index formula (35).

We now proceed to consider the semi-quantum description which is valid in the limit
S � N , with no assumption on S. Here the slow motion of N is classical, and for any given
value of N the fast motion of S is quantum mechanical and depends on N: the fast motion is
generated by the Hamiltonian Ĥ N,λ acting in HS and obtained by substituting the operators N̂
by the classical variable N ∈ S2.

This operator has normalized eigenstates

Ĥ λ,N|ψσ (λ, N)〉 = Eσ (λ, N)|ψσ (λ, N)〉 (20)

with σ = −S . . . + S. The eigenvalues, Eσ (λ, N) : S2 → R, seen as functions of N form
2S + 1 bands calculated in the following way.

The quantum Hamiltonian is an operator-valued symbol defined by

〈N|Ĥ λ|N〉 = Ĥ λ,N + O(1/N), (21)

and explicitly given by

N ∈ S2 �→ Ĥ λ,N = Kλ(N) · Ŝ
|S| ,

(22)

Kλ(N) =
(

2λ

|N|2
(
N2

+ + N2
−
)
,
−2iλ

|N|2
(
N2

+ − N2
−
)
, (1 − λ) +

λ

|N|Nz

)
,

the principal symbol with respect to N.
Explicit eigenvectors are constructed from the angular momentum basis vectors by

applying the rotation taking the z-axis into Kλ

|ψσ (λ, N)〉 = eKλ(N)·Ŝ|σ 〉, σ = −S, . . . , S, (23)

and the spectrum is

Eσ (λ, N) = σ

|S| |Kλ(N)|

= σ

|S|

√(
4λ

|N|2
)2 (

N2
x + N2

y

)2
+

(
(1 − λ) +

λ

|N|Nz

)2

, (24)

which shows that the only degeneracy between bands occurs for

Nx = Ny = 0 ⇒ Nz = ±|N|, (25)

(1 − λ) + λ
Nz

|N| = 0, (26)

with solution (λ∗, N∗) = (1/2, (0, 0,−|N|)). In this case, there is a collective degeneracy
between all bands in the semi-quantum spectrum due to the high degree of symmetry of the
model [1, 6]9.

9 kth-order eigenvalue degeneracies of a Hermitian operator occur in a space of dimension (dimparameters − (k2 − 1))
[43]. With three independent parameters (λ, N) ∈ [0, 1] × S2 only point-wise degeneracies between pairs of
eigenvalues are generic, i.e. cannot be removed by perturbing the model. The important point is that with three
parameters we shall always have band degeneracies where the Chern index can be ‘exchanged’ [12].
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5.1. Complex line bundles over S2

For each σ = −S, . . . , S there is a natural vector bundle structure associated with a parameter-
dependent operator constructed as follows.

The normalized eigenvectors (23) are only defined up to a phase factor but the projector

P̂σ : N ∈ S2 �→ |ψσ (λ, N)〉〈ψσ (λ, N)| (27)

onto the corresponding eigenspace is well defined and associates with each point N ∈ S2

a one-dimensional complex subspace of HS . This defines 2S + 1 complex line bundles
Ls → S2 for almost all values of λ (except when the degeneracy mentioned in the previous
section is encountered). Each bundle has an isomorphism class depending on λ ∈ [0, 1] and
characterized by a single integer Cσ ∈ Z, the so-called Chern index [12, 44].

5.2. Trivial topology

For λ = 0 eigenstates form the usual angular momentum basis set |ψσ (0, N)〉 = |σ 〉. As these
states are parameter independent, we have 2S + 1 trivial line bundles over S2 characterized by
Cσ = 0. As the topology remains unchanged under continuous deformations, this remains
true until the sphere spanned by N encounters (λ∗, N∗) at the south pole.

This happens for λ = 1/2 and the collective degeneracy can be seen as a trivial rankC 2S+1
bundle over S2. In fact, since the total space HS is a trivial vector bundle

C =
S∑

σ=−S

Cσ = 0, (28)

for all values of λ.

5.3. Nontrivial topology

As the only degeneracy occurs at (λ∗, N∗), it is sufficient to calculate C ′
σ for λ = 1. This

is done algebraically by defining the Chern index C ′
n as a sum of oriented zeros of a global

section [12]10.
A choice of a reference coherent state |S0〉 defines a global section

P̂σ (N)|N0〉 = |ψσ (1, N)〉〈ψσ (1, N)|S0〉, (29)

where P̂σ (N) is the projector onto the σ th eigenspace in HS spanned by |ψσ (1, N)〉. The
section has the same zeros as the Husimi distribution

Hσ (S) = |〈ψσ (1, N)|N0〉|2, (30)

of |S0〉. Here |ψσ 〉 is simply a rotation of the angular momentum eigenstates |σ 〉 with a Husimi
distribution known to have (S − σ) oriented zeros at K1(N) and −(S + σ) oriented zeros at
−K1(N) [33].

Introducing spherical coordinates (�,
) on the parameter sphere

K1(�,
) = (4 sin2(
) cos(2�), 4 sin2(
) sin(2�), cos(
)), (31)

we see that as (�,
) cover the sphere once |ψσ 〉 cover the phase space twice. Then each set
of zeros pass over all points on the sphere—including S0—twice and

C ′
σ = 2(S − σ + (−(S + σ))) = −4σ. (32)

10 A section is a continuous choice of elements in each fiber. A non-vanishing section globally defines a frame and
hence a global separation of the bundle. In this case the bundle is trivial: it is isomorphic to S2 × C.



Fractional monodromy in systems with coupled angular momenta 13087

The change in the Chern index for the σ th bundle is then

�Cσ = C ′
σ − Cσ = −4σ, (33)

as λ = 0 → 1.

5.4. Exchange of states and indices: an index formula

In section 4.2 the change in the number of states was found to be �Nσ = 4σ such that

�Cσ = −�N , (34)

and Nσ + Cσ is conserved for all values of λ. When λ = 0 we have Ĥ 0(N) = Ŝz and
Nσ = 2S + 1 = dimHN which leads to

Nσ = dimHS − Cσ = (2S + 1) + 4σ, (35)

relating the topology of a complex line bundle in the semi-quantum description to the number
of quantum states in a band [7]. This so-called index formula on the sphere is the simplest
case of the Atiyah–Singer index formula [45].

6. Discussion

Quantum systems with a slow-fast coupled motion are very common in nature, the textbook
example being that of a rovibrational molecular system [1, 3, 6, 7, 22, 30]. We have given
a model example of such a system with a specific (1:2 diagonal) action of the dynamical
symmetry group which has the additional property of being integrable.

The raison d’être of our model is a SO(2) with 1:2 diagonal action leading to fractional
monodromy, the essence being a restriction of the monodromy map to an index 2 subset of
basis cycles. To our knowledge, this is currently the only example of fractional monodromy
in a system with compact phase space. This gives a bounded spectrum which is important
when we turn to the physically relevant question of redistribution. The hydrogen atom in
the presence of electric and magnetic fields leads under certain conditions to effective models
which manifest the fractional monodromy effect [46].

Here we observe that the appearance of monodromy is related to a breaking of the band
structure in the joint spectrum. Furthermore, this is associated with a rearrangement of bands
seen as a redistribution of quantum states.

In the semi-quantum description the notion of integrability is not present but the
redistribution of states appears as a change in the Chern index of the associated complex
line bundles. This is the result of a simple index formula expressing the redistribution of levels
in terms of Chern indices [7].

Also a recent generalization of the so-called moment polytopes of Atiyah, Guillemin–
Sternberg and Delzant to problems with integer monodromy [11] makes the precise relation
between redistribution (Chern index) and general p/q-monodromy a pertinent question. Our
model can easily be generalized to 1/k-monodromy [29] but for the time being the more actual
question is to find a physical example of a system exhibiting fractional monodromy and the
redistribution phenomenon.
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Appendix. Local structure of the generalized moment map: monodromy

To establish the presence of fractional monodromy H1/2, Jz is reduced to a normal form for
fractional monodromy presented in [13]. This is done by linearizing around (N∗, S∗) =
((0, 0, |N|), (0, 0,−|S|))

Nx = p1, Ny = q1, Nz =
√

1 − (N2
x + N2

y ) � 1 − 1

2

(
p2

1 + q2
1

)
,

Sx = p2, Sy = q2, Sz = −
√

1 − (S2
x + S2

y ) � −1 +
1

2

(
p2

2 + q2
2

)
,

where (q1, p1, q2, p2) ∈ TN∗S2 × TS∗S2 ∼= R2 × R2 is a set of local symplectic coordinates.
Then

H1/2(q, p) = Re[i(q1 − ip1)(q2 − ip2)
2]︸ ︷︷ ︸

H0

+ 1
2

(
p2

2 + q2
2

)︸ ︷︷ ︸
Hr

− 1
2

(
p2

1 + q2
1

)(
p2

2 + q2
2

)︸ ︷︷ ︸
Hc

, (A.1)

Jz(q, p) = −(
p2

1 + q2
1

)
+

1

2

(
p2

2 + q2
2

)
. (A.2)

To find the position of the critical values, we solve

DH1/2(q, p) = 0, DJz(q, p) = 0, (A.3)

including terms up to third order (qi, pi � 1). There is a corank-2 critical value at
(H, Jz) = (0, 0) and a line of corank-1 critical points

(H, Jz) = (
0,−p2

1 − q2
1

)
, (A.4)

in accordance with figure 3. As Hr 1gonly depends on q2, p2, it has no influence on the
qualitative picture and can be disregarded.

Jz is the Hamiltonian of a pair of oscillators in 1 : (−2) resonance. Together with H0,
it is the system of functions in involution used to demonstrate the existence of fractional
monodromy in [13].

This completes the reduction to the normal form [13, 14].
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