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We describe the qualitative features of the joint spectrum of the quantum 1:1:2
resonant swing spring. The monodromy of the classical analogue of this problem is
studied in Dullinet al. [Physica D190, 15–37(2004)]. Using symmetry arguments
and numerical calculations we compute its three-dimensional(3D) lattice of quan-
tum states and show that it possesses a codimension 2 defect characterized by a
nontrivial 3D-monodromy matrix. The form of the monodromy matrix is obtained
from the lattice of quantum states and depends on the choice of an elementary cell
of the lattice. We compute the quantum monodromy matrix, that is the inverse
transpose of the classical monodromy matrix. Finally we show that the lattice of
quantum states for the 1:1:2 quantum swing spring can be obtained—preserving the
symmetries—from the regular 3D-cubic lattice by means of three “elementary
monodromy cuts.” ©2004 American Institute of Physics.
[DOI: 10.1063/1.1811788]

I. INTRODUCTION

The swing spring is a simple mechanical system consisting of a spring of length, and spring
constantk with one end attached at a fixed point(the origin of a Cartesian system) and with a
weight of massm attached at the other end. This system admits a Hamiltonian formulation in
which the phase space isR6 with coordinatesx,y,z,px,py,pz and symplectic form dx∧dpx

+dy∧dpy+dz∧dpz. The Hamiltonian functionH is

sx,y,z,px,py,pzd °
1

2m
spx

2 + py
2 + pz

2d + mgz+
k

2
s, − Îx2 + y2 + z2d2. s1d

Note that, is the same as,0 in Refs. 11 and 17.
When the physical parameters are chosen so that 3gm=k,, which is equivalent to requiring

that the frequencies of small oscillations of the swing spring near the stable equilibrium are in a
1:1:2 resonance(the only resonance with cubic secular terms), the swing spring has some remark-
able features: energy exchange and precession of the swing plane.11,17 These characteristics have
been widely studied(see Ref. 17 for a comprehensive bibliography), but the information hidden in
this classical mechanical system has not been exhausted by these investigations. In fact, the
resonant swing spring is a model for molecules such as CO2 (a textbook example of a 1:1:2 Fermi
resonance between stretching and doubly degenerate bending vibration states4,13), HCP,18 and a
whole class of CHX3 molecules which possess a Fermi resonance between the CH stretching and
bending vibrational states.19
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We define the integrable approximation of the swing spring system and discuss the range of
energies in which our approximating Hamiltonian gives data that can be considered reliable for the
original system. After explaining the origin of the continuous and discrete symmetries of our
approximation, we define the quantum analogue of the system and proceed to analyze its quantum
spectrum. As the classical swing spring is a three degree of freedom system, its spectrum is
represented by a three-dimensional(3D) lattice of points in the space of the values of quantized
actions and energy. The main purpose of this work is to show how the nontrivial monodromy of
the classical system2,3,5 manifests itself(1) as a defect of this lattice and(2) in the distribution of
quantum states with respect to quantum numbers which can be predicted from the theorem of
Duistermaat–Heckman.10

Fixing a global quantum number associated to the momentum corresponding to a circle
symmetry, we first analyze the quantum lattice of two-dimensional(2D) slices of the swing spring
quantum spectrum and find that the monodromy computed in such slices gives insufficient infor-
mation to determine the monodromy of the full 3D quantum spectrum. We proceed with the
investigation of the 3D quantum lattice by giving two methods to compute the quantum mono-
dromy matrix. The first method, presented in Ref. 26, requires the introduction of quantum defects
in the regularZ3 lattice. In order to preserve the discrete symmetries of the system, one must use
three elementary defects to obtain the quantum lattice. The second method obtains the quantum
monodromy matrix directly by moving an elementary cell in the three-dimensional quantum
lattice.

II. CLASSICAL AND QUANTUM 1:1:2 SWING SPRING

The swing spring is a Hamiltonian system on(R6, dx∧dpx+dy∧dpy+dz∧dpz) with Hamil-
tonianH given by (1). Despite it being a chaotic dynamical system,16 the motions of the swing
spring near the stable equilibrium located atp0=s0,0,−,−mg/k,0 ,0 ,0d have a clear quasiperi-
odic behavior when the parameters are chosen so that the characteristic oscillations of the system
are tuned in 1:1:2 resonance.

To study this behavior we will begin by considering the Taylor expansion ofH aroundp0. The
quadratic part of the Taylor expansion ofH at p0 is

H2 =
1

2m
spx

2 + py
2 + pz

2d +
k

2
S gm

k, + gm
x2 +

gm

k, + gm
y2 + z2D .

To have a 1:1:2 harmonic oscillator as dominant term, the physical coefficients inH2 must satisfy
the condition 3gm=k,. Assuming this and making the change of coordinates

x °Î4 4

km
j, y °Î4 4

km
h, z°Î4 1

km
z, px °Î4 km

4
pj, py °Î4 km

4
ph, pz ° Î4kmpz,

we find that

H2 = 1
2"sj2 + pj

2 + h2 + ph
2 + 2z2 + 2pz

2d

and the Taylor expansion ofH (1) aboutp0 up to sixth order terms becomes

Htrunc= H2 − 3
8"3/2zsh2 + j2d + 3

64"2sh2 + j2ds− 2z2 + h2 + j2d − 3
256"

5/2zsh2 + j2d„2z2 − 3sh2 + j2d…

− 3
1024"

3sh2 + j2d„2z4 − 6z2sh2 + j2d + sh2 + j2d2
…, s2d

where"=Îk3/ sg4m5d. To obtain(2) we have rescaledHtrunc to remove the factorg2m2/ s2kd and
dropped an additive constant. The original HamiltonianH (1), and thus the HamiltonianHtrunc (2),
has an SO(2) axial symmetry
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sj,h,z,pj,ph,pzd ° _Rt1 j

h

z
2,Rt1pj

ph

pz

2+ .

Here

Rt = 1cost − sin t 0

sin t cost 0

0 0 1
2

is a rotation about thez axis lifted to the full phase spaceR6. The momentum of this symmetry is
the functionL=jph−hpj.

It is convenient to perform another coordinate change, namely

j °
1
Î2

sp2 + q1d, h °
1
Î2

sp1 + q2d, z ° q3, pj °
1
Î2

sp1 − q2d, ph °
1
Î2

sp2 − q1d, pz ° p3.

This brings the momentumL into diagonal form 1
2sq2

2+p2
2−q1

2−p1
2d and does not change the

quadratic partH2 of the HamiltonianHtrunc.
Bringing Htrunc into normal form with respect toH2 up to order 6, one obtains the Hamiltonian

Hnf
s6d. This is the polynomial Hamiltonian(as well as its truncationHnf

s3d to third order) whose
quantum spectrum we analyze in Secs. III–V.

A. Lie symmetry of classical and quantum system

The sixth order normalized HamiltonianHnf
s6d defines a three degree of freedom system with

two integrals of motion:L, the momentum associated to the axial symmetry andN, the quadratic
part H2 of the normalized Hamiltonian, which is the same as the quadratic part of the original
HamiltonianH. The flows of the Hamiltonian vector fields associated to these integrals commute
and define a 2-torus action that preservesHnf

s6d. ThusL andN together with the HamiltonianHnf
s6d

form a completely integrable system.
Being S13SOs2d-invariant, the normalized HamiltonianHnf

s6d can be written as a polynomial
in the generators of the ring ofS13SOs2d-invariant functions. The Molien generating function20

(A7) indicates that this ring is generated by five invariants, three quadratic and two cubic, see
Appendix A 1. These invariants can be chosen to be

N = 1
2sq1

2 + p1
2 + q2

2 + p2
2 + 2q3

2 + 2p3
2d, s3ad

R= 1
2sq1

2 + p1
2 + q2

2 + p2
2d, s3bd

L = 1
2s− q1

2 − p1
2 + q2

2 + p2
2d, s3cd

S= sq1p2 + q2p1dq3 − sq1q2 − p1p2dp3, s3dd

T = sq1q2 − p1p2dq3 + sq1p2 + q2p1dp3, s3ed

and they are subject to the relations(A9).

B. Normalized system and its analysis

The normalized HamiltonianHtrunc (2) written in terms of the invariants(3) is
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Hnf
s6d = "N − 3

16"3/2S− 57
1024"

2NR+ 177
2048"

2R2 − 39
2048"

2L2 − 819
65 536"

5/2NS+ 2151
65 536"

5/2RS− 8025
4 194 304"

3N2R

+ 7623
2 097 152"

3NR2 + 6879
2 097 152"

3R3 − 6555
2 097 152"

3NL2 + 4803
4 194 304"

3RL2 − 1089
262 144"

3S2. s4d

Note that powers ofT higher than 1 should not appear in(4) since the invariants satisfy the
relation(A9). Furthermore,(4) does not include any power ofN higher than 1 because the swing
spring (1) contains a two degree of freedom harmonic oscillator as subsystem. Other special
features ofHnf

s6d are related to the discrete symmetries described below.
In most of what follows, we describe the quantum spectrum of the HamiltonianS instead of

that ofHnf
s6d. Of course,sS,L ,Nd is also a completely integrable system. At first order the difference

between the HamiltonianS and(4) is given byH°−s16/3"3/2dsH−"Nd. This means that to first
order for any given value ofN the quantum spectra ofH andS coincide up to a translation and
dilation.

The energy-momentum map

EM: R6 → R3 sq,pd → „Ssq,pd,Lsq,pd,Nsq,pd…

is widely used in our analysis. Its imageU,R3 and the corresponding bifurcation diagram is
described in Ref. 11 and Appendix A 3.Ureg,U is the set of regular values which represent
regular tori T3. Points of the boundary]U represent equilibria relative to theT2=S13SOs2d
action. The main feature to note is thatU \Ureg also contains a thread of singular values insideU,
which represent a special singular 3D fiber described in Appendix A 3.

It can be shown that the systemsHnf
s6d ,L ,Nd is qualitatively the same assS,L ,Nd for suffi-

ciently small values ofN. In particular it has qualitatively the same energy-momentum map and
corresponding 3D quantum lattice. The concrete estimate of the upper limit forN can be obtained
from the analysis of the slope ofSsRd at R=L=0 of Hnf=const. Specifically,udS/dRu should be
smaller than the slope at the conical singular point of the reduced space, see Appendix A 2. In
particular considering the terms of order"2 we obtainN,21219−2"−1.

C. Discrete symmetries and a pseudosymmetry

The normalized HamiltonianHnf
s6d (4) is not a genericS13SOs2d-symmetric polynomial in the

invariants, because(4) does not contain terms of odd degree inL or any power ofT. The reason
for this is that the original Hamiltonian(1) has aZ23Z2 discrete symmetry group generated by

T: sx,y,z,px,py,pzd ° sx,y,z,− px,− py,− pzd,

Ts: sx,y,z,px,py,pzd ° sy,x,z,− py,− px,− pzd,

sv: sx,y,z,px,py,pzd ° sy,x,z,py,px,pzd.

Note thatTs=T +sv=sv +T and that the square of each generator is the identity. This discrete
symmetry survives truncation and normalization. It induces the following transformations on the
invariants:

T: sN,R,L,S,Td ° sN,R,− L,S,− Td, s5ad

Ts: sN,R,L,S,Td ° sN,R,L,S,− Td, s5bd

sv: sN,R,L,S,Td ° sN,R,− L,S,Td. s5cd

From (5) we see that the functionsT andL are not invariant of theZ23Z2 action. This explains
the absence of odd powers ofL andT in (4).

To analyze the model systemsS,L ,Nd we also consider the involution
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sj,h,z,pj,ph,pzd ° s− j,− h,− z,− pj,− ph,− pzd, s6ad

which acts on the invariants as

sN,R,L,S,Td ° sN,R,L,− S,− Td. s6bd

As the transformation(6a) mapsS to −S, we call it a pseudosymmetry. We will exploit this
pseudosymmetry below. In particular the image of the energy-momentum map ofsS,L ,Nd is
symmetric with respect to(6b). Similarly, the corresponding 3D quantum lattice is symmetric with
respect to the planeS=0.

D. Classical integrals, quantum numbers, and joint quantum spectrum

Each of the functions in the integrable systemsS,L ,Nd can be quantized according to the rules

discussed in Appendix B. The corresponding three quantum operatorsN̂, L̂, andŜ are self-adjoint
and commute. Hence they can be simultaneously diagonalized. In Appendix B we give the details

of the calculation of the joint quantum spectrum ofsŜ,L̂ ,N̂d and of the quantum analogue ofHnf
s6d.

We also explain the decomposition of the domain of the quantum operators that allows
us to numerically compute the quantum spectrum. To every common eigenspace one can associate
a triple of real numbers and plot these triples inR3, generating a lattice of quantum states
represented as points in 3-space. This 3D lattice of points fits in the image of the classical
energy-momentum mapEM of the integrable systemsS,L ,Nd, a description of which is in
Appendix A 3. Similarly the quantum lattice for the swing springsHnf

s6d ,L ,Nd fits inside the
respectiveEM image.

Definition 1:The lattice of quantum states ofsĤ ,L̂ ,N̂d superimposed to the image of theEM
map of the corresponding classical completely integrable systemsH ,L ,Nd is called thequantum
diagram. A polyad quantum numberis an injective integer labeling of the eigenvalues of the

quantum operatorN̂. A local quantum numberis an injective integer labeling of the eigenspaces of
a quantum operator associated to a local action variable for the completely integrable quantum

systemsĤ ,L̂ ,N̂d. A local action variableis a function locally defined on phase space whose
Hamiltonian vector field has a 2p-periodic flow and Poisson commutes with the classical Hamil-
tonianH and the momentaN andL.

The notion of polyad quantum number is well established in the theoretical chemistry and
molecular physics community.24 Both polyad and local quantum numbers label eigenspaces with
large dimension, that is, eigenvalues with high multiplicity. A choice of labeling of the points of
the quantum spectrum corresponding to the quantum numbers of a global action will be referred to
asglobal quantum number. The definition of global quantum numbers, as opposed to the choice of
a quantum number, which is just a labeling of eigenspaces of a quantum spectrum, is at the heart
of the presentation to follow.

Since the systems with HamiltonianH=S andH=Hnf
s6d are qualitatively the same, we will use

H=S which is easier to study analytically.

Lemma 1:The eigenstates of the quantum systemsŜ,L̂ ,N̂d can be labeled by three quantum

numbers related to the three commuting operatorsŜ, N̂, andL̂:

(i) The global quantum numbernN=0,1,2, . . . can bechosen to be the eigenvalue of the

operatorN̂ and is the total number of quanta for the 1:1:2 resonance oscillator or thepolyad
quantum number. The total number of quantum states within onenN-polyad equals

NsnNd =Hs 1
2nN + 1d2 if nN is even,

s 1
2nN + 1d2 − 1

4 if nN is odd.
J

(ii ) The global quantum numbernL can be chosen to be the eigenvalue of the operatorL̂ and is
the projection of the angular momentum on the axis of symmetry. For eachnN, the quantum
numbernL takessnN+1d different values
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nL = nN,nN − 2, . . . ,−nN + 2,−nN.

The total number of states for each fixed value ofnN andnL equals

NsnN,nLd = 1
2snN − unLud + 1.

(iii ) A quantum numbernS labels the eigenspaces within the set of states with the samenL and
nN according to the energy of the system.

Instead of using the natural momentaN andL, one could use the momentum

Km = sm+ 1dN + sm− 1dL s7d

together withL. The number of states in a fixed quantum level of the operatorK̂m can be thought
as a function ofnL. A computation shows that this function assigns to everynL in f−nKm

,0g the
natural numbersnL+nKm

d / sm+1d and to everynL in f0,nKm
/mg the natural numbers−nLm

+nKm
d / sm+1d. The cases corresponding tom=0,1,2 areplotted in Fig. 1.

A classical formula states that the number of quantum states of a given quantum system is
"-proportional to the symplectic area of the phase space in which the system is defined. Hence, the
graphs in Fig. 1 can also be obtained by first reducingR6 with respect to the circle action with
momentumKm, which defines the manifoldMk, and then by plotting theL-dependent symplectic
volume of the manifoldMk reduced with respect to the circle action with momentumL. These
volumes can be computed directly from the theorem of Duistermaat and Heckman, see Refs. 10
and 15. In Ref. 14 this theorem was applied to the analysis of a three-dimensional quantum
problem with monodromy.

The theorem of Duistermaat and Heckman states that the cohomology class of the symplectic
form of a symplecticallyTn-reduced space varies piecewise linearly with the values of the mo-
mentum map. To be more precise denote byMx the symplectic manifold obtained by symplecti-
cally reducing a manifoldM with respect to theTn-action above the valuex in t*. Let a be a
regular value of the momentum map, letb be an element int*, and let t be a small real number.
The manifoldMa+tb is diffeomorphic toMa. Both manifolds are base spaces of diffeomorphic
principalTn bundles. The symplectic forms ofMa andMa+tb define cohomology classes that differ
by the classtkb,cl, wherec is the Chern class of the torus bundle overMa, that is, an element of
H2sMad ^ t, andk,l is the pairing between the Lie algebrat and its dualt*. Observe thattkb,cl is
a function linear int. Crossing the set of critical values of theTn-momentum map, the Chern class,
and hence the slope of the linear function changes intokb,c8l. Since the volume form of a
symplectic manifold is an appropriate power of the symplectic form, it changes polynomially int.

In our case we are given aT2 action having the tuplesN,Ld for momentum map. The
momentum polytope is the convex solid wedge with boundaries 0øN=L and 0øN=−L. In
addition to this boundary, the set of critical values of theT2-momentum map also contains the line
L=0. The fiber of theT2-momentum map over values in the setE+=hL.0,L,Nj is a 2-torus
bundle over a 2-sphere with Chern classsvjN+vjLd /2; while that above values in the set

FIG. 1. The plot of the number of states in the slice having a fixednKm
quantum number as a function of the quantum

numbernL.
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E−=hL,0,L.−Nj is a 2-torus bundle over a 2-sphere with Chern classsvjN−vjLd /2. Herev is
the standard volume form on the 2-sphere andjN,jL are the elements oft whose infinitesimal
action isXN andXL, respectively.

Starting from the symplectic manifoldR6 one can reduce with respect to the momentumKm to

obtain the manifoldMk=Km
−1skd /S1. On Mk there is a(residual) circle action with momentumL̄.

The image of the(residual) momentum map is the intersection of the lineLm=hsm+1dN+sm
−1dL=kj with the image of the momentum map of theT2 action.

We can now use the Duistermaat–Heckman theorem to compute the change in the(cohomol-

ogy class of the) symplectic structure of theL̄-reduced manifoldsMk,l = L̄−1sld /S1, and plot it as a
function of l. The lineLm is spanned by the elementb=jN

* −sm+1d / sm−1djL
* . The cohomology

classkb,cl is v / sm+1d in the segmentLmùE+ and −mv / sm+1d in the segmentLmùE−. This
gives, as expected, the graphs in Fig. 1.

III. QUANTUM SPECTRUM: LATTICE OF QUANTUM STATES

Given a 3D quantum diagram, an important problem is to “smoothly” map it to the latticeZ3

in R3. This can always be done locally by means of independent local quantum numbers. In
systems with nontrivial monodromy a global labeling of the eigenstates is impossible. To be more
precise, a global labeling of the quantum states with three suitable global quantum numbers is the
quantum analogue of the classical problem of defining global action functions for a completely
integrable system. This problem has been shown to have no solution in systems with
monodromy.21 The quantum numbersnN andnL area priori global, because they correspond to
global classical actions. On the other hand, because of the nontrivial classical monodromy of the
swing spring system, the quantum numbernS can be only locally defined. In this section we show
that this last quantum number cannot be defined globally, and we analyze this phenomenon.

Informally speaking, we try to construct a third global quantum number for the quantum
swing spring, which is independent ofnL and nN. Having three global quantum numbers corre-
sponds to defining a bijection of the given lattice to the standardZ3. Of course, many such
bijections exist, but none of them can have the property of “"-smoothness,” which we define in
Sec. III B. We begin by describing the quantum lattice of the quantum swing spring and then apply
the idea of"-smoothness.

A. Qualitative and quantitative description of the quantum lattice

One way of describing the 3D lattice of the quantum swing spring is to look at its planar
slices, that is, the slices obtained by fixing a quantum number(nN or nKm

in our case). These plane
slices intersect the thread of classical singular values(see Appendix A 3) in one point, which we
refer to as asingularity of the quantum lattice.

To start with, we use the symmetries and the number of states discussed in Lemma 1 to
deduce the qualitative aspects of the quantum spectrum of the swing spring. At the end of this
section we give numerically computed pictures of the plane slices obtained by fixing the value of
the polyad numbernN.

Let us now fix the polyad numbernN and then compute the joint spectrum of the operatorsL̂

and Ŝ. We recall that the quantum spectrum one computes in this way is that of the classical
system obtained from the original one by reducing it with respect to the circle action having
momentumN at the valuenN+2.

Lemma 2:For fixed polyad numbernN, the structure of the joint spectrum for the operatorsL̂

and Ŝ is invariant under the symmetriesnL→−nL and nS→−nS and it consists of four possible
arrangements in a neighborhood of the intersection of the symmetry axes. These arrangements
have a modulo 4 periodicity,nN;nN8 mod 4, see Fig. 2.

From the symmetrysv and the pseudosymmetry discussed in Sec. II C, it follows that if
snN,nL ,nSd is a point of the quantum diagram, then also the pointssnN, ±nL , ±nSd belong to the
quantum spectrum.
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Let us make the generic assumption that the spectrum ofŜ at fixednL has no degeneracies,

that is, the spectrum ofŜ at fixed polyad numbersnN and quantum numbernL is simple, and that

the distances of consecutiveŜ-eigenvalues varies monotonically and slowly. In the rest of our
argument we simply fix such distance to be some positive constant, say 2, as we did in the pictures
in Fig. 2.

By Lemma 1, the quantum numbersnN andnL are both even or both odd, and whennN is fixed
nL changes in steps of two. For evennN, we have one central string of lattice points atnL=0 with
the maximum number of statesNsnN,nLd= 1

2nN+1 for givennN. This string is symmetric under
S→−S. For nN=0 mod 4 it has the central node at(0,0) becauseNs0 mod 4,0d is odd. FornN

=0 mod 2 the closest to(0,0) is a pair of nodess0, ±1d symmetric underS→−S. Patterns for the
other values ofnN are deduced by a similar argument. The other symmetric distributions are not
admissible because they do not give the right rate of change of the number of quantum states as a
function of nL.

Corollary 1: For sufficiently small polyad numbersnN, the quantum spectrum of the

N-reduced normalized swing springsĤnf
s6d ,L̂d is qualitatively the same as the quantum spectrum of

sŜ,L̂d in Lemma 2. Hence, the quantum diagrams of such systems are qualitatively the same as
those in Fig. 2.

Figure 3 and, respectively, Fig. 4 display the joint spectrum of the operatorsL̂ and the

Hamiltonian Ĥnf
s6d, respectively,Ĥnf

s3d, computed numerically for fixed polyad numbernN, and,

FIG. 2. Joint eigenvalues of the operatorsL̂ and Ŝ near the origin.

FIG. 3. Consecutive slices with fixednN polyad number for the normalized swing springsĤnf
s6d ,N̂,L̂d. The polyad quantum

numbernN/" is chosen to be about 1. Here" is 1/20.
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respectively,nK0
and nK2

. Note that, to preserve the qualitative structure of the approximating
normalized system, one must choose a polyad number of the order of unity. With such a low
polyad number there are too few quantum states to perform the analysis we are presenting here. A
standard technique to increase the number of points in the quantum lattice(that is, states of the
quantum system) at a fixed energy level is to scale the variables by the numberÎ", where" is the
inverse of a natural number. This is equivalent to considering a Hilbert space of quantum states of
the form un1,n2,n3l whereni is a "-multiple of a natural number.

In Sec. II D we gave a formula for the dependence onnL of the number of quantum states
having a fixednKm

quantum number. The results shown in Figs. 3 and 4 confirm the predictions
made in Fig. 1 and used in Lemma 1.

B. Local mapping to the regular lattice

The effect of monodromy:Having described the plane slices and their relative position in
3-space, we can proceed with a tentative definition of the missing quantum number. Let us do this
for the planar slices in Fig. 3. For every choice of quantum numbersnN andnL, that is, fixing the
eigenspace associated to the quantum numbersnN andnL, one can assign a third quantum number

by enumerating the quantum states of the operatorŜ in the joint eigenspacesnN,nLd, beginning
with 0. Though this seems to be a global choice of third quantum number, we can easily show that
it is not the case. As first suggested in Ref. 25, we can choose an elementary cell of the lattice and
transport it around the classical singularity, see Fig. 3(top left). After one tour around the singu-
larity, we will come back with a different cell. This signifies that the third quantum number cannot
be globally chosen.

Furthermore, when one fixesnN andnL and draws the curves having fixed the third quantum
number proposed above, see Fig. 5, it is quite obvious that the curves above the classical singu-
larity have a nonsmooth behavior, unlike those below. The closer" is to zero, the more obvious

FIG. 4. Quantum diagrams obtained by fixing the quantum numbernKm
and plotting the quantum spectrum of the operators

L̂ andĤnf
s3d.

FIG. 5. Numbering the eigenstates with fixednL in the natural way within onenN polyad of the systemsS,L ,Nd. The
curves connecting the eigenstates with the same label are not"-smooth atnL=0 andS.0. The classical singularity at
L=S=0 is shown by an empty circle.
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the discontinuity(or “kink” ) in the tangent to the level curve becomes. Of course if one starts
numbering from the top, one observes a nonsmooth behavior in the lines below the singularity. For
this reason we introduce the following.

Definition 2:For a planar diagram, the choice of quantum numbers is"-smoothif the discrete
directional derivatives of the level curves obtained by fixing one quantum number are continuous
of order ". By continuous of order" we mean that the difference of the discrete directional
derivatives computed at two consecutive points must be of order of". An "-smooth chartis a
choice of "-smooth quantum numbers. An"-smooth atlasis a family of "-smoothcharts that
coverUreg,U,R3, the set of regular values in the image of the energy-momentum map.

The above definitions are void for a choice of" of order 1. In fact, such a choice gives a
quantum diagram with very few points, which makes every choice of quantum numbers"-smooth.
On the other hand, the nonexistence of global action variables implies that somewhere the level
curves have a nonsmooth behavior of order one, which becomes visible when" is sufficiently
small, see Fig. 5.

The problem in numbering the quantum states is a consequence of a well-known obstruction
to existence of classical global action variables known asmonodromy.9 Monodromy is due to the
nontriviality of the covering ofUreg defined by the period lattices. When the fundamental group of
Ureg is Z, the monodromy can be written as a matrix, which is calledmonodromy matrix. The
inverse transpose of the monodromy matrix can be effectively computed by analyzing the quan-
tum spectrum corresponding to the classical completely integrable system.12,23 The way we pro-
pose to do this is to use"-smooth charts as follows. Let us cover the quantum lattice inUreg (see
Fig. 5) with two overlapping"-smooth charts: one obtained by numbering the points in the
columns starting from the bottom and the other obtained by numbering the points in the columns
starting from the top. Let us choose in the first chart anelementary cell, which is a quadrangle that
does not contain any lattice point in its interior or on its sides, with a distinguished vertex and an
ordering of the sides adjacent to that vertex. Let us finally move the elementary cell in the first
chart of the atlas following the level lines of the"-smooth variables. Choosing a path that winds
around the singular point and transporting our elementary cell along this path, one is forced, once
the first region of chart overlap is reached, to identify the elementary cell with its corresponding
representation in the second chart. Then one continues with the transport in the second chart.
Reaching the second region of chart overlap, the elementary cell is identified with its representa-
tion in the first chart and then is compared with the initial cell. This final cell isdifferentfrom the
original one.

Definition 3:Given an-dimensional quantum diagram admitting an"-smooth atlas, an initial
elementary cell defines a frame. The matrix expressing the change of frame from the initial
elementary cell and the final elementary cell is thequantum monodromy matrix. A quantum
monodromy matrix always belongs to SLsn,Zd.

In our example in Fig. 3, the sides of the final elementary cell, written with respect to the sides
of the initial elementary cell ascolumns, define the quantum monodromy matrixs 1 0

2 1
d.

In the same way, we can also compute the quantum monodromy matrix for other slices of the
3D lattice. For theK0 andK2 slices in Fig. 4 we obtain the matricess 1 0

1 1
d and s 1 0

3 1
d, respectively.

This shows that the 2D monodromy depends on the choice of the slices, and therefore we must
study directly the 3D monodromy by transporting a 3D elementary cell.

In the problem under investigation, the mod 4 periodicity allows one to project four subse-
quent constantN slices of the lattice on the same plane, creating the regular grid in Fig. 6(left).
In this projected lattice we can draw elementary cells and move them around the singularity at the
origin. Choosing the initial cell as in Fig. 6(right) and moving it around the origin of the projected
lattice, being careful to move every vertex of the cell by the same number of steps, we find that the
full monodromy matrix for the 3D lattice with that choice of initial elementary cell is

11 0 0

2 1 − 1

0 0 1
2 .
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IV. HOW TO OBTAIN THE 1:1:2 QUANTUM LATTICE FROM THE SIMPLE CUBIC
LATTICE

A. 2D lemma and applications

Rather than using an"-smooth atlas to compute the monodromy, one can introduce defects in
regular lattices. The treatment we give here is inspired by Ref. 26.

Definition 4: Let sI1,I2d be coordinate functions onR2. Let k be an integer. Consider the set
CskI1: I2d=hsI1,I2dPR2ukI1.2uI2uj, which we call awedge. The set of pointsDskI1: I2d in the
complement of the wedgeCskI1: I2d, after identifying the points with integral coordinates among
those of the formsn,nk/2d=sn,−nk/2d wherenPZù0, is called adefect diagram.

The above prescription can be easily adapted to the wedgeCskI2: I1d=hsI1,I2d
PR2ukI2.2uI1uj.

Given a defect diagram associated to a wedge, the lattice obtained by vertically sliding the
columns of lattice points, thus physically performing the identification, is calleda reconstructed
diagram, which we denote byRskI1: I2d. The process of taking a given lattice, introducing a cut
and inserting or removing a wedge, is calleddeconstruction of a diagram. The vertex of the wedge
is called adefect point. The defect point can be in any point of thehI1,I2j plane.

Computing monodromy using a deconstructed diagram is straightforward. If we pick a square
elementary cell below a wedge(assuming thatk is positive) and translate it above the wedge, we
end up with a parallelogram whose two sides remain orthogonal to the symmetry axis of the
wedge, whereas the two other sides, initially parallel to the symmetry axis, have now slopek. This
proves the following.

Lemma 3:The reconstructed diagramRskI1: I2d has nontrivial monodromy. Its quantum
monodromy matrix computed along a path winding counterclockwise around the origin, with
respect to the elementary cell with vertex ins0,−nd and with an ordered pair of sidess1=fs0,
−nd ,s1,−ndg, s2=fs0,−nd ,s0,−n+1dg is s 1 0

k 1
d.

Remark 1:The monodromy matrix associated to a defect diagram depends solely on the type
and position of the defect introduced and on the choice of the ordered sides of the elementary cell.
It does not depend either on the pathG one uses, or on the initial position of the vertex, nor on the
point whereG crosses the wedge. Also, the expression of the monodromy matrixM with respect
to an arbitrary choice of elementary cell, whose defining frameha1,a2j gives the matrixA
PGLs2,Zd with columnsa1 anda2, corresponds to the matrixA−1MA.

It is straightforward to check that a clockwise rotation around the defect point changes the
sign of k in the monodromy matrix while the monodromy matrix associated to the defect
RskI2: I1d is the matrixs 1

0
−k
1

d.
Lemma 4:Suppose that the pathG crosses a finite number of removed wedges in the order

C1, . . . ,Cn. Then the monodromy matrix associated to this defect diagram computed alongG is the
matrix M =MCn

¯MC1
.

Proof: Choose the initial elementary cell. After crossing the first elementary wedgeC1, we

FIG. 6. FournN slices can be projected to the same plane, making it possible to draw and move an elementary cell. On the
right, the choice of one such elementary cell. The numbers refer to the order of the sides.
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obtain a cell which is formed by applying the matrixM1 to the frame defining the initial elemen-
tary cell. By remark 1, crossing the second wedgeC2 produces a cell whose sides are identified by
the columns of the matrixM2M1. This argument is repeated until the last wedge has been passed
and the lemma follows. h

It is now time to apply the ideas above to the planar quantum diagrams in Figs. 3 and 4. The
quantum diagrams in Fig. 3 have a nontrivial singularity atsnL ,nHd=s0,0d. Each of them can be
deconstructed by introducing the two wedgesCsL :Hd andCs−L :Hd as shown in Fig. 7. To keep
the mod 4 period symmetries, one must choose a regular lattice with a step of 2 in theL direction
and with order 2 period in theH direction. This is equivalent to placing the defect point not at the
origin of a regular lattice. The monodromy matrix computed using Lemma 3 is precisely the one
obtained using"-smooth charts in Figs. 3 and 4.

The two planar quantum diagrams in Fig. 4 can be treated in a similar way and give the
deconstructed diagrams in Fig. 8. From these diagrams we find that the quantum monodromy
matrix for slices with constant quantum numbernKm

is s 1
m+1

0
1

d.

B. 3D lemma and applications

We now extend the idea of a defect diagram in order to deconstruct the 3D quantum diagram
of the swing spring. It is natural to define a defect of a three-dimensional regular lattice by
extending a defect of a two-dimensional lattice trivially in one direction.

Definition 5:Let sI1,I2,I3d be coordinate functions onR3. A two-dimensional wedgeCskI1: I2d
can be trivially extended along the directionI3, meaning that all constantI3 slices intersect this
extension in the same wedge. Such a 3D wedge istrivial in the I3 direction and is denoted by
CskI1: I2: I3d.

The boundary of the 3D wedgeCskI1: I2: I3d consists of a roof made up of two half-planes
joined along theI3 axis, which is a “roof top.” The roof top is a singularity of the 3D quantum
diagram calleddefect line.

Lemma 5:The reconstructed diagramRskI1: I2: I3d has nontrivial monodromy. Its quantum
monodromy matrix computed along a path winding counterclockwise in thehI1,I2j plane around
the positively oriented defect line, theI3 axis, with respect to the elementary cell with vertex in

FIG. 7. Deconstruction of the diagrams obtained for constantnN slices of the swing spring quantum diagram. Gluing the
pictures along the dashed vertical lines one obtains the diagrams in Fig. 3.

FIG. 8. DeconstructednK0
andnK2

slices.
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s0,−n,0d and with sides s1=fs0,−n,0d ,s1,−n,0dg, s2=fs0,−n,0d ,s0,−n+1,0dg, s3=fs0,
−n,0d ,s0,−n,1dg is the matrix

11 0 0

k 1 0

0 0 1
2 .

When a path crosses a family of 3D wedges, the monodromy matrix along the path is obtained as
in Lemma 4.

Again, one must be careful when treating a defect with a different orientation. Let us choose,
sayDskI3: I1: I2d. A path winding counterclockwise in thehI3,I1j plane is a path which begins at
the positive I3 axis and moves towards the positiveI1 axis. The monodromy matrix for the
elementary cell in lemma 5 along such path is the matrix

11 0 k

0 1 0

0 0 1
2 .

.
The diagrams in Fig. 7, which are obtained for fixed polyad numbernN, can be modified by

introducing auxiliary spacings along the vertical axisS as shown in Fig. 9. Though inessential in
the planar figures, this modification helps to deconstruct the 3D lattice of the quantum swing
spring up to any fixed polyad numberNmax into a regular cubic lattice with three 3D wedges
removed, namely,CsL :H :Nd, Cs−L :H :Nd, andCs−N:L :Hds0,0,Nmaxd

, see Fig. 10. The roof tops of
the first two 3D wedges lie on theN axis, which is the singular thread of the energy momentum

FIG. 9. Defect for constantnN slices of the joint spectrum of the quantum swing spring. The slices with nonzeronN mod 4
are obtained from thenN=0 mod 4 lattice by cutting out an additional region along the vertical axis. Dashed vertical lines
show identification of points on the border of the cutout regions.

FIG. 10. Three-dimensional model of the deconstructed joint spectrum of the quantum swing spring.
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map EM of the classical swing spring. The roof top of the last 3D wedge lies on the linehL
=0,N=Nmaxj. This last singular line should be pushed at infinity to obtain the quantum diagram of
the swing spring.

The pictures in Fig. 7 account for the 2D wedges of the 3D wedgeCs±L :H :Nd; the cut along
the H axis shown in Fig. 9 corresponds to the 3D wedgeCs−N:L :Hds0,0,Nmaxd

. The deconstruction
of the swing spring quantum lattice resembles a table with four legs, labeled by
A, hnH,0,nL,0j, B, hnH,0,nL.0j, C, hnH.0,nL.0j, andD, hnH.0,nL,0j as shown
in Fig. 10.

V. CALCULATION OF MONODROMY USING SIMPLE CUBIC LATTICE WITH CUTS

In this section we use the deconstructed 3D quantum lattice of the swing spring in the
preceding section to calculate the monodromy matrix associated to a path winding around the
defect line situated on the verticalN axis.

Let us start the path in the componentA of Fig. 10 and move counterclockwise around the
defect line. Passing fromA to B, we cross the elementary wedgeCs−N:L :Hds0,0,Nmaxd

. In passing
from B to C we cross the elementary wedgeCsL :H :Nd. In passing fromC to D we cross again the
elementary wedgeCs−N:L :Hds0,0,Nmaxd

. Returning to the componentA we cross the elementary
wedgeCs−L :H :Nd. From Lemma 5 it follows that the quantum monodromy matrix of the quan-
tum swing spring along the given path is

M = 11 0 0

1 1 0

0 0 1
211 0 1

0 1 0

0 0 1
211 0 0

1 1 0

0 0 1
211 0 1

0 1 0

0 0 1
2

−1

= 11 0 0

2 1 − 1

0 0 1
2 .

The matrixM above is expressed with respect to a frame determined by the initial unitary cubic
elementary cell. This implies that with a different choice of elementary cell one would obtain a
new quantum monodromy matrix related toM by conjugation in SLs3,Zd.

It is therefore natural to try to determine an initial elementary cell for which the monodromy
matrix assumes its simplest form. In the discussion above we choose an initial cell, labeleda in
Table I, and then we compute the monodromy associated to this cell. We now take five different
cells in quadrantA of the lattice, namely,a ,b ,g ,d, andk, as shown in Table I. We denote by
ha1,a2,a3j the frame associated to the cella, the frames associated to the cellsb ,g ,d, andk, are
hb1,b2,b3j, hc1,c2,c3j, hd1,d2,d3j, and hk1,k2,k3j, respectively. They are related to the frame
defininga by the matrix given in the second column of Table I.

Once we have embedded each elementary cell in the componentA of the deconstructed
diagram of Fig. 10 or in the projected diagram of Fig. 9, we can move it around the vertical defect
corresponding to the singular thread of the energy momentum map of the classical swing spring,
and compute the quantum monodromy matrix. From Table I we see that the monodromy matrix of
the quantum diagram of the swing spring system takes the simplest possible form of a unipotent
matrix with only one nonzero off-diagonal entry equal to 1, whenk is chosen as initial elementary
cell.

Observe that for 3D quantum diagrams the sign is not an invariant as it is for the 2D quantum
diagrams, see Ref. 7. More specifically, the monodromy matrix of all 2D quantum diagrams,
associated to a two degree of freedom completely integrable Hamiltonian system with a circle
symmetry, have the forms 1 0

k 1
d with k.0. Such matrices can be obtained by introducing the 2D

defects we gave above. Another 2D defect obtained byaddinga solid wedge instead of subtracting
it produces a minus sign in the monodromy matrixs 1

−k
0
1

d. The two matrices arenot conjugate in
SLs2,Zd. At the same time, when the dimension is bigger than 2 such sign can be changed by
conjugation in SLs3,Zd. So, while the construction of defects by removing and adding solid
wedges still exists in 3D, the monodromy matrix cannot distinguish them.
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VI. COMPARISON OF CLASSICAL AND QUANTUM CALCULATIONS OF MONODROMY

We now recall how the classical monodromy matrix of the swing spring was computed in Ref.
11. Define the momentaN1=sN+Ld /2 andN2=sN−Ld /2. Fixing the values of the momenta and of
the energy, one specifies a 3-torus. It is possible to define a basis of the fundamental group of this
torus by means of three paths generated as follows:gN1

=expstXN1
d, gN2

=expstXN2
d, and

gH = exp
t

2p
sTXH − Q1XN1

− Q2XN2
d.

HereQ1 andQ2 are the rotation numbers of the flow ofXH on the given 3-torus andT is its fully
reduced period, see Ref. 11. Considering the initial choice of three paths as a frame, and then
moving the paths around the singular thread with a continuous homotopy(imposed by the func-
tionsT,Q1,Q2) one ends up with three final paths, or final frame. The matrix of change of frames
is the classical monodromy matrix of the swing spring and is

11 0 0

0 1 0

1 − 1 1
2 .

TABLE I. Possible choices of elementary cells in the unit cell basis of the reconstructedEM lattice of quantum swing
spring.

aPossible choices of elementary cells in theA quadrant of the initial 3D quantum diagram.
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Observe thatKm (7) andL are not the momenta of an effective 2-torus action. In factL is the
momentum of the −1:1:0oscillator; whileKm is the momentum of the 1:m:m+1 oscillator. Thus
the momentumKm+L is that of the 0:m+1:m+1 oscillator, whose flow is 2p / sm+1d periodic.
Despite this noneffectiveness, one can show that the classical monodromy matrix with respect to
the framegL=−gN1

+gN2
, gKm

=gN1
+mgN2

, andgH is

11 0 0

0 1 1

0 0 1
2 .

Reducing with respect to the circle action with momentumKm one obtains a 2D system whose
monodromy is represented by the matrixs 1 1

0 1
d. At first sight this does not seem to be in agreement

with the quantum results computed whennKm
is held constant. However, one observes that the

noneffectiveness of theT2 action generated by the flows ofXKm
and XL implies that a basis of

cycles in the 2-tori of theKm-reduced space are not the cyclesg̃L and g̃H, where the tildes
represent the projection ofgL andgN on the reduced space, but the cyclesg̃L / sm+1d andg̃H. With
respect to these cycles the monodromy matrix is the matrixs 1

0
m+1

1
d, which confirms our quantum

calculations.
Another interesting aspect of the 2D system, highlighted by reduction of the symmetry asso-

ciated to theKm momentum, is that the singular fiber of the energy momentum map of the reduced
completely integrable system is always a singly pinched torus. This does not contradict the mono-
dromy theorem in Refs. 6 and 27. In fact, the phase space of the 2D system obtained byKm

reduction isnot smooth, being singular precisely at the pinch point of the singular fiber of its
energy momentum mapping. Consequently, this pinch point is not a focus–focus critical point.

To find the relation between the quantum monodromy matrices and the classical monodromy
matrix we follow Appendix A 2 in Ref. 12 and choose the elementary cell whose sides in the space
with coordinatessN1,N2,Hd are given by the vectorse1=s1,0,Q1/Td, e2=s0,1,Q2/Td, and e3

=s0,1/T,0d, where Q=sQ1+Q2d /2. Mapped ontosL ,H ,Nd-space these vectors becomef1

=s1,Q1/T,1d, f2=s−1,Q2/T,1d, and f3=s0,1/T,0d. Computing the valuesQ1 andQ2 after com-
pleting a circuit, one finds that the cell is precisely the one calledg in Table I (up to exchanging
e2 ande3). The quantum matrix associated to this cell is

11 0 0

0 1 0

1 − 1 1
2 ,

which is precisely the inverse transpose of the classical monodromy matrix.

VII. CONCLUSIONS

In this paper, we have analyzed the qualitative features of a model quantum system with 3
degrees of freedom whose classical limit corresponds to an integrable approximation of a swing
spring in 1:1:2 resonance.

Quantum monodromy is manifested in the joint spectrum of three commuting observables.
Locally, this joint quantum spectrum can almost everywhere be interpreted as a regular lattice of
quantum states. This reflects the existence of local action variables in the corresponding classical
system. Equivalently, the joint spectrum can be described globally as a regular lattice of quantum
states with defects. Thus it is clear that quantum and classical monodromy are directly related. The
atlas formed by different"-smooth local charts covers almost all the quantum lattice with the
exception of regions containing nonregular values of the classical energy momentum map. Quan-
tum monodromy can be directly read from the joint spectrum by looking at the evolution of an
elementary cell of the quantum lattice along a closed path lying in"-smooth charts of an"-smooth
atlas of the lattice.
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Globally the 3D quantum lattice is interpreted as a regular lattice with 1D defects. The
construction of 1D defects for 3D lattices, which are characterized by the elementary monodromy
matrix, follows the recipe formulated for 2D lattices with point defects which are obtained by
cutting out a wedge from the regular lattice and gluing together the boundaries which have been
created. For the 1:1:2 swing spring we have shown that the lattice of quantum states can be
reconstructed from a regular cubic lattice by removing three solid wedges, two of which create a
line defect in the physical region while the third creates a line defect, which lies in a nonphysical
region at infinity. The representation of the 3D quantum lattice of the swing spring by a simple
cubic lattice with wedges removed allows us to visualize clearly the transport of the elementary
cell over the lattice. It also allows us to calculate the matrix of quantum monodromy for any
choice of initial elementary cell in the lattice.

An important additional consequence of our analysis of the quantum swing spring is the clear
demonstration that 1D defects in the 3D lattice(or equivalently 1D subspaces of critical values of
the 3D classical energy-momentum map) should be characterized by the complete 3D quantum/
classical monodromy matrix. The analysis of two-dimensional slices isinsufficientto uncover the
singularities of the full 3D quantum lattice. Therefore it is important to be able to understand the
geometry of lattices of any dimension and be able to compute its quantum monodromy as a
transformation of an elementary cell along a close path. Deconstruction/reconstruction of lattices
seems to be an essential tool in the analysis of quantum lattices and in the computation of their
quantum monodromy. It is an open question whether 3D quantum lattices exist whose monodromy
cannot be reproduced via the introduction of elementary defects. In 2D we know how to decom-
pose any quantum monodromy matrix into a product of elementary matrices. Therefore every
defect of a 2D quantum lattice arises from a known set of elementary defects, see Ref. 8.

Monodromy ofn-dimensional lattices is defined up to conjugation in SLsn,Zd. In particular, it
cannot distinguish between two different defects obtained by removing or adding the same angular
part in a regular lattice. Whether the defect corresponding to adding a wedgelike region to a
regular lattice can be realized by an integrable Hamiltonian system is an open question. The 1D
lattice defects in 3D systems introduced here straightforwardly generalize to codimension 2 de-
fects in integrable Hamiltonian systems with arbitrary number of degrees of freedom. Codimen-
sion 1 defects which correspond to fractional monodromy22 can also be treated with the same
approach. It is worth noting that the whole 3D quantum lattice of the quantum swing spring, has
a defect of codimension 2 which corresponds to integer monodromy, even though the 1:1:2 system
studied in this paper has a 1:2 resonant subsystem with a fractional defect.1 In order to see
codimension 1 defects and fractional monodromy for 3D quantum lattices, we need to study more
complicated examples of integrable Hamiltonian systems with higher order resonances.
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APPENDIX A: REDUCTION OF RESONANT OSCILLATOR SYSTEMS IN THREE
DIMENSIONS WITH SO(2) SYMMETRY

Consider anm8 :m8 :m9 resonant 3-oscillator system with zero order Hamiltonian

H0 = m81
2sz1z̄1d + m81

2sz2z̄2d + m91
2sz3z̄3d sA1d

and whose higher order terms Poisson commute withH0. Here the positive integer numbersm8
and m9 are such that gcdsm8 ,m9d=1, andsz, z̄d are complex symplectic coordinates of the form
sq± ipd. The flow of H0 generates an oscillator symmetryS1 whose action on the six dynamical
variablessz1,z2,z3, z̄1, z̄2, z̄3d is given by the 636 diagonal matrix,
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Ut = diagseim8t,eim8t,eim9t,e−im8t,e−im8t,e−im9td = diagsu m8,u m8,u m9,u −m8,u −m8,u −m9d. sA2d

Suppose that this system is invariant with respect to the additional Lie symmetry group SO(2) of
rotations in the planesz1,z2d, whose action is represented by the matrix

Us = diagFS coss sins

− sins coss
D,1,S coss sins

− sins coss
D,1G . sA3d

It can be seen that the two actions(A3) and (A2) commute, and that the full symmetry group of
such system is therefore a torusT2=S13SOs2d.

We study the case wherem8 :m9 is 1:2. The indices 1,2,3 of our coordinates here correspond
to j, h, z in Sec. II A. In this appendix we give details of the reduction of theS13SOs2d
symmetry of this system. It can be considered as a two-stage reduction. For example, first we
reduce the 3-oscillator symmetry and then the SO(2) symmetry. We will do the two stages at once.
Since theT2 action is not free, we usesingular reduction.3

We also consider certain discrete symmetries. It can be verified easily that the spatial sym-
metry of the spherical pendulum as well as that of the swing spring system11 is not just the plain
SO(2) but the group SOs2d’Cs. HereCs=h1,svj is the group of reflections in a plane containing
the SO(2) symmetry axis. Explicitly

sv: sq1,q2,q3,p1,p2,p3d ° sq2,q1,q3,p2,p1,p3d, sA4ad

where by convention we takeq3 as the symmetry axis.
The Schönflis notation for such group isC`v. The total symmetry group of these systems is

SOs2d’Cs3T and combines the above spatial group with the antisymplectic momentum reversal
symmetry,

T: sq,p,zd → sq,− p,z̄d, sA4bd

which is present in many other physical systems and is often calledtime reversal. So we will
consider an additional discrete group of order four

h1,sv,T,Ts = T + svj

which is isomorphic as an abstract group toZ23Z2.

1. Generating function and integrity basis

By Molien’s theorem,20 the generating function for the invariants of theS13SOs2d action is
given by the double integral,

gsld =
1

2p
E

0

2p 1

2p
E

0

2p 1

dets1 − lUtUsd
dt ds. sA5d

Here the formal variablel represents any of the dynamical variablessz, z̄d or, equivalently,sq,pd.
In the complex unimodular variables

u = expsitd andw = expsisd

the determinant in(A5) can be expressed as

dets1 − lUtUsd = sl − u2dSl −
1

u2Dsl − uwdSl −
1

wu
DSl −

u

w
DSl −

w

u
D .

The generating function(A5) can now be computed as a double Cauchy integral,
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gsld =
1

2pi
R

uuu=1

1

2pi
R

uwu=1

l2u3w dudw

Dsu,w;ld
, sA6d

where

Dsu,w;ld = sl − u2dSu2 −
1

l
Dsl − uwdSwu −

1

l
Dslw − udslu − wd.

Since the formal variablel is used to Taylor expandgsld at l=0, it can be arbitrarily small. This
means that when we integrate(A6) on u we should consider only four poles,

u = ± Îl, u =
l

w
, u = lw,

which lie inside the unit circleuuu=1. Applying the Cauchy integral formula for each pole and then
integrating the result onw in the similar way gives the Molien generating function,

gsld =
1 + l3

s1 − l2d3s1 − l3d
. sA7d

The function(A7) indicates not only the fact that the space of invariant polynomials is generated
by five polynomials, three quadratic and two cubic, but also that this ring is not freely generated
and that the integrity basis of this ring has four principal(denominator) invariants and one cubic
auxiliary (numerator) invariant. From(A2) we see that all invariants of the 1:1:2 oscillator action
are built from monomialsz1z̄1, z2z̄2, z3z̄3, z1z̄2, z1

2z̄3, z2
2z̄3, z1z2z̄3 and their conjugates which should

be further symmetrized with respect to the SO(2) action in(A3). The explicit choice of invariants
is

N = 1
2sz1z̄1 + z2z̄2 + 2z3z̄3d, R= 1

2sz1z̄1 + z2z̄2d, L = Jsz̄1z2d,

S= 1
2R„z3sz̄1

2 + z̄2
2d…, T = 1

2J„z3sz̄1
2 + z̄2

2d….

In the rotated coordinatesq1, q2, q3, p1, p2, p3 of Sec. II A these invariants equal those in(3).
Comparing with Ref. 11 we find that

N = 1
2r1 + 1

2r2 + r3, R= 1
2r1 + 1

2r2, S= − r4, T = r5.

Note that coordinatesj, h, z in Ref. 11 correspond to our rotated coordinatesq1, q2, q3 in Sec.
II A. ChoosingT to be the auxiliary invariant, we can represent the structure of the ring as

RfN,R,L,Sg • h1,Tj = RfN,R,L,Sg % RfN,R,L,SgT, sA8d

where the ringRfN,R,L ,Sg is freely generated bysN,R,L ,Sd.
A different way to reflect the structure of the ring(A8) is by specifying the relations(sygyzies)

between its generators. Rewriting the function(A7) in the Hilbert form,

gsld =
1 − l6

s1 − l2d3s1 − l3d2 , sA7ad

we see that there is one such relation of degree 6. From our choice of invariants(3) we find

2Fn,l
1:1:2= T2 + S2 − sR− LdsR+ LdsN − Rd = 0, sA9ad

and we can also verify that

N ù Rù uLu ù 0. sA9bd
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2. Reduced space and Hamiltonian

From the preceding section it is obvious that theT2-reduced system(the doubly reduced
system in Ref. 11) can be described in terms of invariantssR,S,Td. The spaceL−1sldùN−1snd is to
be reduced by theT2-action generated by the flows ofXL and XN. Equation(A9a) defines the
reduced phase spacePn,l

1:1:2, which is a surface of revolution about theR axis in the ambient
3-space with coordinate functionssR,S,Td. The projection ofPn,l

1:1:2 on thehT=0j plane is shown
in Fig. 11.

When n= l =0 or whenul u=n the spacePn,l
1:1:2 degenerates to a point; for alln. ul uÞ0 it is

diffeomorphic to a 2-sphere. Whenl =0 andn.0 the spacePn,0
1:1:2 is a sphere with one singular

point atR=S=T=0 (a “turnip”). Since near this pointr2=T2+S2<nR2, the singularity is conical
(as in the case of the 1:2 resonance).1

The reconstruction of theT2 orbit map L−1sldùN−1snd,TR3° Pn,l
1:1:2 can be described as

follows. The two pointsl = ±n lift to two relative equilibria which correspond to pure(and fast)
rotation about axisq3 without swinging nor springing; of course the spring is stretched and the
pendulum is somewhat bent. All points ofPn,l

1:1:2 with 0, ul u,n lift to the regularT2 orbits of the
S13SOs2d group with periods 2p in both directions. Same is true for all regular points ofPn,0

1:1:2,
that is, all points withRÞ0. The singular point of this space(with S=R=0) goes to a special
periodic orbit inL−1s0dùN−1snd of periodp. It corresponds to pure swinging along theq3 axis.

The triple of Hamiltonian functionssR,S,Td generates the Poisson algebra of the(second)
reduced system which defines the Poisson structure onPn,l

1:1:2. Using the functions defined in(3),
we compute this Poisson structure first in the original phase spaceTR3 (note thathz, z̄j=2i), take
(A9a) into account and restrict toPn,l

1:1:2. This gives the structure

hR,Sj = 2T, hT,Rj = 2S, hS,Tj = 3R2 − 2nR− l2. sA10ad

The function(A9a) is the Casimir of this algebra and we can also see that

hca,cbj = o
c

«abc

]Fn,l
1:1:2

]cc
, wherec = sc1,c2,c3d = sR,S,Td. sA10bd

Introducing a new set of functions

N = 1
4sN − uLud, N1 = 1

2R− 1
4sN + uLud, N2 = Sx−1, N3 = Tx−1, sA11ad

where

x = 2ÎR+ uLu andN2 = N1
2 + N2

2 + N3
2, sA11bd

deforms the Poisson algebra(A10) into a standard so(3) algebra with generatorssN1,N2,N3d and
Casimir N. It follows that the singular map(A11) sends every reduced phase spacePn,l

1:1:2 to a
smooth sphereS2 of radius N (which is maximal whenl =0 and zero whenul u= lmax=n). The
conelike singularity ofPn,0

1:1:2 at n.0 is removed due to the singularity of this map atR=L=0.

FIG. 11. Reduced phase spacePn,l
1:1:2 of the 1:1:2 resonant oscillator system with SO(2) symmetry. Shaded area bounded by

a bold line shows the projection of the singular spacePn,0
1:1:2 on the planehT=0j; other lines show boundaries of similar

projections forl = 1
8n (dashed line), 1

4n, 1
2n, and 3

4n; note thatlmax=n.
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The doubly reduced system has one degree of freedom. Trajectories of this system can be
found as intersectionshHn,l =hjù Pn,l of the constanth-level sets of the reduced HamiltonianHn,l

and the phase spacePn,l. It is simpler to work on the spaceVn,l =Pn,l / sZ23Z2d obtained by
reducing the discrete symmetries. This space is defined by

t + S2 = sR− l2dsn − Rd, wheren ù Rù ul u ù 0 andt = T2 ù 0

with boundary]Vn,l given by

S2 = sR2 − l2dsn − Rd, n ù Rù ul u ù 0

and studyhHn,lsR,Sd=hjùVn,l.
The lowest order approximation studied in Ref. 11 is sufficient for a qualitative description. As

usual, we use the rescaled and shifted energy functionHn,lsR,Sd=S.
Lemma A.1:The intersectionshS=hjùVn,l are of three kinds:

(i) one regular point of]Vn,l;
(ii ) a closed interval, whose endpoints are regular points of]Vn,l, that is, any point except point

sR,Sd=0 of Vn,0;
(iii ) a closed interval whose one endpoint is a regular point of]Vn,0 and the other is the singular

point sR,Sd=0.

Every sufficiently small generic deformation of the Hamiltonian functionS has three types of
level sets onVn,l.

Proof: The level sets of the Hamiltonian functionSare straight vertical lines in the plane with
coordinatessR,Sd. From (A9a) which defines]Vn,l whenT=0 we can see that these lines touch
]Vn,l at the points

Rc = 1
3sn + În2 + 3l2d, Sc = ± Îsn − RcdsRc

2 − l2d, sA12d

whereS reaches its maximum and minimum value. h

3. Energy-momentum map

The imageU of the energy-momentum map,

EM: TR3 → U , R3: sq,pd → „Lsq,pd,Hsq,pd,Nsq,pd…,

is a three-dimensional domain inR3 with coordinatessl ,h,nd. In the first approximation withH
=S, Eqs.(A12) and inequalitiesnù0, ul uøn define the boundary]U. It can be seen thatUù hn
=0j is the point(0,0,0), while for anyn.0 the constantn slice of U has the same topology of a
closed disc with two singular points on the boundary and one isolated singular point inside, see
Fig. 12 (left).

FIG. 12. Constantn.0 slice (left) of the image of the energy-momentum map(right) of the 1:1:2 resonant oscillator
system with HamiltonianHn,l =S.
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It can be seen that the whole domainU is a solid cone which has three curves of distinguished
singular values: one is a thread insideU, then axis, the other two are lines that lie on the boundary
]U (the linesl = ±n, h=0), see Fig. 12(right).

Note that different slices ofU can be considered, see for example, the slice with constantn
+ l in Fig. 13. All such slices have a topology of half-plane with one isolated singular point inside
and one singular point on the boundary.

The fibers of the energy momentum map reconstruct as follows. The regular values shown as
shaded area in Fig. 12 lift to regular 3-tori. The points in the smooth part of the boundary with
SÞ0, N.0 lift to relative equilibriaT2, while singular points of the boundary withS=0, N.0 lift
to relative equilibriaS1. The points in the singular thread withN.0 andS=L=0 correspond to a
special singular 3D fiberTn whose topology can be best represented using two partial reduction
maps, one with respect to the SO(2) symmetry, the other with respect to the oscillator symmetry
S1. As illustrated in Fig. 14 the former gives a curled torus while the latter gives a pinched torus.

APPENDIX B: DETAILS OF THE QUANTUM DESCRIPTION

Our quantum-mechanical investigation deals with the quantum system associated to the clas-
sical system whose Hamiltonian is the swing spring Hamiltonian normalized to third or sixth
order. We use the quantum expression of the Hamiltonian expanded up to sixth order when
discussing the range of energy levels at which our analysis is reasonable for applications, and its
truncation at third order for the description of the 3D quantum lattice. In this section we explicitly
write the expression of the operators associated to the four invariants appearing in the expansion

of the Hamiltonian in a basis in which the operatorsN̂ and L̂ are diagonal.
In quantum mechanics one associates to a classical(polynomial) HamiltonianH its quantized

operatorĤ. The rule to obtainĤ follows straightforwardly from the following ansatz(here stated
for 1D systems): the domain of the operator is the Hilbert space with basisunl snPNd; the

FIG. 13. Constantn+ l slice of the image of the energy-momentum map of the 1:1:2 resonant oscillator system with
HamiltonianHn,l =S.

FIG. 14. Partial reduction of the singular 3D fiber.
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operatorsa=s1/Î2dsq̂+ ip̂d and a†=s1/Î2dsq̂− ip̂d act on the basis vectors as follows:aunl
=Înun−1l anda†unl=În+1un+1l. In this treatment, we express every polynomial inp, q using
the variabless1/Î2dsq+ ipd ands1/Î2dsq− ipd and hence we define its associated quantum opera-
tor by replacing such variables with the operatorsa and a†, being careful to symmetrize the
expressions(the variables of a polynomial commute,a anda† do not).

In our 3D case, the basis elements of the Hilbert space are denoted byun1,n2,n3l, while the
basic operators are calleda1, a1

†, a2, a2
†, a3, a3

†. With these notations, the classical polynomial
1
2sq1

2+p1
2d becomes the quantum operator1

2sa1a1
†+a1

†a1d. This operator associates to the basis
vector un1,n2,n3l the vectorsn1+1/2dun1,n2,n3l.

It follows that the quantizations of the functions playing a role in the completely integrable
systemsHnf

s6d ,L ,Nd are

N̂ = 1
2sa1a1

† + a1
†a1 + a2a2

† + a2
†a2 + 2a3a3

† + 2a3
†a3d, Ŝ= Î2isa1

†a2
†a3 − a1a2a3

†d,

R̂= 1
2sa1a1

† + a1
†a1 + a2a2

† + a2
†a2d, L̂ = 1

2s− a1a1
† − a1

†a1 + a2a2
† + a2

†a2d.

The action of these operators on the generic vectorv= un1,n2,n3l is

N̂v = sn1 + n2 + 2n3 + 2dv, L̂v = sn1 − n2dv, R̂v = sn1 + n2 + 1dv,

Ŝv = iÎ2sn1 + 1dsn2 + 1dn3v
+ − iÎ2n1n2sn3 + 1dv−,

wherev−= un1−1,n2−1,n3+1l andv+= un1+1,n2+1,n3−1l.
To plot the two-dimensional quantum diagrams in Fig. 3, we fix an eigenspace for the operator

N̂, that is, we fix apolyad number, and then compute the joint spectrum of the operatorsL̂ andĤnf
s6d

in that eigenspace. The eigenspace associated to the eigenvaluem+2 is generated by all the
vectorsun1,n2,n3l such thatn1+n2+2n3=m. Observe that there are essentially two cases, depend-

ing on the parity ofm. If m is even, theN̂-eigenspace associated to the eigenvaluem+2 decom-

poses in the direct sum of eigenspaces forL̂, Vh=Rhvh,k= uk,h+k, 1
2sm−h−2kdl uk=0, . . . ,12sm

−hdj, whereh, the L̂-eigenvalue associated toVh, runs over all even numbers from −m to m. Here
Rhvh,kj stands for real span of the vectorsvh,k. The dimension ofVh is 1

2sm−hd+1. On each

subspaceVh the operatorL̂ is the scalar multiplication byh while Ŝ acts as the tridiagonal matrix

Ŝvh,k = iÎsk + 1dsh + k + 1dsm− h − 2kdvh,k+1 − iÎksh + kdsm− h − 2k + 2dvh,k−1. sB1d

If m is odd, theN̂ eigenspace associated to the eigenvaluem+2 decomposes intoL̂ eigenspaces
Vh=Rhuk,h+k, 1

2sm−h−2kdl uk=0, . . . ,12sm−hdj indexed by all odd numbers from −m to m. The

dimension ofVh is 1
2sm−hd+1. The operatorĤ acts onVh according to(B1). These operators have

been used to plot the quantum diagram of the swing spring.
To quantize the HamiltonianHnf

s6d (4) and model the swing spring system for higher energy

levels one can push further the process described above. Since the operatorsN̂ and L̂ commute

with all the other operators, there is no difficulty in defining the operatorsNR̂, L2̂, R2̂, NR2̂, NŜ,

andS2̂. The only two noncommuting operators areR̂ andŜ, for this reasonRŜacts on the vectors

as 1
2sR̂Ŝ+ŜR̂d. The matrix of the quantum analog of the HamiltonianĤnf

s6d on the vector spaceVh

with respect to the basisvh,k is pentadiagonal and depend on the physical variable", but we will
not write here its expressions.

Another quantum diagram, displayed in Fig. 4, can be obtained by slicing the 3D quantum
diagram by means of different momenta coming from theT2 symmetry. To work with momenta
that define an effective torus action, the authors of Ref. 11 use the functionsN1= 1

2sN−Ld, N2

= 1
2sN+Ld. In qi, pi variables
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N1 = 1
2sq1

2 + p1
2 + q3

2 + p3
2d, N2 = 1

2sq2
2 + p2

2 + q3
2 + p3

2d, Hnf
s3d = "sN1 + N2d − 3

16"3/2S.

The quantization of the functionsN1 andN2 is

N̂1 = 1
2sa1a1

† + a1
†a1 + a3a3

† + a3
†a3d, N̂2 = 1

2sa2a2
† + a2

†a2 + a3a3
† + a3

†a3d.

Again, one can restrict the analysis to the eigenspaces of the operatorN̂1 corresponding to the

eigenvaluem+1. In this case, the eigenspace ofN̂1 is not finite dimensional, but it still can be
decomposed into direct sum of subspaces,

Wh = HRhum,h,0l,um− 1,h − 1,1l, . . . ,um− h,0,hlj, whenh , m,

Rhum,h,0l,um− 1,h − 1,1l, . . . ,u0,h − m,mlj, whenh ù m.
J

Note that dimWh=h h+1, whenh,m
m+1, whenhùm. On each spaceWh, the operatorN̂2 acts as the multiplication by

h+1; whereas the operatorĤnf
s3d acts as the tridiagonal matrix

Ĥnf
s3dvh,k = 3

16"3/2iÎ2sm− kdsh − kdsk + 1dvh,k+1 + "sm+ h + 2dvh,k

− 3
16"3/2iÎ2sm− k + 1dsh − k + 1dkvh,k−1. sB2d

Herevh,k is the vectorum−k,h−k,kl. These operators are the ones used to numerically plot Fig. 4
(right). The technique to obtain the slices with fixed quantum numbersnKm

is very similar to the
ones described above.
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