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Monodromy of the quantum 1:1:2 resonant swing spring
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We describe the qualitative features of the joint spectrum of the quantum 1:1:2
resonant swing spring. The monodromy of the classical analogue of this problem is
studied in Dullinet al.[Physica D190, 15-37(2004)]. Using symmetry arguments

and numerical calculations we compute its three-dimensi@ia) lattice of quan-

tum states and show that it possesses a codimension 2 defect characterized by a
nontrivial 3D-monodromy matrix. The form of the monodromy matrix is obtained
from the lattice of quantum states and depends on the choice of an elementary cell
of the lattice. We compute the quantum monodromy matrix, that is the inverse
transpose of the classical monodromy matrix. Finally we show that the lattice of
quantum states for the 1:1:2 quantum swing spring can be obtained—preserving the
symmetries—from the regular 3D-cubic lattice by means of three “elementary
monodromy cuts.” €004 American Institute of Physics.
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I. INTRODUCTION

The swing spring is a simple mechanical system consisting of a spring of léragtd spring
constantk with one end attached at a fixed poiitihe origin of a Cartesian syst¢rand with a
weight of massm attached at the other end. This system admits a Hamiltonian formulation in
which the phase space B® with coordinatesx, y, z,py, py,p, and symplectic form xiCldp,
+dyUdpy+dzOdp,. The Hamiltonian functiorH is

1 PO —
(4,2, Py Py, P = o (P + Py + ) + Mgzt (€ =\ +y? + 2% (1)

Note that¢ is the same a8, in Refs. 11 and 17.

When the physical parameters are chosen so that=%¢, which is equivalent to requiring
that the frequencies of small oscillations of the swing spring near the stable equilibrium are in a
1:1:2 resonancghe only resonance with cubic secular teyntBe swing spring has some remark-
able features: energy exchange and precession of the swinglbﬂﬁ'mese characteristics have
been widely studiedsee Ref. 17 for a comprehensive bibliographut the information hidden in
this classical mechanical system has not been exhausted by these investigations. In fact, the
resonant swing spring is a model for molecules such ag @®@extbook example of a 1:1:2 Fermi
resonance between stretching and doubly degenerate bending vibratio?‘rlg)‘,atelz@P,18 and a
whole class of CHX molecules which possess a Fermi resonance between the CH stretching and
bending vibrational states.
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We define the integrable approximation of the swing spring system and discuss the range of
energies in which our approximating Hamiltonian gives data that can be considered reliable for the
original system. After explaining the origin of the continuous and discrete symmetries of our
approximation, we define the quantum analogue of the system and proceed to analyze its quantum
spectrum. As the classical swing spring is a three degree of freedom system, its spectrum is
represented by a three-dimensio(i2D) lattice of points in the space of the values of quantized
actions and energy. The main purpose of this work is to show how the nontrivial monodromy of
the classical s;yste?rr"?'5 manifests itsel{1) as a defect of this lattice an@) in the distribution of
quantum states with respect to quantum numbers which can be predicted from the theorem of
Duistermaat—Heckmaif.

Fixing a global quantum number associated to the momentum corresponding to a circle
symmetry, we first analyze the quantum lattice of two-dimensi@ia) slices of the swing spring
quantum spectrum and find that the monodromy computed in such slices gives insufficient infor-
mation to determine the monodromy of the full 3D quantum spectrum. We proceed with the
investigation of the 3D quantum lattice by giving two methods to compute the quantum mono-
dromy matrix. The first method, presented in Ref. 26, requires the introduction of quantum defects
in the regularZ® lattice. In order to preserve the discrete symmetries of the system, one must use
three elementary defects to obtain the quantum lattice. The second method obtains the quantum
monodromy matrix directly by moving an elementary cell in the three-dimensional quantum
lattice.

Il. CLASSICAL AND QUANTUM 1:1:2 SWING SPRING

The swing spring is a Hamiltonian system @&P, dxOdp,+dy COdpy +dzdp,) with Hamil-
tonianH given by (1). Despite it being a chaotic dynamical systéamhe motions of the swing
spring near the stable equilibrium locatedpgt(0,0,-¢(-mg/k,0,0,0 have a clear quasiperi-
odic behavior when the parameters are chosen so that the characteristic oscillations of the system
are tuned in 1:1:2 resonance.

To study this behavior we will begin by considering the Taylor expansidt afoundp,. The
guadratic part of the Taylor expansion ldfat py is

_i2225<9m29m2>
H2_2m(px+py+pz)+2 k€+ng+k€+gmy +27).

To have a 1:1:2 harmonic oscillator as dominant term, the physical coefficieHtsrtust satisfy
the condition §m=k¢. Assuming this and making the change of coordinates

« 4 4§ 414 , 411 4 [km 4 [km i
s s = , o /X gL .4
km® Y km'” kmg’ Px 4 Pe Py 4 P Pz VKR

we find that

Ho= 3A(&% + pf o+ o + 3y + 2% + 29

and the Taylor expansion &f (1) aboutp, up to sixth order terms becomes

Huyune= Ha — 283207 + ) + Zh2(f + ) (= 282 + 12 + ) — 52V (P + (28 - 3( + &)
— 2P+ (20 - 621+ ) + (P + 8D, 2

wherefi=k3/(g*m°). To obtain(2) we have rescaled,. to remove the factog?m?/(2k) and
dropped an additive constant. The original Hamiltortta(il), and thus the HamiltoniaHy, . (2),
has an S@) axial symmetry
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3 Pe
(& PaPP) = | R| 7 |\R| Py
4 p;

Here

cost —sint 0
R =| sint cost O
0 0 1

is a rotation about thé axis lifted to the full phase spad¥®. The momentum of this symmetry is
the functionL=¢£p, = 7p,.
It is convenient to perform another coordinate change, namely

1 1 1 1
&— ?(pz +01), 7> =P+ ), {03 P> E=(PL— ), P, ?(pz —Qy), P> Ps.
V2 V2 V2 V2

This brings the momentunh into diagonal form3(q3+p3-q3—p?) and does not change the
quadratic part, of the HamiltonianH,; ¢

Bringing Hyync into normal form with respect thl, up to order 6, one obtains the Hamiltonian
H'®. This is the polynomial Hamiltoniatas well as its truncatiom® to third ordey whose
quantum spectrum we analyze in Secs. IlI-V.

A. Lie symmetry of classical and quantum system

The sixth order normalized Hamiltonieh‘hg? defines a three degree of freedom system with
two integrals of motionL, the momentum associated to the axial symmetry Mnthhe quadratic
part H, of the normalized Hamiltonian, which is the same as the quadratic part of the original
HamiltonianH. The flows of the Hamiltonian vector fields associated to these integrals commute
and define a 2-torus action that preserlvle%@. ThusL andN together with the Hamiltoniahiﬁﬁ’)
form a completely integrable system.

Being St X SO(2)-invariant, the normalized Hamiltoniaﬁfﬁ) can be written as a polynomial
in the generators of the ring & x SO(2)-invariant functions. The Molien generating functfdn
(A7) indicates that this ring is generated by five invariants, three quadratic and two cubic, see
Appendix A 1. These invariants can be chosen to be

N = 3(a] +pi + 03+ p3 + 205 + 2p), (33
R=3(cf+pf+ a5 +ph), (3b)
L=3(-ai-pi+a3+p), (30)

S= (012 + G2P1)03 ~ (G102 — P1P2)Ps, (3d)

T = (0202~ P1P2)ds + (A1P2 + G2P1)Ps, (3¢)

and they are subject to the relatiof#s9).

B. Normalized system and its analysis

The normalized Hamiltoniahl,,. (2) written in terms of the invariantg3) is
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(6) — _8332c_ 57 32 A77 322 39 221 2 _ 819 z5/2 2151 3 5/2y _ 8025 2 3p2
Hnf =7%N 1eﬁ S 10247‘ NR+ 2048ﬁR 2o4sﬁ|- 65536ﬁ NS+ essaaﬁ RS 419430f‘NR

+

7623 23 6879 23p3 _ 6555 23p12 4803 232 _ _1089 .3
2097 15 NR2+ 2097 15 R3 209715ﬁ NL"+ 4194304ﬁ RL 262144h SZ (4)

Note that powers ofl higher than 1 should not appear {#) since the invariants satisfy the
relation(A9). Furthermore(4) does not include any power &f higher than 1 because the swing
spring (1) contains a two degree of freedom harmonic oscillator as subsystem. Other special
features ong?) are related to the discrete symmetries described below.

In most of what follows, we describe the quantum spectrum of the Hamilt@iastead of
that ofoﬁ). Of course(S,L,N) is also a completely integrable system. At first order the difference
between the HamiltoniaB and(4) is given byH~——(16/34%?(H-#AN). This means that to first
order for any given value dfl the quantum spectra &1 and S coincide up to a translation and
dilation.

The energy-momentum map

EM:R®*—R® (q,p) — (S(0,p),L(q,p),N(q,p))

is widely used in our analysis. Its imagéC R® and the corresponding bifurcation diagram is
described in Ref. 11 and Appendix A Blo,CU is the set of regular values which represent
regular toriT3. Points of the boundaryU represent equilibria relative to tHE?=S'x SO(2)
action. The main feature to note is tHatU 4 also contains a thread of singular values indije
which represent a special singular 3D fiber described in Appendix A 3.

It can be shown that the systeqfhlfﬁ),L,N) is qualitatively the same as,L,N) for suffi-
ciently small values oN. In particular it has qualitatively the same energy-momentum map and
corresponding 3D quantum lattice. The concrete estimate of the upper linhNtdan be obtained
from the analysis of the slope &R) at R=L=0 of H;=const. Specifically|JdS/dR| should be
smaller than the slope at the conical singular point of the reduced space, see Appendix A 2. In
particular considering the terms of ordet we obtainN < 2121972471,

C. Discrete symmetries and a pseudosymmetry

The normalized Hamiltoniahlgg) (4) is not a generiS' x SO(2)-symmetric polynomial in the
invariants, becausg!l) does not contain terms of odd degreelior any power ofT. The reason
for this is that the original Hamiltonia¢l) has aZ, X Z, discrete symmetry group generated by

T (X,Y,Z,Px Py, P) = (X,Y,Z,~ P = Py~ P2,
Ts: (X Y,2,P5 Py: P2) = (¥,X,2,= Py, = Py = P2,
a0 (X,Y,Z, Py Py D) — (Y, X,Z, Py, P ) -

Note that7,;=7°0,=0,°7 and that the square of each generator is the identity. This discrete
symmetry survives truncation and normalization. It induces the following transformations on the

invariants:
7: (N,RL,ST)— (N,R-L,S-T), (5a)
Te (N,RL,ST)— (N,RL,S-T), (5b)
o, (N,RL,ST)— (N,R-L,ST). (5¢)

From (5) we see that the functions andL are not invariant of th&, X 7, action. This explains
the absence of odd powers bfandT in (4).
To analyze the model syste(8,L,N) we also consider the involution
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(ga 7,4, Pz Py p() = (= &E—n—{~ | pg)' (6&)

which acts on the invariants as

(N,RL,ST)— (N,RL,-S-T). (6b)

As the transformationi6a mapsS to -S, we call it a pseudosymmetry. We will exploit this
pseudosymmetry below. In particular the image of the energy-momentum mé®, lofN) is
symmetric with respect t@b). Similarly, the corresponding 3D quantum lattice is symmetric with
respect to the plang=0.

D. Classical integrals, quantum numbers, and joint quantum spectrum

Each of the functions in the integrable systé®iL,N) can be quantized according to the rules

discussed in Appendix B. The corresponding three quantum opel’%,tﬁr,sandAS are self-adjoint
and commute. Hence they can be simultaneously diagonalized. In Appendix B we give the details

of the calculation of the joint quantum spectrum(éfl:,N) and of the quantum analogue Idf?).

We also explain the decomposition of the domain of the quantum operators that allows
us to numerically compute the quantum spectrum. To every common eigenspace one can associate
a triple of real numbers and plot these triples Rd, generating a lattice of quantum states
represented as points in 3-space. This 3D lattice of points fits in the image of the classical
energy-momentum mapgM of the integrable systeniS,L,N), a description of which is in
Appendix A 3. Similarly the quantum lattice for the swing sprlﬂg L,N) fits inside the
respectiveé M image.

Definition 1: The lattice of quantum states (ﬁl,l:, N) superimposed to the image of téA
map of the corresponding classical completely integrable sy§tem,N) is called thequantum
diagram A polyad quantum numbes an injective integer labeling of the eigenvalues of the

quantum operatadX. A local quantum numbes an injective integer labeling of the eigenspaces of
a quantum operator associated to a local action variable for the completely integrable quantum

system(H L N) A local action variableis a function locally defined on phase space whose
Hamiltonian vector field has as2periodic flow and Poisson commutes with the classical Hamil-
tonianH and the momentél andL.

The notion of polyad quantum number is well established in the theoretical chemistry and
molecular physics communify.Both polyad and local quantum numbers label eigenspaces with
large dimension, that is, eigenvalues with high multiplicity. A choice of labeling of the points of
the quantum spectrum corresponding to the quantum numbers of a global action will be referred to
asglobal guantum numbefhe definition of global quantum numbers, as opposed to the choice of
a quantum number, which is just a labeling of eigenspaces of a quantum spectrum, is at the heart
of the presentation to follow.

Since the systems with HamiItoni&h=SandH=Hf§) are qualitatively the same, we will use
H=Swhich is easier to study analytically.

Lemma 1:The eigenstates of the quantum syste,N) can be labeled by three quantum

numbers related to the three commuting opera®nd, andL:

nf ?

(i)  The global quantum numbery=0,1,2,... can behosen to be the eigenvalue of the

operatoN and is the total number of quanta for the 1:1:2 resonance oscillator pothad
guantum number. The total number of quantum states withinngreolyad equals

(3ny+1)? if nyis even,
N = {( nv+1)°-% if nyis odd.

(i) The global quantum numbef can be chosen to be the eigenvalue of the opefade is
the projection of the angular momentum on the axis of symmetry. Formgcthe quantum
numbern, takes(ny+1) different values
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Fixing ng, = 10 Fixing ng, =ny =20 Fixing ng, = 30

5 10

FIG. 1. The plot of the number of states in the slice having a fimgngquantum number as a function of the quantum
numbern,.

nL:nN,nN—Z, ,_nN+2,_nN.

The total number of states for each fixed valuengfand n, equals

Nng,ny) = %(nN =|nf) +1.

(iii) A quantum numbeng labels the eigenspaces within the set of states with the sarard
ny according to the energy of the system.

Instead of using the natural momeraandL, one could use the momentum

K= (m+ DN+ (m- 1)L (7)

together withL. The number of states in a fixed quantum level of the opei&tpcan be thought
as a function ofnh_. A computation shows that this function assigns to evgryn [—nKm,O] the
natural number(nL+nKm)/(m+1) and to everyn_ in [O,nKm/m] the natural numbef-n.m
+ng )/(m+1). The cases correspondingo=0,1,2 areplotted in Fig. 1.

A classical formula states that the number of quantum states of a given quantum system is
hi-proportional to the symplectic area of the phase space in which the system is defined. Hence, the
graphs in Fig. 1 can also be obtained by first redudiSgwnith respect to the circle action with
momentumK,,, which defines the manifol¥,, and then by plotting thé-dependent symplectic
volume of the manifoldV, reduced with respect to the circle action with momentunThese
volumes can be computed directly from the theorem of Duistermaat and Heckman, see Refs. 10
and 15. In Ref. 14 this theorem was applied to the analysis of a three-dimensional quantum
problem with monodromy.

The theorem of Duistermaat and Heckman states that the cohomology class of the symplectic
form of a symplecticallyT™-reduced space varies piecewise linearly with the values of the mo-
mentum map. To be more precise denoteMyythe symplectic manifold obtained by symplecti-
cally reducing a manifoldM with respect to thel"-action above the valug in t*. Let a be a
regular value of the momentum map, kebe an element it*, and lett be a small real number.

The manifoldM,,y, is diffeomorphic toM,. Both manifolds are base spaces of diffeomorphic
principal T" bundles. The symplectic forms M, andM ., define cohomology classes that differ
by the clasd(b,c), wherec is the Chern class of the torus bundle oy, that is, an element of
H?(M,) ® t, and(,) is the pairing between the Lie algebrand its dual*. Observe that(b,c) is

a function linear irt. Crossing the set of critical values of tlie-momentum map, the Chern class,
and hence the slope of the linear function changes {bte’). Since the volume form of a
symplectic manifold is an appropriate power of the symplectic form, it changes polynomially in

In our case we are given & action having the tupléN,L) for momentum map. The
momentum polytope is the convex solid wedge with boundariefN&L and O<N=-L. In
addition to this boundary, the set of critical values of TRemomentum map also contains the line
L=0. The fiber of theT>-momentum map over values in the $&t={L>0,L <N} is a 2-torus
bundle over a 2-sphere with Chern cla@séy+wé)/2; while that above values in the set
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E ={L<0,L>-N}is a 2-torus bundle over a 2-sphere with Chern clagg-wé )/2. Herew is
the standard volume form on the 2-sphere @Rk, are the elements df whose infinitesimal
action isXy and X, respectively.

Starting from the symplectic manifol@® one can reduce with respect to the moment(gto

obtain the manifold\/lszr‘nl(k)lsl. On My there is a(residua) circle action with momentunh.
The image of the(residua) momentum map is the intersection of the lihg={(m+1)N+(m
-1)L=Kk} with the image of the momentum map of tfé action.

We can now use the Duistermaat—Heckman theorem to compute the changédohiheol-

ogy class of thesymplectic structure of the-reduced manifold/, ;=L %(1)/S", and plot it as a
function of I. The lineL,, is spanned by the eIemeblzg’,i,—(m+1)/(m— 1)§*L. The cohomology
class(b,c) is w/(m+1) in the segment.,NE* and -mw/(m+1) in the segment.,NE". This

gives, as expected, the graphs in Fig. 1.

IIl. QUANTUM SPECTRUM: LATTICE OF QUANTUM STATES

Given a 3D quantum diagram, an important problem is to “smoothly” map it to the lattice
in R3. This can always be done locally by means of independent local quantum numbers. In
systems with nontrivial monodromy a global labeling of the eigenstates is impossible. To be more
precise, a global labeling of the quantum states with three suitable global quantum numbers is the
quantum analogue of the classical problem of defining global action functions for a completely
integrable system. This problem has been shown to have no solution in systems with
monodromy?* The quantum numbensy andn, area priori global, because they correspond to
global classical actions. On the other hand, because of the nontrivial classical monodromy of the
swing spring system, the quantum numhbegican be only locally defined. In this section we show
that this last quantum number cannot be defined globally, and we analyze this phenomenon.

Informally speaking, we try to construct a third global quantum number for the quantum
swing spring, which is independent of andny. Having three global quantum numbers corre-
sponds to defining a bijection of the given lattice to the stand&dOf course, many such
bijections exist, but none of them can have the propertyfieérhoothness,” which we define in
Sec. Il B. We begin by describing the quantum lattice of the quantum swing spring and then apply
the idea offi-smoothness.

A. Qualitative and quantitative description of the quantum lattice

One way of describing the 3D lattice of the quantum swing spring is to look at its planar
slices, that is, the slices obtained by fixing a quantum nur@gor ni _in our cas¢ These plane
slices intersect the thread of classical singular va{ses Appendix A Bin one point, which we
refer to as asingularity of the quantum lattice.

To start with, we use the symmetries and the number of states discussed in Lemma 1 to
deduce the qualitative aspects of the quantum spectrum of the swing spring. At the end of this
section we give numerically computed pictures of the plane slices obtained by fixing the value of
the polyad numbeny.

Let us now fix the polyad number, and then compute the joint spectrum of the operaﬁors

and S. We recall that the quantum spectrum one computes in this way is that of the classical
system obtained from the original one by reducing it with respect to the circle action having
momentumN at the valueny+2.

Lemma 2:For fixed polyad numbenmy, the structure of the joint spectrum for the operators
and S is invariant under the symmetries ——n; and ns— —ng and it consists of four possible
arrangements in a neighborhood of the intersection of the symmetry axes. These arrangements
have a modulo 4 periodicity)y=ny mod 4, see Fig. 2.

From the symmetryr, and the pseudosymmetry discussed in Sec. Il C, it follows that if
(ny,NL,Ng) is a point of the quantum diagram, then also the pointg £n,, £ng) belong to the
quantum spectrum.
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ny=0 mod4 my=1 mod4d ny=2 mod4d ny=3 mod4

even ny, odd ny, even ny, odd np,
© S © o S (0] €] S(;D
[OR NO)
© © p ) Or,
1 1
® © 0] 0]
[OR NO)
© © 0] 0]

FIG. 2. Joint eigenvalues of the operat'ﬁrandé near the origin.

Let us make the generic assumption that the spectruélajffixed n_ has no degeneracies,
that is, the spectrum @ at fixed polyad numbensy and quantum numben, is simple, and that

the distances of consecutiieigenvalues varies monotonically and slowly. In the rest of our
argument we simply fix such distance to be some positive constant, say 2, as we did in the pictures
in Fig. 2.

By Lemma 1, the quantum numbetg andn, are both even or both odd, and whayis fixed
n_ changes in steps of two. For eveg, we have one central string of lattice pointsnat0 with
the maximum number of state‘s’(nN,nL):%nN+1 for givenny. This string is symmetric under
S— =S For ny=0 mod 4 it has the central node @,0) becauseV(0 mod 4,0 is odd. Forny
=0 mod 2 the closest t®,0) is a pair of nodeg0, +1) symmetric undeS— -S. Patterns for the
other values ohy are deduced by a similar argument. The other symmetric distributions are not
admissible because they do not give the right rate of change of the number of quantum states as a
function ofn,.

Corollary 1: For sufficiently small polyad numbergy, the quantum spectrum of the
N-reduced normalized swing sprimélf?,li) is qualitatively the same as the quantum spectrum of
(S,L) in Lemma 2. Hence, the quantum diagrams of such systems are qualitatively the same as
those in Fig. 2.

Figure 3 and, respectively, Fig. 4 display the joint spectrum of the operat@asd the

Hamiltonian ﬁfﬁ), respectively,l:lﬁ), computed numerically for fixed polyad numbey, and,

hiny =0 mod 4 hny =1 mod 4

finy =2 mod 4 finy =3 mod 4

FIG. 3. Consecutive slices with fixeg, polyad number for the normalized swing spri(rlA@]?),N,I:). The polyad quantum
numberny/# is chosen to be about 1. Hefieis 1/20.
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Fixing ng, = 11 Fixing ng, = 40

FIG. 4. Quantum diagrams obtained by fixing the quantum numb’gand plotting the quantum spectrum of the operators
L andH®.

respectively,nK0 and ng,. Note that, to preserve the qualitative structure of the approximating
normalized system, one must choose a polyad number of the order of unity. With such a low
polyad number there are too few quantum states to perform the analysis we are presenting here. A
standard technique to increase the number of points in the quantum (#tiétes, states of the
quantum systeprat a fixed energy level is to scale the variables by the numbewheret is the
inverse of a natural number. This is equivalent to considering a Hilbert space of quantum states of
the form|n;,n,,n3) wheren; is az-multiple of a natural number.

In Sec. Il D we gave a formula for the dependencenprof the number of quantum states
having a ﬁxednKm guantum number. The results shown in Figs. 3 and 4 confirm the predictions
made in Fig. 1 and used in Lemma 1.

B. Local mapping to the regular lattice

The effect of monodromyslaving described the plane slices and their relative position in
3-space, we can proceed with a tentative definition of the missing quantum number. Let us do this
for the planar slices in Fig. 3. For every choice of quantum numingendn,, that is, fixing the
eigenspace associated to the quantum numbgandn,, one can assign a third quantum number

by enumerating the quantum states of the oper:a‘t'm'r the joint eigenspacény,n,), beginning
with 0. Though this seems to be a global choice of third quantum number, we can easily show that
it is not the case. As first suggested in Ref. 25, we can choose an elementary cell of the lattice and
transport it around the classical singularity, see Figtop left). After one tour around the singu-
larity, we will come back with a different cell. This signifies that the third quantum number cannot
be globally chosen.

Furthermore, when one fixes, andn, and draws the curves having fixed the third quantum
number proposed above, see Fig. 5, it is quite obvious that the curves above the classical singu-
larity have a nonsmooth behavior, unlike those below. The clbderto zero, the more obvious

-
»

FIG. 5. Numbering the eigenstates with fixadin the natural way within on@y polyad of the systentS,L,N). The
curves connecting the eigenstates with the same label arg-siwiooth atn, =0 andS>0. The classical singularity at
L=S=0 is shown by an empty circle.
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the discontinuity(or “kink”) in the tangent to the level curve becomes. Of course if one starts
numbering from the top, one observes a nonsmooth behavior in the lines below the singularity. For
this reason we introduce the following.

Definition 2: For a planar diagram, the choice of quantum numbefissmoothif the discrete
directional derivatives of the level curves obtained by fixing one quantum number are continuous
of order . By continuous of orderi we mean that the difference of the discrete directional
derivatives computed at two consecutive points must be of ordér 8in 7-smooth chartis a
choice of#-smooth quantum numbers. Airsmooth atlasis a family of #-smoothcharts that
coverUregCUCR3, the set of regular values in the image of the energy-momentum map.

The above definitions are void for a choice 7ofof order 1. In fact, such a choice gives a
quantum diagram with very few points, which makes every choice of quantum nufivsersoth.

On the other hand, the nonexistence of global action variables implies that somewhere the level
curves have a nonsmooth behavior of order one, which becomes visible fiwtsesaufficiently
small, see Fig. 5.

The problem in numbering the quantum states is a consequence of a well-known obstruction
to existence of classical global action variables knowmasodromy Monodromy is due to the
nontriviality of the covering otJ . defined by the period lattices. When the fundamental group of
Uyeg is Z, the monodromy can be written as a matrix, which is calieahodromy matrixThe
inverse transpose of the monodromy matrix can be effectively computed by analyzing the quan-
tum spectrum corresponding to the classical completely integrable s%féﬁhe way we pro-
pose to do this is to use-smooth charts as follows. Let us cover the quantum lattidé,ip (see
Fig. 5 with two overlappingf-smooth charts: one obtained by numbering the points in the
columns starting from the bottom and the other obtained by numbering the points in the columns
starting from the top. Let us choose in the first chareBamentary cellwhich is a quadrangle that
does not contain any lattice point in its interior or on its sides, with a distinguished vertex and an
ordering of the sides adjacent to that vertex. Let us finally move the elementary cell in the first
chart of the atlas following the level lines of tliesmooth variables. Choosing a path that winds
around the singular point and transporting our elementary cell along this path, one is forced, once
the first region of chart overlap is reached, to identify the elementary cell with its corresponding
representation in the second chart. Then one continues with the transport in the second chart.
Reaching the second region of chart overlap, the elementary cell is identified with its representa-
tion in the first chart and then is compared with the initial cell. This final cdifferentfrom the
original one.

Definition 3: Given an-dimensional quantum diagram admitting Z&#smooth atlas, an initial
elementary cell defines a frame. The matrix expressing the change of frame from the initial
elementary cell and the final elementary cell is tngantum monodromy matriXA quantum
monodromy matrix always belongs to ®L,.7).

In our example in Fig. 3, the sides of the final elementary cell, written with respect to the sides
of the initial elementary cell asolumns define the quantum monodromy matféfi).

In the same way, we can also compute the quantum monodromy matrix for other slices of the
3D lattice. For thek, andK;, slices in Fig. 4 we obtain the matricés’) and(35), respectively.

This shows that the 2D monodromy depends on the choice of the slices, and therefore we must
study directly the 3D monodromy by transporting a 3D elementary cell.

In the problem under investigation, the mod 4 periodicity allows one to project four subse-
quent constani slices of the lattice on the same plane, creating the regular grid in Klgftg
In this projected lattice we can draw elementary cells and move them around the singularity at the
origin. Choosing the initial cell as in Fig.@ight) and moving it around the origin of the projected
lattice, being careful to move every vertex of the cell by the same number of steps, we find that the
full monodromy matrix for the 3D lattice with that choice of initial elementary cell is

0 O
21 -1
00 1
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FIG. 6. Foumn, slices can be projected to the same plane, making it possible to draw and move an elementary cell. On the
right, the choice of one such elementary cell. The numbers refer to the order of the sides.

IV. HOW TO OBTAIN THE 1:1:2 QUANTUM LATTICE FROM THE SIMPLE CUBIC
LATTICE

A. 2D lemma and applications

Rather than using afi-smooth atlas to compute the monodromy, one can introduce defects in
regular lattices. The treatment we give here is inspired by Ref. 26.

Definition 4: Let (I4,1,) be coordinate functions oR?. Let k be an integer. Consider the set
C(kly:15)={(I1,1,) € R?|kl;>2|l,|}, which we call awedge The set of pointsD(kl,:1,) in the
complement of the wedgé(kl,:1,), after identifying the points with integral coordinates among
those of the form(n,nk/2)=(n,-nk/2) wheren e 7Z-,, is called adefect diagram

The above prescription can be easily adapted to the wed@d,:I)={(l,I,)

e R?|KIy> 2|14}

Given a defect diagram associated to a wedge, the lattice obtained by vertically sliding the
columns of lattice points, thus physically performing the identification, is callegconstructed
diagram which we denote byR(kl;:1,). The process of taking a given lattice, introducing a cut
and inserting or removing a wedge, is caltbetonstruction of a diagranThe vertex of the wedge
is called adefect point The defect point can be in any point of tflg,l,} plane.

Computing monodromy using a deconstructed diagram is straightforward. If we pick a square
elementary cell below a wedgassuming thak is positive and translate it above the wedge, we
end up with a parallelogram whose two sides remain orthogonal to the symmetry axis of the
wedge, whereas the two other sides, initially parallel to the symmetry axis, have novksldge
proves the following.

Lemma 3:The reconstructed diagram®(kl,:1,) has nontrivial monodromy. Its quantum
monodromy matrix computed along a path winding counterclockwise around the origin, with
respect to the elementary cell with vertex (i, —n) and with an ordered pair of sides=[(0,
-n),(1,-M)], =[(0,n),(0,-n+1)]is (;9).

Remark 1:The monodromy matrix associated to a defect diagram depends solely on the type
and position of the defect introduced and on the choice of the ordered sides of the elementary cell.
It does not depend either on the patlone uses, or on the initial position of the vertex, nor on the
point wherel” crosses the wedge. Also, the expression of the monodromy nitristh respect
to an arbitrary choice of elementary cell, whose defining frmga,} gives the matrixA
e GL(2,Z) with columnsa, anda,, corresponds to the matri& IMA.

It is straightforward to check that a clockwise rotation around the defect point changes the
sign of k in the monodromy matrix while the monodromy matrix associated to the defect
R(Kl»:1,) is the matrix(§ 7).

Lemma 4:Suppose that the pafh crosses a finite number of removed wedges in the order
Cy, ... ,Cn. Then the monodromy matrix associated to this defect diagram computedlalerige
matrix M =M¢,---Mc,.

Proof: Choose the initial elementary cell. After crossing the first elementary wégdgee
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FIG. 7. Deconstruction of the diagrams obtained for constgrglices of the swing spring quantum diagram. Gluing the
pictures along the dashed vertical lines one obtains the diagrams in Fig. 3.

obtain a cell which is formed by applying the matik; to the frame defining the initial elemen-
tary cell. By remark 1, crossing the second wedg@roduces a cell whose sides are identified by
the columns of the matrik,M;. This argument is repeated until the last wedge has been passed
and the lemma follows. O

It is now time to apply the ideas above to the planar quantum diagrams in Figs. 3 and 4. The
guantum diagrams in Fig. 3 have a nontrivial singularitymt,ny)=(0,0). Each of them can be
deconstructed by introducing the two wedgik:H) andC(-L:H) as shown in Fig. 7. To keep
the mod 4 period symmetries, one must choose a regular lattice with a step of 2imiteetion
and with order 2 period in thEl direction. This is equivalent to placing the defect point not at the
origin of a regular lattice. The monodromy matrix computed using Lemma 3 is precisely the one
obtained usingi-smooth charts in Figs. 3 and 4.

The two planar quantum diagrams in Fig. 4 can be treated in a similar way and give the
deconstructed diagrams in Fig. 8. From these diagrams we find that the quantum monodromy
matrix for slices with constant quantum numbsgr is (5, 7).

B. 3D lemma and applications

We now extend the idea of a defect diagram in order to deconstruct the 3D quantum diagram
of the swing spring. It is natural to define a defect of a three-dimensional regular lattice by
extending a defect of a two-dimensional lattice trivially in one direction.

Definition 5:Let (I4,1,,15) be coordinate functions di?. A two-dimensional wedgé(kl,:1,)
can be trivially extended along the directiby) meaning that all constam slices intersect this
extension in the same wedge. Such a 3D weddgeigl in the |5 direction and is denoted by
C(Kly:l5:15).

The boundary of the 3D wedg&kl,:1,:13) consists of a roof made up of two half-planes
joined along thd; axis, which is a “roof top.” The roof top is a singularity of the 3D quantum
diagram calleddefect line

Lemma 5:The reconstructed diagraf(kl;:1,:13) has nontrivial monodromy. Its quantum
monodromy matrix computed along a path winding counterclockwise iglthg} plane around
the positively oriented defect line, thg axis, with respect to the elementary cell with vertex in

FIG. 8. DeconstructedKO and N, slices.
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FIG. 9. Defect for constamty slices of the joint spectrum of the quantum swing spring. The slices with nongenod 4
are obtained from they=0 mod 4 lattice by cutting out an additional region along the vertical axis. Dashed vertical lines
show identification of points on the border of the cutout regions.

(0,-n,0) and with sides s;=[(0,—n,0),(1,—n,0)], s,=[(0,-n,0),(0,—n+1,0)], s3=[(0,
-n,0),(0,—n,1)] is the matrix

100
k 10
001

When a path crosses a family of 3D wedges, the monodromy matrix along the path is obtained as
in Lemma 4.

Again, one must be careful when treating a defect with a different orientation. Let us choose,
sayD(kls:14:1,). A path winding counterclockwise in thgs, 14} plane is a path which begins at
the positivel; axis and moves towards the positive axis. The monodromy matrix for the
elementary cell in lemma 5 along such path is the matrix

o O -
o P O
-~ O X

The diagrams in Fig. 7, which are obtained for fixed polyad nunmgeican be modified by
introducing auxiliary spacings along the vertical a8ias shown in Fig. 9. Though inessential in
the planar figures, this modification helps to deconstruct the 3D lattice of the quantum swing
spring up to any fixed polyad numbét,,,, into a regular cubic lattice with three 3D wedges
removed, namely¢(L:H:N), C(-L:H:N), andC(-N:L: H)(O'O'Nmax)' see Fig. 10. The roof tops of
the first two 3D wedges lie on thié axis, which is the singular thread of the energy momentum

O =+ NWO—=+NWO

FIG. 10. Three-dimensional model of the deconstructed joint spectrum of the quantum swing spring.
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map EM of the classical swing spring. The roof top of the last 3D wedge lies on the{line
=0,N=N,a¢- This last singular line should be pushed at infinity to obtain the quantum diagram of
the swing spring.

The pictures in Fig. 7 account for the 2D wedges of the 3D wetigé :H:N); the cut along
the H axis shown in Fig. 9 corresponds to the 3D wedgeN:L: H)(O'O'Nmax)' The deconstruction
of the swing spring quantum lattice resembles a table with four legs, labeled by
AC{ny<0,n <0}, BC{ny<0,n >0}, CC{ny>0,n >0}, andD C{ny>0,n <0} as shown
in Fig. 10.

V. CALCULATION OF MONODROMY USING SIMPLE CUBIC LATTICE WITH CUTS

In this section we use the deconstructed 3D quantum lattice of the swing spring in the
preceding section to calculate the monodromy matrix associated to a path winding around the
defect line situated on the vertichll axis.

Let us start the path in the componekxif Fig. 10 and move counterclockwise around the
defect line. Passing frorA to B, we cross the elementary Wed@é‘NiLiH)(o,onax)- In passing
from B to C we cross the elementary wedg@.: H:N). In passing fronC to D we cross again the
elementary wedgé,’(—N:L:H)(oyonaX). Returning to the componet we cross the elementary
wedgeC(-L:H:N). From Lemma 5 it follows that the quantum monodromy matrix of the quan-
tum swing spring along the given path is

10 0\/101\/1 00\/101\ (10 O
M=|1 1 0J/0 1 0J{1 1 0ff0 12 Of ={2 1 -1
00 1/\0 0 1/\0 0 1/\0 0 1 00 1

The matrixM above is expressed with respect to a frame determined by the initial unitary cubic
elementary cell. This implies that with a different choice of elementary cell one would obtain a
new quantum monodromy matrix relatedNb by conjugation in S(3,7).

It is therefore natural to try to determine an initial elementary cell for which the monodromy
matrix assumes its simplest form. In the discussion above we choose an initial cell, labieled
Table I, and then we compute the monodromy associated to this cell. We now take five different
cells in quadran®A of the lattice, namelyg, 8, v, 8, and x, as shown in Table I. We denote by
{a;,a,,a3} the frame associated to the cell the frames associated to the cdlsy, 5, andk, are
{by1,b,,b3}, {c;,cy,c5}, {d;,d,,ds}, and {k;,k,,ks}, respectively. They are related to the frame
defining a by the matrix given in the second column of Table I.

Once we have embedded each elementary cell in the compénefitthe deconstructed
diagram of Fig. 10 or in the projected diagram of Fig. 9, we can move it around the vertical defect
corresponding to the singular thread of the energy momentum map of the classical swing spring,
and compute the quantum monodromy matrix. From Table | we see that the monodromy matrix of
the quantum diagram of the swing spring system takes the simplest possible form of a unipotent
matrix with only one nonzero off-diagonal entry equal to 1, wikga chosen as initial elementary
cell.

Observe that for 3D quantum diagrams the sign is not an invariant as it is for the 2D quantum
diagrams, see Ref. 7. More specifically, the monodromy matrix of all 2D quantum diagrams,
associated to a two degree of freedom completely integrable Hamiltonian system with a circle
symmetry, have the forry.9) with k>0. Such matrices can be obtained by introducing the 2D
defects we gave above. Another 2D defect obtainedduinga solid wedge instead of subtracting
it produces a minus sign in the monodromy ma(r_i’}gg). The two matrices areot conjugate in
SL(2,7). At the same time, when the dimension is bigger than 2 such sign can be changed by
conjugation in SK3,7). So, while the construction of defects by removing and adding solid
wedges still exists in 3D, the monodromy matrix cannot distinguish them.

Downloaded 09 Dec 2004 to 151.97.253.226. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



5090 J. Math. Phys., Vol. 45, No. 12, December 2004 Giacobbe et al.

TABLE |. Possible choices of elementary cells in the unit cell basis of the reconstréidtedattice of quantum swing

spring.
Cell A Shape A'MA
100 10 0
a 010 21 -1|=M
001 00 1
101 100
B 011 211
001 001
110 -1 -2 1
v 010 2 3 -1
001 0 0 1
100 10 0
é 010 11 -1
101 00 1
O]
®
101 0\9 100
&Y ©
K 011 0".0 110
102 o%h oo 001
[CNORCNONG]

%Possible choices of elementary cells in thguadrant of the initial 3D quantum diagram.

VI. COMPARISON OF CLASSICAL AND QUANTUM CALCULATIONS OF MONODROMY

We now recall how the classical monodromy matrix of the swing spring was computed in Ref.
11. Define the moments; =(N+L)/2 andN,=(N-L)/2. Fixing the values of the momenta and of
the energy, one specifies a 3-torus. It is possible to define a basis of the fundamental group of this
torus by means of three paths generated as follqwls; exp(tXNl), yNZ:exp(tXNz), and

t
YH= eXp?(TXH = 01Xy, ~ 02Xy,
a

Here®,; and®, are the rotation numbers of the flow Xf; on the given 3-torus and is its fully
reduced period, see Ref. 11. Considering the initial choice of three paths as a frame, and then
moving the paths around the singular thread with a continuous homgiopypsed by the func-
tionsT,®,,0,) one ends up with three final paths, or final frame. The matrix of change of frames
is the classical monodromy matrix of the swing spring and is

= O
=
m O O
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Observe thaK,, (7) andL are not the momenta of an effective 2-torus action. In faist the
momentum of the *:1:0oscillator; whileK,, is the momentum of the In: m+1 oscillator. Thus
the momentunK,+L is that of the Om+1:m+1 oscillator, whose flow is 2/(m+1) periodic.
Despite this noneffectiveness, one can show that the classical monodromy matrix with respect to

the framey, =—w, + W, Y, = YN, T Mn, and yy is

100
01 1/
001

Reducing with respect to the circle action with momentimone obtains a 2D system whose
monodromy is represented by the mal(r(b%). At first sight this does not seem to be in agreement
with the quantum results computed whnmm is held constant. However, one observes that the
noneffectiveness of th&? action generated by the flows @@m and X, implies that a basis of
cycles in the 2-tori of theK,-reduced space are not the cyclgs and 7y, where the tildes
represent the projection gf andyy on the reduced space, but the cy¢jgs(m+1) andyy. With
respect to these cycles the monodromy matrix is the m&}fix'), which confirms our quantum
calculations.

Another interesting aspect of the 2D system, highlighted by reduction of the symmetry asso-
ciated to theK,, momentum, is that the singular fiber of the energy momentum map of the reduced
completely integrable system is always a singly pinched torus. This does not contradict the mono-
dromy theorem in Refs. 6 and 27. In fact, the phase space of the 2D system obtaigd by
reduction isnot smooth, being singular precisely at the pinch point of the singular fiber of its
energy momentum mapping. Consequently, this pinch point is not a focus—focus critical point.

To find the relation between the quantum monodromy matrices and the classical monodromy
matrix we follow Appendix A 2 in Ref. 12 and choose the elementary cell whose sides in the space
with coordinates(N,,N,,H) are given by the vectors;=(1,0,0,/T), ,=(0,1,0,/T), and ez
=(0,1/T,0), where ®=(0,+0,)/2. Mapped onto(L,H,N)-space these vectors beconig
=(1,0,4/T,1), f,=(-1,0,/T,1), andf;=(0,1/T,0). Computing the value®, and®, after com-
pleting a circuit, one finds that the cell is precisely the one cajléd Table | (up to exchanging
e, ande;). The quantum matrix associated to this cell is

1 0 0
0 1 0,
1 -1 1

which is precisely the inverse transpose of the classical monodromy matrix.

VIl. CONCLUSIONS

In this paper, we have analyzed the qualitative features of a model quantum system with 3
degrees of freedom whose classical limit corresponds to an integrable approximation of a swing
spring in 1:1:2 resonance.

Quantum monodromy is manifested in the joint spectrum of three commuting observables.
Locally, this joint quantum spectrum can almost everywhere be interpreted as a regular lattice of
quantum states. This reflects the existence of local action variables in the corresponding classical
system. Equivalently, the joint spectrum can be described globally as a regular lattice of quantum
states with defects. Thus it is clear that quantum and classical monodromy are directly related. The
atlas formed by differenti-smooth local charts covers almost all the quantum lattice with the
exception of regions containing nonregular values of the classical energy momentum map. Quan-
tum monodromy can be directly read from the joint spectrum by looking at the evolution of an
elementary cell of the quantum lattice along a closed path lyifgsmooth charts of afi-smooth
atlas of the lattice.
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Globally the 3D quantum lattice is interpreted as a regular lattice with 1D defects. The
construction of 1D defects for 3D lattices, which are characterized by the elementary monodromy
matrix, follows the recipe formulated for 2D lattices with point defects which are obtained by
cutting out a wedge from the regular lattice and gluing together the boundaries which have been
created. For the 1:1:2 swing spring we have shown that the lattice of quantum states can be
reconstructed from a regular cubic lattice by removing three solid wedges, two of which create a
line defect in the physical region while the third creates a line defect, which lies in a nonphysical
region at infinity. The representation of the 3D quantum lattice of the swing spring by a simple
cubic lattice with wedges removed allows us to visualize clearly the transport of the elementary
cell over the lattice. It also allows us to calculate the matrix of quantum monodromy for any
choice of initial elementary cell in the lattice.

An important additional consequence of our analysis of the quantum swing spring is the clear
demonstration that 1D defects in the 3D lattioe equivalently 1D subspaces of critical values of
the 3D classical energy-momentum mahould be characterized by the complete 3D quantum/
classical monodromy matrix. The analysis of two-dimensional slicessigficientto uncover the
singularities of the full 3D quantum lattice. Therefore it is important to be able to understand the
geometry of lattices of any dimension and be able to compute its quantum monodromy as a
transformation of an elementary cell along a close path. Deconstruction/reconstruction of lattices
seems to be an essential tool in the analysis of quantum lattices and in the computation of their
quantum monodromy. It is an open question whether 3D quantum lattices exist whose monodromy
cannot be reproduced via the introduction of elementary defects. In 2D we know how to decom-
pose any quantum monodromy matrix into a product of elementary matrices. Therefore every
defect of a 2D quantum lattice arises from a known set of elementary defects, see Ref. 8.

Monodromy ofn-dimensional lattices is defined up to conjugation iiI8IZ). In particular, it
cannot distinguish between two different defects obtained by removing or adding the same angular
part in a regular lattice. Whether the defect corresponding to adding a wedgelike region to a
regular lattice can be realized by an integrable Hamiltonian system is an open question. The 1D
lattice defects in 3D systems introduced here straightforwardly generalize to codimension 2 de-
fects in integrable Hamiltonian systems with arbitrary number of degrees of freedom. Codimen-
sion 1 defects which correspond to fractional monodl%ﬁman also be treated with the same
approach. It is worth noting that the whole 3D quantum lattice of the quantum swing spring, has
a defect of codimension 2 which corresponds to integer monodromy, even though the 1:1:2 system
studied in this paper has a 1:2 resonant subsystem with a fractional Hefectrder to see
codimension 1 defects and fractional monodromy for 3D quantum lattices, we need to study more
complicated examples of integrable Hamiltonian systems with higher order resonances.
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APPENDIX A: REDUCTION OF RESONANT OSCILLATOR SYSTEMS IN THREE
DIMENSIONS WITH SO(2) SYMMETRY

Consider amrm’:m’:m” resonant 3-oscillator system with zero order Hamiltonian

Ho=m'3(ziz;) + M’ 5(2,25) + M'5(2325) (A1)

and whose higher order terms Poisson commute WithHere the positive integer numbenrs
andm” are such that g¢d',m”)=1, and(z,z) are complex symplectic coordinates of the form
(gxip). The flow of Hy generates an oscillator symmet®y whose action on the six dynamical

variables(z,,2,,273,21,2,,23) is given by the 6<6 diagonal matrix,

Downloaded 09 Dec 2004 to 151.97.253.226. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 45, No. 12, December 2004 Monodromy of the quantum 1:1:2 swing spring 5093

Ut - diaqeim’t,eim't1eim”t,e—im’t,e—im’t,e—im"t) — diag(e m’1 em’, 0 m”7 a—m', g—m’, a—rﬂ’)_ (AZ)

Suppose that this system is invariant with respect to the additional Lie symmetry gr@@p&O
rotations in the planéz;,z,), whose action is represented by the matrix

_ g{( coss sins) ( coss sins) }
U, = dia . A0 1. (A3)
—-sins coss —-sins coss
It can be seen that the two actioffs3) and(A2) commute, and that the full symmetry group of
such system is therefore a torli$=S' X SO(2).

We study the case whera’:m” is 1:2. The indices 1,2,3 of our coordinates here correspond
to & », £ in Sec. Il A. In this appendix we give details of the reduction of Ble< SO(2)
symmetry of this system. It can be considered as a two-stage reduction. For example, first we
reduce the 3-oscillator symmetry and then thg 3Gymmetry. We will do the two stages at once.
Since theT? action is not free, we ussingular reductior®

We also consider certain discrete symmetries. It can be verified easily that the spatial sym-
metry of the spherical pendulum as well as that of the swing spring systemot just the plain
SQ(2) but the group S@) X C,. HereC,={1,0,} is the group of reflections in a plane containing
the S@2) symmetry axis. Explicitly

0, (01,02,03, P1, P2, P3) = (02,91, 03, P2, P1. P3) s (Ada)

where by convention we takg; as the symmetry axis.

The Schdonflis notation for such group@s,,. The total symmetry group of these systems is
SO(2) X C,x T and combines the above spatial group with the antisymplectic momentum reversal
symmetry,

T: (q,p,2) — (4, p,2), (A4b)

which is present in many other physical systems and is often ctitesl reversal So we will
consider an additional discrete group of order four

1,0, T 7=T¢ 0}

which is isomorphic as an abstract groupZtox 7.

1. Generating function and integrity basis

By Molien’s theorenf? the generating function for the invariants of t8ex SQ(2) action is
given by the double integral,

2w 1 2
g\) = —f J det(l U US)dt ds. (A5)

Here the formal variabl& represents any of the dynamical variables) or, equivalently(q, p).
In the complex unimodular variables

0=expit) and ¢ = exp(is)

the determinant ifA5) can be expressed as

1 I VN TN
def(1-A\UUg =(\ - 02)<>\—62)(>\ 0(,0)()\ @9)(>\ w)(x 9)'

The generating functiofA5) can now be computed as a double Cauchy integral,
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1 1 N26Pp dode

== —¢ A6
g()\) 2 |9|:127Ti lol=1 D(a,(p;)\) ( )

where

D(6,0;N) =(\ = 02)(02— %)()\ - 49(p)<<p0— %)(Mp— OHNO- ).

Since the formal variablg is used to Taylor expang(\) at A=0, it can be arbitrarily small. This
means that when we integrat&6) on 6 we should consider only four poles,

A
9=+t \\, =2, 6=\g,
¢

which lie inside the unit circlég|=1. Applying the Cauchy integral formula for each pole and then
integrating the result o in the similar way gives the Molien generating function,

1+2°
(1-N%1 2%

The function(A7) indicates not only the fact that the space of invariant polynomials is generated
by five polynomials, three quadratic and two cubic, but also that this ring is not freely generated
and that the integrity basis of this ring has four princi@nominatoy invariants and one cubic
auxiliary (numeratoy invariant. From(A2) we see that all invariants of the 1:1:2 oscillator action
are built from monomialg,z;, z,2,, 23, 212, 225, 7523, 212,23 and their conjugates which should

be further symmetrized with respect to the (80action in(A3). The explicit choice of invariants

is

g\ = (A7)

N:%(21?1+2272+223?3), R:%(Zl?l-"ZZ?Z)a L=3(z2),

S= R (&EZ+23), T=33&EZ+2)).
In the rotated coordinates;, 0,, O3, P1, P2, P3 Of Sec. Il A these invariants equal those(B).
Comparing with Ref. 11 we find that
N=3p1+ 302+ ps R=3p1+ 502 S==ps T=ps.

Note that coordinate§, #», ¢ in Ref. 11 correspond to our rotated coordinaggsq,, g; in Sec.
I A. ChoosingT to be the auxiliary invariant, we can represent the structure of the ring as

R[N,R,L,S]*{1,T}=R[N,R,L,S] ® R[N,R,L,S|T, (A8)

where the ringR[N,R,L,S] is freely generated biN,R,L,S).
A different way to reflect the structure of the ri@8) is by specifying the relationsygyziep
between its generators. Rewriting the functi@) in the Hilbert form,

1-\°
(1-N)¥L -2

we see that there is one such relation of degree 6. From our choice of invgB8amts find

g(n) = (A7a)

Zq)#ll:Zz T2+L- (R- L)(R"‘ L)(N -R)=0, (A9a)

and we can also verify that

N=R=|L|=0. (A9b)
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FIG. 11. Reduced phase spd@k—:ﬁ 2 of the 1:1:2 resonant oscillator system with(@0symmetry. Shaded area bounded by
a bold line shows the projection of the smgular spﬁ’ééz on the plangT=0}; other lines show boundaries of similar
projections forl = —n (dashed I|n§: an, —n and3 2N; note thatl 5, =n.

2. Reduced space and Hamiltonian

From the preceding section it is obvious that firereduced systenithe doubly reduced
system in Ref. 1jlcan be described in terms of invariafi; S, T). The spacd~1(1) "N%(n) is to
be reduced by thé’z—action generated by the flows of and Xy. Equation(A9a) defines the
reduced phase spadﬁ’I %, which is a surface of revolution about th axis in the ambient
3-space with coordinate functlor(B S,T). The projection oiPl 12 on the{T=0} plane is shown
in Fig. 11.

Whenn=1=0 or when|l|=n the spaceP}}? degenerates to a point; for ai>[l|#0 it is
diffeomorphic to a 2-sphere. Whdr0 andn>0 the spaceP,l]é is a sphere with one singular
point atR=S=T=0 (a “turnip”). Since near this poini®= T2+ S~nR, the singularity is conical
(as in the case of the 1:2 resonante

The reconstruction of th@2 orbit map L™X(1) NN-%(n) C TR®— P}** can be described as
follows. The two pointd = +n lift to two relative equilibria which correspond to pufand fast
rotation about axigj; without swinging nor springing; of course the spring is stretched and the
pendulum is somewhat bent. All points B> with 0< [I| <n lift to the regularT? orbits of the
St SO(2) group with periods 2 in both directions. Same is true for all regular pointsPjf 2,
that is, all points withR+# 0. The singular point of this spagaith S=R=0) goes to a special
periodic orbit inL™(0) "N™Y(n) of period 7. It corresponds to pure swinging along theaxis.

The triple of Hamiltonian function$R,S, T) generates the Poisson algebra of tkecondl
reduced system which defines the Poisson structu@lqﬂ'rf Using the functions defined if8),
we compute this Poisson structure first in the original phase Spaténote that{z,z}=2i), take
(A93) into account and restrict tB"“ This gives the structure

{RS=2T, {T,R=2S, {ST}=3R?-2nR-12. (A10a)
The function(A9a) is the Casimir of this algebra and we can also see that

1:1:2

(U} =3 s 5, wherey= (s, ) = RST) (A10)
Introducing a new set of functions
=3(N=[LD), M =3R-F(N+L]), Mp=S¢, Mg=Ty™, (A11a)
where
x=2VR+|L| and92=m2+ M2+ 0%, (A11b)

deforms the Poisson algebi&l10) into a standard 8) algebra with generator91,,91,,91;) and
Casimir 9. It follows that the singular mapA11) sends every reduced phase spBG¢ ™~ to a
smooth spheré of radius 0 (which is maximal when=0 and zero whenl|=l,,,=n). The
conelike singularity ofP} g% atn>0 is removed due to the singularity of this mapRstL=0.
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\/ )
FIG. 12. Constanh>0 slice (left) of the image of the energy-momentum m@jght) of the 1:1:2 resonant oscillator
system with HamiltoniarH,,,=S.

The doubly reduced system has one degree of freedom. Trajectories of this system can be
found as intersectionH,,;=h} N P,,| of the constanh-level sets of the reduced Hamiltoni&ty,
and the phase spade,,. It is simpler to work on the spac¥,,=P,,/(Z,XZ,) obtained by
reducing the discrete symmetries. This space is defined by

7+$=(R-1%(n-R), wheren=R=[I|=0 andr=T?=0
with boundarydV,,, given by
F=(R’-1>(n-R), n=R=|l|=0

and study{H,(R,9=h}NV,,.

The lowest order approximation studied in Ref. 11 is sufficient for a qualitative description. As
usual, we use the rescaled and shifted energy funétiptR,S)=S.

Lemma A.1The intersection§S=h} NV, are of three kinds:

() one regular point 0BV, ;

(i)  aclosed interval, whose endpoints are regular pointd/gf, that is, any point except point
(R,9=0 of Vy o,

(i) aclosed interval whose one endpoint is a regular poid/qf and the other is the singular
point (R,S)=0.

Every sufficiently small generic deformation of the Hamiltonian functdimas three types of
level sets orV,,.

Proof: The level sets of the Hamiltonian functi@are straight vertical lines in the plane with
coordinategR,S). From (A9a) which definessV,; whenT=0 we can see that these lines touch
dVy, at the points

!/— /—
R.=3(n+Vn?+31%), S.= £ (n-RY(R-1?), (A12)
whereS reaches its maximum and minimum value. O

3. Energy-momentum map

The imageU of the energy-momentum map,

EM: TR®*— U C R* (q,p) — (L(g,p),H(q,p),N(q,p)),

is a three-dimensional domain R with coordinateg(,h,n). In the first approximation with

=S, Egs.(A12) and inequalities =0, |I|<n define the boundaryU. It can be seen that N{n

=0} is the point(0,0,0, while for anyn>0 the constanh slice of U has the same topology of a
closed disc with two singular points on the boundary and one isolated singular point inside, see
Fig. 12 (left).
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FIG. 13. Constann+| slice of the image of the energy-momentum map of the 1:1:2 resonant oscillator system with
HamiltonianH,,|=S.

It can be seen that the whole domalris a solid cone which has three curves of distinguished
singular values: one is a thread insidethen axis, the other two are lines that lie on the boundary
dU (the linesl=+n, h=0), see Fig. 14right).

Note that different slices df) can be considered, see for example, the slice with conatant
+1 in Fig. 13. All such slices have a topology of half-plane with one isolated singular point inside
and one singular point on the boundary.

The fibers of the energy momentum map reconstruct as follows. The regular values shown as
shaded area in Fig. 12 lift to regular 3-tori. The points in the smooth part of the boundary with
S+ 0, N>0 lift to relative equilibriaT?, while singular points of the boundary wigr0, N> 0 lift
to relative equilibriaS'. The points in the singular thread with>0 andS=L=0 correspond to a
special singular 3D fibe¥, whose topology can be best represented using two partial reduction
maps, one with respect to the &psymmetry, the other with respect to the oscillator symmetry
St As illustrated in Fig. 14 the former gives a curled torus while the latter gives a pinched torus.

APPENDIX B: DETAILS OF THE QUANTUM DESCRIPTION

Our quantum-mechanical investigation deals with the quantum system associated to the clas-
sical system whose Hamiltonian is the swing spring Hamiltonian normalized to third or sixth
order. We use the quantum expression of the Hamiltonian expanded up to sixth order when
discussing the range of energy levels at which our analysis is reasonable for applications, and its
truncation at third order for the description of the 3D quantum lattice. In this section we explicitly
write the expression of the operators associated to the four invariants appearing in the expansion

of the Hamiltonian in a basis in which the operat&rsandl: are diagonal.
In quantum mechanics one associates to a claggioginomia) HamiltonianH its quantized

operatori:l. The rule to obtairH follows straightforwardly from the following ansathere stated
for 1D systemg the domain of the operator is the Hilbert space with basis(n e N); the

Tl Oy

Tn/SL

FIG. 14. Partial reduction of the singular 3D fiber.
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operatorsa:(llﬁ)(éﬁi‘) and a'=(1/\2)(§-ip) act on the basis vectors as followatn)
=\J’F|n—1> and aTm>=\r’n+ 1|n+1). In this treatment, we express every polynomiaping using
the variableg1/+2)(q+ip) and(1/+/2)(q-ip) and hence we define its associated quantum opera-
tor by replacing such variables with the operatarsind a', being careful to symmetrize the
expressiongthe variables of a polynomial commutanda’ do not).

In our 3D case, the basis elements of the Hilbert space are denoteg, by,ns), while the

basic operators are calle, al, a,, a}, a;, al. With these notations, the classical polynomial

%(q§+p§) becomes the quantum operat%m(ralaﬁalal). This operator associates to the basis
vector [ny,n,,n3) the vector(n,+1/2)|ny,n,,N3).

It follows that the quantizations of the functions playing a role in the completely integrable
system(H'® ,L,N) are

nf ’

N=1(a,al +ala, +a,a} +ala, + 2a,al + 2alay), S=\2i(alala; - a,a.al),

p=1 t t T T [ =1 T T T T
R=3(a1a tajay + @y +axay), L=35(-aa) —aja; +aay +axay).

The action of these operators on the generic veetdn,,n,,ny) is

No = (ny +ny+2n3+ 2)v, Lo = (ny = ny)v, Ru = (ny+ny,+ Do,

S =i V2(ny + 1)(ny + Hngu* —iv2nyny(ng + Lo~
wherev™=|n;—1,n,—-1,ng+1) andv*=|n;+1,n,+1,n3—-1).
To plot the two-dimensional quantum diagrams in Fig. 3, we fix an eigenspace for the operator

N, that is, we fix gpolyad numberand then compute the joint spectrum of the operaimedﬁfﬁ)
in that eigenspace. The eigenspace associated to the eigemal®es generated by all the
vectors|n;,n,,Ng) such than, +n,+2n;=m. Observe that there are essentially two cases, depend-

ing on the parity ofm. If mis even, tth-eigenspace associated to the eigenvahte€ decom-
poses in the direct sum of eigenspaces lforv,=R{vy, . =|k,h+k, 3(m—h-2k))|k=0, ... 3(m
-h)}, whereh, theI:—eigenvaIue associated Y, runs over all even numbers frommto m. Here
R{vnt stands for real span of the vectarg,. The dimension otV is %(m—h)+1. On each
subspacé/,, the operatof_ is the scalar multiplication bi while Sacts as the tridiagonal matrix

Sop=iV(k+ 1)(h+k+ 1) (M=h=2K)oper - iVk(h+ K (M=h=-2k+ 2vppr.  (BI)

If mis odd, theN eigenspace associated to the eigenvafte€2 decomposes into eigenspaces
Vh:]R{\k,h+k,%(m—h—2k)>|k:0, ... 5(m-h)} indexed by all odd numbers frommto m. The
dimension ofV,, is %(m—h)+ 1.The operatoI:I acts onV,, according tqB1). These operators have
been used to plot the quantum diagram of the swing spring.

To quantize the Hamiltoniahiff? (4) and model the swing spring system for higher energy

levels one can push further the process described above. Since the opNratuds commute

with all the other operators, there is no difficulty in defining the operaiiRsL?, R°, NR?, NS
and<. The only two noncommuting operators zﬁandé for this reasorRSacts on the vectors
as%(IEZAS+§?). The matrix of the quantum analog of the Hamiltonl%lﬁﬁ) on the vector spac¥,
with respect to the basis,  is pentadiagonal and depend on the physical variapleut we will
not write here its expressions.

Another quantum diagram, displayed in Fig. 4, can be obtained by slicing the 3D quantum
diagram by means of different momenta coming from Thesymmetry. To work with momenta
that define an effective torus action, the authors of Ref. 11 use the funcw'pn%(N—L), N,
=2(N+L). In g, p; variables
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Ny=3(af+ pi+ g3+ P, Np= (@ +p5+ a3+ pd), HEY =N +Np) - 568,

The quantization of the functiorld; andN, is

N, = 3(a,a] + ala, + azal + alas), N, = 3(aza) +aja, + azal + ajag).

Again, one can restrict the analysis to the eigenspaces of the opérlatmrresponding to the

eigenvaluem+1. In this case, the eigenspaceNf is not finite dimensional, but it still can be
decomposed into direct sum of subspaces,

R{lm,h,0),j/m-1,h-1,1), ... |m=h,0,h)}, whenh<m,
R{|m,h,0),m-=1,h-1,1),...,|]0,h—mm)}, whenh=m.

h=

Note that dimW,={.} “™=" On each spac®/, the operatoN, acts as the multiplication by

h+1; whereas the operatb’rff’) acts as the tridiagonal matrix

HO 0= 242 2(m=K)(h = k) (K+ Do er + A(M+ D+ 2o

- 2532V 2(m-k+ 1)(h— k+ Dkopyy. (B2)

Hereuvy, is the vectojm—-k,h—k, k). These operators are the ones used to numerically plot Fig. 4
(right). The technique to obtain the slices with fixed quantum numb@nr]sis very similar to the
ones described above.
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