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Spectra of irreducible tensor operators for the chain of group G C O(3) are investigated 
from the qualitative point of view. Conditions are found for clustering of the eigenvalues 
of tensor operators in the high-J limit. Approximate formulas are proposed which permit 
the calculation of the relative positions of the clusters. Centrifugal distortion of spherical 
tops, crystal-field splitting, and low-frequency bending vibrations of nonrigid molecules 
composed of an atom and rigid symmetrical core are considered as physical examples. 
Clustering of the F’” J .I’) coefficients of Moret-Bailly are qualitatively explained as well. 

I. INTRODUCTION 

Recent analyses of high-resolution infrared spectra of SF, and CH, (1,2) have 
shown the existence of intriguing cluster patterns at rather high J values and have 
focused interest on the theoretical description of such clustering (3-5). From 
the mathematical point of view the calculation of rotational level splitting caused 
by centrifugal distortion of highly symmetrical molecules is rather simple and may 
be achieved by the diagonalization of a tensor operator (or a linear combination 
of operators) invariant with respect to the symmetry group G of the molecule 
considered. For example, the centrifugal splitting of SF, rotational levels is de- 
scribed in the first approximation by the spectrum of an octahedrally invariant 
fourth-rank tensor operator (6, 7). The results of many numerical calculations 
establish unambiguously the existence of clustering in the high-J limit (3,4,8-1(J). 
The first theoretical interpretation of this phenomenon was given by Domey and 
Watson (9) in their CH, calculations. Classical mechanical arguments were used 
to explain the qualitative features of tetrahedrally invariant fourth-rank tensor 
operator. The same clustering may be found in the tables of Fc4 J J, coefficients by 
Moret-Bailly et al. (8). It is mainly because of the existence of clustering that 
approximate algebraic expressions for Fc4 J A coefficients were obtained (I 1). 

Recently two independent and extensive investigations were performed by Fox 
et al. (3) and Hatter and Patterson (5). The first group of authors calculated the 
F4 J J, coefficients of Moret-Bailly for J c 100 and have described the regularities 
observed in their computer data. On the other hand, Harter and Patterson pro- 
posed both qualitative and quantitative arguments for the clustering in the spectra 
of the fourth-rank tensor operator. 
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The aim of the present paper is to give the general qualitative theory of the 
orbital level splitting caused by any tensor operator invariant with respect to 
group G which is the subgroup of SO(3) or O(3). Some preliminary results were 
presented in an earlier, short note (12). 

The rotational level splitting is not the only problem to which the theory de- 
scribed below may be applied; this problem is the simplest, however, because only 
tensor operators which are diagonal in rotational quantum number must be con- 
sidered (6,7). Crystal-field theory provides an example (13) in which nondiagonal 
tensor operators must also be taken into account. It will be shown that the non- 
diagonal tensor operators result in the same clustering of the eigenvalues as diag- 
onal ones, but only in the weak coupling case. The structure of the spectrum 
changes significantly in the case of intermediate coupling. Thus it is no wonder 
that the experimental observation of clusters was realized during the study of 
rotational spectra and not in the study of higher-J atomic-level splitting in the 
cubic crystal field (see comments in Ref. (5)). A third physical problem, which 
is closely related to the crystal-field theory, is the description of low-frequency 
spectra of some inorganic nonrigid molecules composed of a rigid symmetrical 
core and one or several atoms (ions) which move almost freely around this core. 
Large numbers of ionic molecules are appropriate examples (14-16). It is in fact 
the general problem of the theoretical description of gas-phase nonrigid molecule 
spectra that stimulated the research presented here. But the results obtained 
are formulated in a rather general form, applicable to different physical problems. 

This work is organized as follows. In Section II the qualitative structure of 
equivalent tensor operators diagonal in J is discussed and the relation to the quali- 
tative theory of F4 J J) coefficients is shown. The close connection with the ap- 
proach of Harter and Patterson (5) is discussed. Some simple formulas for calcula- 
tion of the cluster positions are given as well. In Section III, the case of nondiagonal 
tensor operators is investigated. The third-order tensor operator for the chain 
Td c O(3) is considered in detail because of the importance of this operator for 
describing the hne structure of ABX4 nonrigid molecule spectra. Some physical 
applications are discussed briefly in Section IV, and the last section is devoted to 
some possible further developments of the theory. 

II. SPECTRA OF EQUIVALENT DIAGONAL TENSOR OPERATORS 

A. Preliminaries 

The mathematical formulation of the problem involves finding the eigenvalues 
of the operator 

T’O’ + AT’“’ P 9 (1) 

where F”’ is the zero-order irreducible spherical tensor operator: Its usual physical 
realization is the total angular momentum operator. T$*) is the k-rank tensor opera- 
tor transforming according to the irreducible representation of the group G which 
is the symmetry group of the problem considered. Index p characterizes the non- 
standard basis; p = (n , C p), where C is the irreducible representation of G, cr is the 
row, and n is the multiplicity label. Although this notation of Moret-Bailly (7) 
has until now been used by spectroscopists to indicate eigenvalues or eigenfunc- 
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tions of Ty,) (the so-called superadapted basis), it will be used here for any 
symmetry-adapted basis, in particular for the basis which diagonalizes a given high- 
order tensor operator. 

If G is not a subgroup of SO(3) but only a subgroup of O(3), it is necessary to 
generalize the notation slightly by introduction of the parity index o, which may 
be u org. Such an extension is necessary, for example, for group Td, where operator 
(1) must be written as 

T’O,.Q’ + Tljk,a)* (2) 

Usually only G-invariant tensor operators are physically meaningful. So index p 
corresponds to the totally symmetric representation of group G. 

Two different cases are to be considered: (i) Operator Fk’ is diagonal in J (J is 
the quantum number characterizing different energy levels of the zero-order 
operator). (ii) Operator Tik’ is not diagonal in J. 

The first case will be considered in this section. The problem can be treated 
separately for each J value. Moreover, for./ fixed, operator T(O) is a multiple of the 
identity operator and so the problem is to diagonalize operator Ti”’ for some J 
value. The value of A is not important in such a case. This mathematical model 
is applicable for strictly diagonal operators and for arbitrary operators in the case 
of the weak coupling limit, i.e., where first-order perturbation theory is adequate 
to treat the problem (e.g., where the splitting of each degenerate energy level of 
operator To’ is small compared with the differences between zero-order states). 
It is to be noted that there also exist cases for which the first-order perturbation 
treatment yields no splitting. The tetrahedrally invariant third-rank tensor opera- 
tor is an appropriate example. All diagonals in J matrix elements of this operator 
are identically equal to zero. Thus even in the weak coupling limit the method of 
the diagonal equivalent tensor operator is not applicable. This more complicated 
problem will be treated in the following section. 

We develop here the algebraic treatment of tensor operators which is formally 
equivalent to the selection of basis functions made by Harter and Patterson (5). 
The approach based on the commutativity relations between tensor operators 
is more general than the original version of Harter and Patterson because of the 
applicability to nondiagonal as well as to diagonal tensor operators. Moreover, 
it gives the prescription as to how to find the basic functions describing the clustered 
states without any reference to the form of the potential surface related to the 
tensor operator considered. We will show that the form of the tensor operator is suf- 
ficient to predict the existence of clustering. 

To explain the qualitative aspects of the energy spectra for diagonal tensor 
operators, consider now the relations between operator Tk’ and operator J,. The 
different orientations of the z axis with respect to molecular symmetry axes are to 
be considered. The transformation of the operators to different axes is essential 
for both methods, the present one and that of Harter and Patterson. But the reason 
for such a transformation is quite different. Harter and Patterson do such a trans- 
formation after the choice of the basis functions, whereas here the comparison 
of the different operator forms is necessary to predict the existence of clustering. 

Let the tensor operator Td”’ be expressed in terms of the standard basis com- 
ponents with some particular orientation of the z axis as follows: 
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T;“’ = (k’(-+Q’ , 
0 (3) 

Me=-k 

where (k)G$‘@ is the transformation matrix from the standard basis with the z axis 
oriented in the p direction to the basis adapted to subgroup G C W(3). Extension 
to the case G C O(3) is trivial. The explicit form of the tensor operator depends 
on the choice of the quantization axis. Below, the invariant tensor operators for 
group Td of third, fourth, sixth, and eighth orders will be considered as examples; 
different expressions for these operators are listed here for reference. If the z axis 
coincides with the fourfold symmetry axis of group Td, then 

FiF)(z = S1) = (-i/2)(Vh3’ - V!f.j), (4) 

FAy)(z = S,) = (7/12)1’2VJ4’ + (5/24)“2(V:4’ + Pi), (5) 

Fj;‘(z = S4) = -(1/8)“2[ V,j6’ - (7/2)“2( VP) + V!!j)], (6) 

(33)1/Z 
T~;)(z = S4) = 8 [vi*’ + Pi]) (7) 

whereas for the case of the threefold axis as the quantization one, we have 

Ty;‘(z = C,) = (5/9)“2V,j3’ + (2/9)1’2(V:3’ - Pi), (8) 

T>ff’(z = C,) = -(2/3)[(7/12)“*VJ4’ + 2(5/24)“*( Vc_q: - Vh4’)], (9) 

Tf;)(z = C,) = -(1/8)“2[(16/9)V~6’ + (2/9)(70/3)“*(Vj6’ - V!!?$) 

+ (2/9)(77/3)“*( VJ6’ + P&l. (10) 

(33)“2 
Tyf’(z = C,) = - 

27 
VJ8’ - [vi*’ + VF$]. (11) 

The expressions become more complicated if one uses the C2 symmetry axis for 
group 0. 

FA4;9)(z = C,) = -(1/4)[(7/12)“‘V~“’ - (35/6)“*(Vg4’ + VL4:) 

- (15/8)1’z(V:4’ + Pi)], (12) 

13(2)1/z 
Tyf’(z = C,) = - 

(210)“2 

32 
Vh6,“’ + - 64 [Vi”’ + V’-“:] 

5(7)“2 (462)1’2 
- 32 [ vp + V!y] + --&- [V$“’ + V!!J], (13) 

9(33)“2 
Tyf’)(z = C,) = - 

128 

v6B’ _ (l155Y2 
192 [VP + V!?_?] 

+ 25(42)“* 7(13)“2 
[VJ”’ + vq] +T [ vp + V!,g + 

3(390)“2 
[VA”’ + vg]. (14) 384 

256 

Some of these equations are surely well known (see, for example, Ref. (5)). 
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To study the relations between the eigenfunctions 
basis functions, consider the commutator 

of Ti”’ and the standard 

[ Jo,Tdk’] = i M4 (‘)GpT$;. (15) 
MO=-k 

The symbol Jo is used instead of J, because of ambiguity in the z-axis choice. If 
there exist some functions which are the eigenfunctions of both Ti*) and J,, then 
the corresponding rows and columns of the matrix representing the commutator 
in the standard basis must be identically zero, because standard basis functions 
are eigenfunctions of operator J,,. Below, the term “good commutativity of opera- 
tors A and B in subspace !W’ will be used, which means (in analogy with “good 
quantum numbers”) that operators A and B may be simultaneously transformed 
to a form such that all nondiagonal (with respect to 93) matrix elements are 
negligible compared with diagonal ones. It will be shown that it is precisely the 
“good commutativity” of FEk, and Jo in certain subspaces which is responsible for 
the formation of clusters in the spectra of irreducible tensor operators; i.e., these 
basis functions are just the ones which must be used in Hatter-Patterson’s treat- 
ment to induce the clustered functions. So the index A4 is the good quantum number 
for the cluster labeling. To demonstrate good commutativity it is necessary to 
calculate the matrix elements of the commutator in the standard basis. To construct 
the diagonal equivalent tensor operator we use the well-known procedure 

Ti*‘= (-l)k[(2k)!/kR!]1’2(J+)k, 

Tbk’= [(k + /..c)!I(2k)!(k - /.L)!]“‘[J_, T;~)]cL-wl, (16) 

iA A,,,, = B, [AA,,, = [A A; [AA,,, = [A,[A,Bll, . . . . 

Only the asymptotic behavior of the matrix elements for the high-J limit is neces- 
sary for further use and not the numerical factors. So it is sufficient to know the 
powers of operators J+, Jo, and J’ in the general expression of the equivalent 
operator Z$ . Ir) The general structure follows immediately from the commutation 
relations 

J(J + 1) - 
li+l 

i ‘II n-1 
JCi 

(k + l)k 
2 1 J; + (_2t _ k) Jk+l 

0 
J 1-l 

+ . (17) 

It can easily be seen that for J_L > 0, operator T’, includes Jy multiplied maximally 
by J!-@ or [J(J + 1)]‘k-““2 for even (k - p) and [J(J + l)]‘k-+1)‘2 Jo for odd 
(/i - p). It is convenient to use instead of F[) some new operator obtained from 
FE’ upon multiplying by [(2J - k + 1)2k+1]“2, where (& = CY(LU + l)((~ + 2) . . . 
(a + ,!3). This factor is simply the inverse reduced matrix element of operator 
T;*’ in the J basis. The calculation is now straightforward if one uses the formula 

(JM + p(J’“,(JM) = [J - M)!(J + M + p)! 1’2 

(J - M - p)!(J + M)! 1 ’ (18) 
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l im (JM + PIT:kqJM) 
.,-cc E(2J - k + 1)21i+,l”2 

Cs(M + p)[J(J + l)]‘k-fi-“‘2 

for (k - p) even + 

for (k - p) odd I I . ’ ’ * 
(19) 

Here the ci are numerical constants. Two particular cases of Eq. (19) are of great 
importance: those corresponding to M + p = J and those corresponding to 
M+/L=O. 

ForM+p=JandJ%J.~, 

(J - M)!(J + M + /A)! 1’2 . 

= - (J - M - p)!(J + M)! 1 ($ (J) w2 
7 

and for M + p = 0 

(J - M)!(J + M - p)! u2 

(J - M - p)!(J + M)! 1 = (J)‘“. 

Thus for M + p = J the general formula (19) may be simplified to 

lim (J JITkk’lJ J - p) _ (J)--((Lfl)/2 

J-m [(2J - k + 1)21e+1P2 
7 

(21) 

(22) 

and in a similar way for M + p = 0, 

lim (J OIT:“‘lJ - p) _ (J)‘cL-k-1”2 for (k - p) even 

~--rrn I(25 - k + 1)2k+1P2 (J)‘cL-k-2)/2 for (k - ,u) odd. 
(23) 

To facilitate understanding, the asymptotics of the matrix elements for some 
particular cases of tensor operators, FL’, k = 4, t.~ = O-4, are shown in Fig. 1. The 
commutators of r$) with Jo have the same asymptotic behavior as the 7’$!) (except 
for Tbk), which commutes strictly withJ,). From (22) and (23) it follows that good 
commutativity exists between operator Tik’ and J, in the subspace M = J. The 
corresponding nondiagonal matrix elements are significantly smaller in this sub- 
space than in any others. In contrast operator Tjk’ possesses good commuta- 
tivity with J,, in the subspace M = 0. This means, for example, that operator 
Ti4’ has eigenfunctions which may be approximated well by the 1 J, M = J) stand- 
ard basis functions. That is, the second-order term in Eq. (11) on p. 4887 of Ref. 
(5) may be negligible. On the other hand the 1 J, M = 0) standard basis function 
seems to be a good approximation for some eigenfunction of operator T(y), for 
example. 

The same intuitive arguments are applicable to the study of the relations between 
the eigenfunctions of any Pk’ operator and standard basis functions; but to reach 
more rigorous results first-order perturbation theory may be applied to tensor 
operators diagonal in J. In such a case the diagonal part of operator Pk’ (i.e., 
V,jk’ standard component) is the zero-order operator, and the part of rt’ non- 



TENSOR OPERATOR SPECTRA 209 

diagonal in the standard basis is treated as the perturbation. Nondegenerate per- 
turbation theory may be used if the differences between the diagonal matrix ele- 
ments are large compared with the nondiagonal ones. From Eqs. (22) and (23) it 
is seen that it is not the case for M = 0, because not only the differences but the 
absolute values of the diagonal matrix elements are smaller than the nondiagonal 
ones. Figure 1 shows this clearly for fourth-rank tensor operators. Simple cal- 
culations show that for M = J the differences between diagonal matrix elements 

(JJIVbk’IJJ) - (JJ - 1jvppJ - 1) 

CJkiJ) 

in the high-J limit must be smaller than nondiagonal elements 

tJ J/V:k’/J J - P, ~ (J)-“,‘+I),2 

CJIkl/J) J-x (25) 

if only these elements satisfy AM > 2. 
Consider tetrahedrally invariant fourth-order operators as an example. If the 

quantization axis is the fourfold one, then the diagonal matrix element difference 
for A4 = J 

i 

J 4J 

1 i 

J 4 J 

i 

20 

-J 0 J - -J + 1 0 J - 1 ~2 03’2 

is larger in the high-J limit than the nondiagonal one 

( 

J4 J 

-J 1 

-+ 35(3)1’2(J)-5’2. 
4 J - 4 J-m 

(26) 

(27) 

The same situation takes place for tensor operators oriented along the threefold 
axis, but in this case the difference in the asymptotic behavior is not so pro- 
nounced, because the nondiagonal matrix elements are of order (J)-2. Finally, 
for the case of z-axis coincidence with the twofold symmetry axis, the order of 
the nondiagonal matrix elements and the order of the differences between the 
diagonal elements are the same even for M = J. So in such a case the IJ, J) basis 
function has no remarkable properties. It must be noted that perturbation theory 
may be applicable even in the case of the same asymptotic behavior of the non- 
diagonal matrix elements and the differences between diagonal ones. Only more 
accurate investigations which take into account numerical factors, not just the 
asymptotics, may explain the existence or absence of corresponding clusters for 
tensor operators including 7Yi standard components. 

Until now only one fixed standard basis set was considered, and it was shown 
that some functions from this set are nearly the eigenfunctions of the F,“) tensor 
operator. But there exist several equivalent standard basis sets for highly sym- 
metrical molecules. For the Td or 0 group, for example, there are three equivalent 
S4 axes. Thus, if there exists one standard basis function IJ,J) quantized along 
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M=J-4 

a, 

-- 

M=OL 

M= J-3 

FIG. 1. Schematic representation of F4’ tensor operator components in standard basis. Leading 
asymptotic terms in the high-/ limit are indicated inside small squares. Each matrix has only one diag- 
onal with nonzero elements. 

the S4 axis, then six functions exist which are approximate eigenfunctions of 
Fk’ with the same accuracy. These functions correspond to three different but 
equivalent S4 axes and to two orientations for each axis. As noted (5) for the case 
of k = 4, first-order energy corrections are strictly the same for all these functions 
and the first-order perturbation theory results in the clustering of energy levels. It is 
necessary to verify whether clustering is preserved in second order. Each cluster 
may be described by the set IJ,M(y)) of the standard basis functions with fixed 
M values but with different equivalent orientations, y, of the quantization axis. 
The order of cluster splitting is given by nondiagonal matrix elements of the Fk’ 
operator between the standard basis functions IJ,M(y)) with the same M, but 
different y: 
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FIG. l--Continued. 
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(J M(Y) 1 Talc) p Mb’)) > (28) 

where y’ is the orientation of a different equivalent axis. The matrix element 
Eq. (28) for M = J in the high-J limit may be approximated by matrix elements that 
are nondiagonal in M but diagonal in y. To demonstrate this one need only trans- 
form IJ M(y’)) into 11 M’(y)), 

IJ M(Y’)) = c a%f(yy’) IJ M’(y)), (29) 
M’ 

where D”(y-y’) is the matrix of finite rotation which transforms the y’ axis into 
the y one; and use the fact that the diagonal matrix element DA&, in the high-J 
limit is negligible compared with nondiagonal ones (19). 

So the general idea of this subsection was to show rather intuitively the reasons 
for cluster formation in the spectra of tensor operators diagonal in./. It is clear that 
the rank of the operator is unimportant and that only types of standard components 
are essential. Now it is possible to formulate more rigorously the qualitative theory 
of level splitting and to obtain some approximate formulas for predicting cluster 
structure of the spectra. 

B. Calculation of Cluster Positions 

The general statement concerning equivalent tensor operators is formulated 
below. 

Let Tkk**) be a tensor operator of rank k, which transforms according to the ir- 
reducible representation p = (n ,C,u) of group G c O(3) and which includes only 
v(,“) (/_& = 0, 53, +4, . . .) standard components for a special choice of quantiza- 
tion axes. Then we have in the high-J limit: 

(i) The standard basis functions with M = J are good approximation to the eigen- 
functions of I‘:,“! 

(ii) There exists a group of eigenfunctions with almost degenerate eigenvalues, 
and the degree of degeneracy is equal to the number of equivalent z-axis orienta- 
tions resulting in the same form of operator Taksa) 

(iii) If there exist several nonequivalent z-axis orientations yielding the form of 
operator TLk,*‘which does not include V’,kl and V’&! standard components then 
the same number of nonequivalent classes of clusters appears in the spectrum 
of operator TLkra’. 

As an example, octahedrally invariant diagonal tensor operators in the high-/ 
limit necessarily form two types of clusters in their spectra. Sixfold degenerate 
clusters correspond to six equivalent orientations of 4-fold symmetry axes, while 
g-fold degenerate clusters arise from the eight equivalent orientations of 3-fold 
symmetry axes. Twelvefold degenerate clusters do not always appear in the 
spectra because, if the quantization axis is directed along 2-fold symmetry axes, 
the explicit form of invariant tensor operators includes the V$ standard com- 
ponents. Crude estimation of the existence of clusters generated by operators 
which include V(,“: but not Vc,k: standard components is based on the numerical 
value of the parameter (k)G~(j3)I’k’G~(fi) = X. This parameter characterizes the 
strength of the perturbation. For A Z+ 1 the clusters must not exist, whereas for 
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A < 1 clustering is possible. For octahedrally invariant tensor operators of orders 
4, 6, and 8 the parameter A equals (lo)“‘, (105)Y26, and 2(35)lj2/27 correspond- 
ingly. So one may expect the existence of 12-fold clusters for 6th- and 8th-order 
operators and the absence of 12-fold clusters for the 4th-order tensor operator. 
Such a suggestion has been verified by numerical investigations performed for a 
large number of tensor operators invariant with respect to groups 0, T, D8, Dq, 
and D2 (20). It must be noted also that sometimes the tensor operator may take 
the form satisfying the conditions of clustering even if the z axis does not coincide 
with any symmetry element. Such a situation was shown to exist for D,-invariant 
tensor operators (20). It probably takes place also for the lOth-order tensor opera- 
tor. A detailed investigation is now in progress. 

Now we describe the procedure which permits calculation of the relative posi- 
tions of the clusters in the spectra of tensor operators. One may characterize the 
clusters by label (@,M), where p is the type of quantization axis which results in 
the form of tensor operator satisfying conditions for clustering, and M is the 
angular momentum projection on this axis. Different /3 correspond to different 
types of clusters, and within the same type the clusters may be distinguished by 
the M value. For example, for group Td two different p are possible, correspond- 
ing to a fourfold axis (sixfold clusters) and a threefold axis (eightfold clusters). The 
possible values of M leading to real clusters are difficult to predict for concrete 
cases, but some initial values, M = J, J - 1, J - 2, . . . , are evident. So the 
problem is to calculate the relative positions of clusters for any diagonal tensor 
operator Td”‘. 

The energy of the cluster in the first-order approximation is simply the expecta- 
tion value of the pk’ operator calculated with respect to the 1 p, M) trial function; 
to generalize the k = 4 results of Ref. (5), the relative positions of clusters may 
be reduced to a ratio of Clebsch-Gordon coefficients, by means of the Wigner- 
Eckart theorem 

-%,J; ,kM) (P,MIGk’IP,W CJM . JM A0 

E(k,J; P,M’) = (&M’)T;~‘jj3,M’) = a ’ 
(30) 

Particular realizations of (30) for M = J, J - 1, J - 2, J - 3 are rather simple. 
For example, 

E(k, J; p, M = J - 1) = E(k, J; j!i, M = J) 
25 - k(k + 1) 

25 ’ 
(31) 

E(k, J: & M = J - 2) = E(k, J; ,L3, M = J) 

X 
2(2J - k)(2 J - k - 1) - 4k2(2J - k) + k’(k - 1)2 

45121 - 1) 
, (32) 

E(k, J; 0, M = J - 3) = 
E(k, J; p, M = J) 

123(2J - 1)(2J - 2) 
[6(2J - k)(2J -k - 1)(2J -k - 2) 

- 18k2(2J - k)(2J - k - 1) + 9k2(k - 1)‘(2J - k) - k’(k - l)‘(k - 2)‘]. (33) 

From Eqs. (31)-(33) it can be seen that for J significantly larger than kZ the 
clusters with M = J are situated rather close to the (p, M = J) cluster. It means 
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that IE(k,J; p,J) - E(k, J; p, M = J)I is small compared to the width of the en- 
tire manifold. It may be shown that for fixed k and 6 the high-J limit for the 
energy of cluster (p, M = J - 6) is equal to C(k, J; p, A4 = .I), 

l im E(k, J; P, M = J - 6) = 1 

* J-.rn E(k, .I; /3, M = J) 
(34) 

We can calculate the relative positions of different types of clusters, i.e., the 
energies of clusters with different p, as follows. Taking into account formula (3) 
and utilizing the Wigner-Eckart theorem one has 

So the relative positions of the clusters depend only on transformation coefficients 
from a standard to a nonstandard basis. 

As an example, we now construct the qualitative scheme of energy clusters for 
octahedrally invariant tensor operators. The spectrum of the fourth-rank tensor 
operator is well known (4,5,8), so the comparison with exact numerical solutions 
is possible. Figure 2 shows the cluster positions predicted by formulas (30) and 
(35). Clusters with /3 = Sq are sixfold degenerate and /3 = C3 clusters are eightfold 
degenerate. In Table I, the numerical data from Krohn’s table (4) are compared 
with results of simple perturbation calculations. It is seen that the predicted values 
are significantly more accurate for S, than for C3 clusters. Such behavior may be 
easily explained from the qualitative point of view, upon taking into account Eqs. 
(5), (9), and (25), which show that nondiagonal matrix elements of TY,) in the 

E@=s, ;M=J) 

E(I?,=S,;M=J-1) 

E (P,=S,;M=J-2) 

.-i 

(J-2){2J-37)+36 
J(2J -1) 

E @=C, ;M=J-1) @(l-p) 

E (IX=C, ;M=J ) - 3 

FIG. 2. Qualitative schema of the clusters in the spectra of octahedrally invariant fourth-rank tensor 

operators in the high-.! limit. 
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TABLE I 

Comparison (for Octahedrally Invariant Fourth-Rank Tensor Operators) of Relative Cluster 
Positions Predicted by First-Order Perturbation Theory and Centers of Gravity of 

Exactly Calculated Clusters 

J Pr;;;;;ed $$$&, Predicted 
Value 

100 S4 1.111 10/9 * 1.2429 
1.2429 

100 c3 1.109 1 = 1.111 1.2349 I 

30 s4 1.4994 I 2.596 
1.5 2.603 

30 c3 1.44 2.16 I 

J M 
E(J,6=C3;M) predicted 
E(J,8 =S4;M) value 

100 100 -0.667 

100 95 -0.70 
-213 

30 30 -0.67 

30 28 -0.81 

standard basis with S, quantization axis are smaller in the high-J limit than the 
corresponding matrix elements in the basis oriented along the C3 symmetry axis. 
The same fact is responsible for the difference in numbers for sixfold and eightfold 
degenerate clusters. 

From formulas (6), (7), (lo), (1 l), (13), and (14) one obtains immediately the 
relative positions of 6-fold, IP(M,CJ, &fold, E”“(M,Cl), and lZfold, E’k’(M,CJ, 
degenerated clusters in the spectra of octahedrally invariant operators of orders 
6 and 8: 

-13 
E’6’(M,C4):E’6’(M,C3):E(6)(M,Cz) = 1: ; : - , 

8 
(36) 

E’8’(M,C4):E’8’(M,CQ):E(*)(M,C2) = 1: ; : ; . (37) 

One important consequence of the above statement permits qualitative predic- 
tion of the properties of the diagonal F coefficients of Moret-Bailly (7,8). These 
dtagonal coefficients FL: “p$ are the diagonal matrix elements of a k-rank irreduci- 
ble tensor operator calculated in the basis which diagonalizes the fourth-order ten- 
sor operator. Whenever standard basis functions withA = J (p = Cd, C,) are good 
approximations to the eigenfunctions of Fk’ for any k (in the high-J limit) the 
eigenfunctions of r,‘l corresponding to A4 = .I (p = C4,C3) are also the eigen- 
functions of r:,’ in good approximation. So the diagonal Fck J A coefficients must 
form 6-fold and &fold clusters as eigenvalues of IPji and F.ji. Other types of clus- 
ters which may exist in the spectra of r&) (for example, 12-fold degenerate clusters 
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FIG. 3. Clusters of P” z” XI’ coefficients obtained by numerical calculations 
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corresponding to p = C, axis) must not be present for F” J J, coefficients. The 
absence of such clusters for F’” J JI coefficients is due to the fact that the eigen- 
functions of Tck’ forming such clusters generate a subspace which in a good ap- 
proximation coincides with the subspace of standard functions (J,M (p = C,)>, 
but the eigenfunctions of operator r,“i do not belong to this subspace, and to 
transform operator T’“’ to the basis of eigenfunctions of Fi,’ we must utilize the 
orthogonal transformation which mixes functions corresponding to different 
clusters of eigenvalues of TAk). The relative positions of the clusters of F’k J J, 

coefficients may be calculated approximately by formulas (30)-(35). The scheme 
of cluster positions is more complicated for k > 4 than for k = 4 because the 
separation between clusters with different M but the same p is significantly larger. 
The scheme of clusters for Fc4 J J), F@ J J), Fc8 J J), and F”O J J, is shown in Fig. 3 for 
J = 20 (8,21,22). Only the clusters which may be easily identified are shown. 
Each cluster is characterized by two numbers indicating the width of the cluster. 
The labeling of the clusters is the same as that for eigenfunctions of operator 
T!,4’. The relative positions of the clusters with different A4 have a complicated 
behavior because J is not large compared with the square of the tensor rank. 
Some numerical values of F’” J JJ are compared with predictions of simple pertur- 
bation theory in Tables II and III. The agreement between predicted values and 
the results of numerical calculations is worse for Fck J J, than for Fc4 J J), which are 
identical with the eigenvalues of r ii. One of the reasons is insufficiently large 
J values and the other is the differences between Fck J JI (k > 4) coefficients and 
the eigenvalues of the operator Tak:. 

Until now only the relative positions of clusters were discussed. Two important 
questions arise in explaining the fine structure of each cluster. What is the sym- 
metry of levels forming the clusters, and what is the order of levels in the cluster? 
To answer the hrst question it is sufficient to construct the induced representation 
of group G, starting from the one function ]/3,M) which was considered as a 
component of the irreducible representation of subgroup G’ c G generated by 
axis p. This procedure was discussed earlier (5,9) and need not be repeated here. 
The calculation of the level ordering in each cluster is a more complicated prob- 
lem. The result depends on the type of tensor operator. The theory has already 
been formulated for an octahedrally invariant fourth-rank tensor operator (5). 

TABLE II 

Comparison of Relative Positions of Different Types Clusters of P” J J1 Coefficients with the 
Predicted Value for Clusters in the Spectrum of the Fji Operator 

J M 
F(6 J ')(@C3;M) 

Predicted 

F(6 J J)(~=S4;") value 

100 100 0.564 \ 
100 36 0.83 I 

30 30 0.587 9/16 = 

20 20 0.63 = 0.5625 
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TABLE III 

Relative Positions of Clusters for Different Diagonal P” J JJ Coefficients” 

100 s4 1.2661 100/79 2 25/16 = 2019 = 

100 c3 1.281 = 1.x%3 = 1.5625 = 2.2 

20 54 -8.4 - 1.30 - 0.52 - 417 = 
- 20 - 1.25 = 0.57 

20 c3 -2.6 not I - 0.7 
defined 

a Predicted values are calculated by formulas (31). 

Extension to other tensor operators and F coefficients is also possible, but we do 
not treat it here. Instead we now focus attention on clusters in the spectra of 
nondiagonal tensor operators. 

III. NONDIAGONAL TENSOR OPERATORS 

A. Introductory Cafcufations 

Let us now study the energy-level splitting caused by nondiagonal tensor 
operators. The simplest Hamiltonian has the form 

H = BTO’ + ATk’, (38) 

where r”’ is a zero-order tensor operator and F”’ is a tensor operator of order k 
which is assumed to be completely nondiagonal in J (J is the quantum number 
which distinguishes the nondegenerate levels of the zero-order operator). We now 
investigate the case of weak coupling. This means that the perturbation theory 
which treats Fk’ as a perturbation is applicable. Only second-order perturbation 
theory gives nonzero splitting. Before formulating a general approach, we con- 
sider one concrete example to demonstrate the existence of clusters in the weak 
coupling limit for nondiagonal tensor operators. One of the most physically inter- 
esting problems is the splitting caused by a tetrahedrally invariant tensor operator 
of third order (see Section IV). The same operator is important for the calculation 
of the vibration-rotation band intensities in the spectra of tetrahedral molecules 
(26). So the Hamiltonian is 

H = BTq,’ + V(3u) AI 7 (39) 

and B is assumed to be sufficiently large that second-order perturbation theory 
is applicable. The symmetry-adapted eigenfunctions of the zero-order operator are 
denoted by ]Ja, n,C, a), where the additional index LY is introduced to simplify 
the relation between Td and O(3). (For J even, ar = g and for J odd, CY = u .) n is 
now the internal multiplicity index which distinguishes the different eigenvalues 
of fourth-order diagonal tensor operators. 
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The second-order correction to the energy level may be easily written in the 
basis mentioned above, 

E’2’(J 1 
. n C) = - (I9 9 c 1 (J,; n,c,crpyp, + 1; n’, c, a) 12 

2B(J + 1) n’ 

1 - c I (J,; n,C,ajVy:‘(Ja + 3; n’, c, (T) 1” 
6B(J + 2) ,r 

+ & c ((Jai n,C,(T(Vy(Ja - 1; n’, c, a) (2 
I” 

1 
+ 1 1 (J,; n,C,crpt$q& - 

6B(J 1) 
3; n’, c, Cr) 12. (40) 

- n, 

The matrix elements of Va3;’ are expressed in terms of the 

coefficients 

7(2J, + 1)(25, + 1) 1’2 J, 3 J, 

4 I (0 0 0) . t41) 

Using Eq. (41), one may simplify Eq. (40) to 

.F2’(.1,; n,C) = a,,+’ C IF~;$$“I’ + aJf3 1 IF~:~;$c+3’12 

n’ It’ 

+ LIJ_~ 1 IF~;$J,s,” )* + ‘2J-3 1 \Fj,“;&3’ I*, (42) 
rr 1 ?I’ 

where 
21 J(J + 2) 21 

aJ+1 = - - 

167rB (25 - 1)(25 + 5) J4m -+ -izs? 

21 (J - l)(J + 1) 21 
a,_, = - 

16nB (25 - 3)(25 + 3) 52 GZ ’ 

35 (J + l)(J + 3) 35 aJ+3 = - - ---, 
487rB (25 + 3)(21 + 5) ~--rm 

) 

192rrB 

35 J(J - 2) 35 

uJ-3 = 487rB (25 - 1)(2J - 3) + - ’ J--F= 192nB 
(43) 

If one prefers to use F symbols for group SO(3) but not O(3) (24% then two 
separate equations for .I, even and odd, are to be used: 

EC2’(.!,; n,C) = UJ+I 1 ~~~z~c$$ I2 + aJ+3 2 jF~$z’$ I2 

tl’ n’ 



220 BORIS I. ZHILINSKII 

TABLE IV 

Comparison of the Clustering in the Spectra of Z$‘p’ and 72”’ Operators for J = 16 

” c E(2)(T(3"); J = 16; n,C) IO4 
A1 

Ff ;; ;;' IO' n C 
1 

1 % 19.12 9.R21 l Al 

3 Fl 19.00 6 6 3 Fl 
2 E 18.93 

1 9.815 
9.812 2 E 

3 F2 12.31 

2 Fl 10.85 

I 
6 6 

1 3.75 3 Fz 

3.66 2 Fl 

-0.30 1 E 

1 E 7.46 6 -0.51 2 FE 

2 FE 5.46 I -1.10 O A2 

l F2 -0.61 -2.98 1 F2 

O A2 8 -3.55 1 F1 

l Fl 

I -1.99 

-2.99 -4.17 O Al 
O A1 -3.24 

o FP -24.51 
8 I -24.84 

-6.55 O Fl 
0 E -6.76 8 0 E 

O Fl -25.28 -6.98 O F2 

+ a.&1 c IF;*$&;‘12 + UJ_3 c I Fa”,J$;~~I”. (45) 
n’ R’ 

HereC = {A,ifC = A,;AlifC =A2;E*ifC = E;F,ifC = F,;F,ifC = F,}.More 
precisely for doubly degenerate representation we have the correspondence 
E 1 f, E2 which follows from the special choice of the matrix representation (24). 

Equations (44) and (45) give the solution of the problem considered through the 
second-order perturbation theory. Factor %mB may be eliminated from expres- 
sions (44) and (45): The resulting numerical values of Ec2’(J; n ,C), calculated with 
the F3 coefficients from Hilico’s tables (25,26), are listed in Table IV for J = 16. 
For comparison the eigenvalues of a diagonal fourth-rank operator are presented 
in the same table. Even for such a relatively low J value (J = 16) the clustering 
of eigenvalues exists for the third-order nondiagonal tensor operator. The levels 
which form the clusters are denoted by curly brackets, with the numbers cor- 
responding to the quasi degeneracy of the clusters. One can see that the relative 
numbers of sixfold and eightfold degenerate clusters are different for third- and 
fourth-order operators. This fact will be discussed in the following subsection. 
Here, more detailed results are presented using tetrahedrally invariant third-rank 
tensor operators as an example. 

It is well known that any tensor operator may be represented as a sum of equiv- 
alent operators (AJ=s)T(k), 

y-(k) = 1 (AJ=s)Fk), (46) 
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TABLE V 

Spectra of Equivalent Nondiagonal Tensor Operators lw1F2’ Computed by Second-Order 
Perturbation Theory for J = 16 

IlC 1+31\((3) I-31”(3) l-31”(3) + l+31y(3) 

221 

l Al 

3 Fl 
2 E 

3 F2 

2 Fl 

1 E 

2 F2 

O A2 

l FP 

l Fl 

O Al 

O Fl 

OE 

O FP 

--. - 

llC l+lly(3) 

-8.414 0.014 -8.400 

-8.416 6 0.008 6 -8.407 6 

-8.416 0.005 -8.411 

-14.536 t 

6 

11.847 I 

6 

-2.689 

6 

-14.573 11.825 -2.748 i 

-18.627 19.735 1.108 

-18.761 6 19.872 6 1.111 I 6 

-19.077 20.016 0.939 

-21.124 24.214 3.089 6 

-21.628 25.0% 3.439 I 

-22.274 26.348 4.073 

-23.874 28.116 4.241 

-24.114 28.617 4.504 

-24.342 29.098 4.756 

flC L-11”(3) IlC Pl"(3) +r-11"(3) 

2 E 

3 Fl 

l Al 

2 Fl 

3 F2 

O Fl 
OE 

O A2 

O F2 

2 F2 

1 E 

l Fl 
1 F2 

O A1 

-0.624 

-0.710 6 

-0.880 

-27.flO4 6 

-28.851 I 

-33.057 

-34.882 

-36.437 

-36.765 

-45.093 

-47.117 

-50.697 

-50.396 

-54.321 

1 E 

l Fl 

3 Fz 

2 Fl 

O A2 

1 Al 

3 Fl 
2E 

O FP 
OE 

O Fl 

53.468 

49.440 

47.298 

47.002 

44.265 

43.848 

40.607 

33.512 

28.404 

28.116 6 

27.970 

7.498 

5.533 8 

3.534 

1 Al 27.524 

3 Fl 27.406 6 

ZE 27.346 

3 F2 14.997 1 

6 

2 Fl 13.603 

1 E 6.351 

2 F2 4.347 

0 A2 

l F2 

l Fl 

0 Al 

O Fl 
OE 

O F2 

such that (AJ=s)P) has nonzero matrix elements only between the states with 
A .I q = s (17). The operator FjF”) considered in this section may be expressed as 

7Y3”’ = (AJ=--3)~ju) + (AJ=-l)Qu) + (AJ=l)~~ju) + (AJ=3)Ta3u) 
*I 1 1 1 I . (47) 

All other equivalent tensor operators are identically zero. The question is: What 
are the specific features of the spectra of each equivalent nondiagonal tensor 
operator? The numerical answer for J = 16 is presented in Table V, where the 
spectra of operators CAJ=*3)Fj:) and (AJ=rl)Fj;) and their linear combinations are 
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listed. Some clusters are presented in each spectrum, but the types and numbers 
of well-pronounced clusters vary. The final clustering presented in Table IV for 
the total Z!i;) tensor operator is obtained by near cancellation of many important 
terms. Although the qualitative structure of the 7<A3) total operator spectrum 
seems to be rather simple, the spectra of equivalent nondiagonal tensor operators 
are different. 

One note more before general consideration of the nondiagonal tensor operators. 
The clustering in the spectrum of operator Z”‘,“p’ is connected with clustering of 
F3 J P) coefficients. This phenomenon was given little attention (although some 
regularities in the P3 J J-c3) coefficients were marked (11,26) and approximate for- 
mulas for their calculations were derived), probably because the P3 J J’) do not 
themselves form well-defined clusters, but specific linear combinations of their 
squares which arise naturally in the perturbation expressions. For P3 J J*3) coef- 
ficients these linear combinations may be simplified considerably because of the 
well-known fact that only one of the FJ,~$*$)c (n, n’ = 0, 1, 2, . . .) coefficients 
is essential (26), so for the equivalent nondiagonal tensor operator (AJ=3)Pj:3 the 
second-order energy contribution is to good approximation due to only one F 
coefficient. In such a case, one may force clustering by an appropriate choice of 
the phases for the G coefficients, which was made arbitrarily (8). Nevertheless, 
only the squares of the moduli of coefficients nondiagonal in J are physically 
meaningful. 

B. Qualitative Discussion 

To explain qualitatively the structure of nondiagonal tensor operator spectra 
consider again the commutativity relations between Fg’ and J,. The commutator 
is nondiagonal in J, so the matrix elements of type 

(J’ M + /.+PIJ M) (48) 

are to be calculated. First, we estimate the asymptotics of these matrix elements 
in the high-J limit for a Fj;’ tetrahedrally invariant tensor operator. Two par- 
ticular forms of this operator are considered: those given by formulas (4) and (8). 
The matrix representation of the commutator is shown schematically in Figs. 4 
and 5. The main difference from Fig. 1 is the nondiagonal-in-J character of these 
matrices. So the good commutativity relation between T(i:) and Jo may be achieved 
only in the small coupling limit, when the difference between zero-order levels is 
significantly larger than the splitting of each level. If this is the case then to yield 
the same cluster structure for nondiagonal operator as for diagonal one matrix 
elements, 

(J’J + @$?lJJ) (49) 

must be significantly smaller in the high-J limit than 

(J’ /_L(T:k))J 0). (50) 

In this respect the two forms of Ty;‘, (4) and (8), have different properties. 
If operator ri;) is written in the standard basis with the S, symmetry axis as the 
axis of quantization, then the matrix elements (50) are constants, whereas (49) 



TENSOR OPERATOR SPECTRA 223 



224 BORIS I. ZHILINSKII 

goes to zero as J increases. In contrast, for F1:’ written in the standard basis with 
the C3 symmetry axis as the axis of quantization, both types of matrix elements, 
(49) and (50), are constants in the high-1 limit. The same arguments that were 
applied to discussion of diagonal tensor operator spectra now lead us to conclude 
that sixfold degenerate clusters must be significantly more pronounced than eight- 
fold degenerate clusters. Tables IV and V verify this conclusion. To predict the 
cluster structure in nondiagonal tensor operator spectra the general matrix element 
asymptotics are to be taken into account: 

( J’ J + /L 1 TJ”’ (.I J) ,zm c(J)‘~‘-~-““~, (51) 

where c is a numerical constant. Formula (51) shows that the most unfavorable 
case for clustering in the spectra of nondiagonal tensor operators is case where 
the operator P$’ includes the standard basis component Fk) with p = (J’ - J). 
In such a case the asymptotics for matrix elements with M = J are approximately 
the same as for M = 0, and equal constants. So the subspace with “good com- 
mutativity” between Jo and TikJ cannot be extracted. 

Approximate calculations of cluster positions may be done for nondiagonal 
operators using zero-order standard basis functions in analogy with the procedure 
of Section IIB, but the calculation is more tedious in this case and does not result 
in simple formulas as for the diagonal operators. So it will not be discussed here. 

C. Strong Couptiag Case 

It has already been noted that the formation of clusters in the spectra of the 
nondiagonal tensor operators discussed above takes place only in the weak 
coupling limit. We now discuss briefly the possible alternative case of strong 
coupling. From the physical point of view the strong coupling case corresponds to 
infinitely large constant A in Eqs. (1) and (38), but it is not possible to omit 
the zero-order tensor operator to reach the approximate operator suitable for the 
strong interaction limit. If the weak coupling limit describes the small perturba- 
tions of a free rigid rotator by a “crystal field,” then strong coupling corresponds 
to the motion of the particle in one of the minima of the “crystal potential.” In the 
zero-order approximation, each of the crystal potential minima is treated inde- 
pendently. So in the strong coupling limit degenerate levels exist which form 
clusters, and the origin of these clusters is the existence of several equivaient 
minima of the crystal-field potential (27). The possibility of tunneling from one 
minimum to another leads to the splitting of degenerate levels. To illustrate here 
the general idea of cluster formation in the case of the strong coupling limit, we 
consider the particular example of the spectra of operator (39) under the assump- 
tion of strong interaction (28). The crystal-field potential Vz,) possesses four 
minima corresponding to the particle positions above four equivalent sides of a 
tetrahedron. The most crude approximation is to suppose that the motion of the 
particle in each independent minimum is described by a two-dimensional harmonic 
oscillator Hamiltonian. To improve this model it is necessary to break the sym- 
metry from the SU(2) group to SO(2) and to Csv. - This gives the level structure for 
one independent minimum. To take into account the existence of four equivalent 
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TABLE VI 

Subduction/Induction Table for Constructing Energy-Level Clusters for Tetrahedrally 
Invariant Third-Rank Tensor Operators in the Strong Coupling Case 

SU(2) 0 1 2 3 

SO(2) 0 1 0,2 I,3 

C3" Al 
E Al,E E, A1 + A2 

% + F2 E + Fl + F2 

'd % + F2 
E+Fl+F 

2 
E + F1 + F2 (Al+F2) + W2+Fl) 

minima one need construct the induced representation of Td starting from the ir- 
reducible representation of C,,. Thus each level generates a cluster of four or eight 
levels depending on degeneracy. The procedure described above yields the level 
structure presented in Table VI for some low vibrational levels. The strong cou- 
pling limit is only sketched here, because the aim is to demonstrate that clusters 
of four and eight levels arise naturally in the strong-field model for tetrahedrally 
invariant third-rank tensor operators, whereas six- and eightfold clusters are 
formed in the small coupling case. Moreover, the sixfold clusters are more pro- 
nounced. The correlation between strong and weak coupling limits must explain 
this behavior. 

IV. PHYSICAL APPLICATIONS 

In this section we discuss some physical problems for which the method devel- 
oped earlier is applicable. The most widely known problem is the centrifugal 
distortion of spherical tops (J-10). The corresponding rotation Hamiltonian for 
the ground state has the form 

H = H$‘f’ + Hay’ + Ha”,“’ + HP’ + . * . . (52) 

The Ha*’ term is usually the most important, and higher-order tensor operators 
yield small corrections. It is well known that the spectrum of a fourth-order tensor 
operator possesses remarkable clustering in the high-/ limit. The interesting 
question is whether or not the inclusion of higher-order terms in the energy expres- 
sion violates such clustering from the qualitative point of view. The reasoning 
developed in this paper shows that clustering of energy levels exists for operator 
(52) in the high-1 limit for any form of operator. The only limitation is the diagonal 
character of this operator (the case of weak interaction may be treated identically). 
The rotation Hamiltonian is always J diagonal. So the clustering of rotational 
energy levels for spherical tops in the high-J limit is a general phenomenon. If 
operator (52) includes some important terms of high order, the same clusters ap- 
pear as for a fourth-order operator, but the relative positions of the clusters change 
significantly. Thus, with the cluster structure of the experimental spectra known, it 
is possible to construct the linear combination of tensor operators resulting in 
such spectra. Formulas (30)-(35) are key formulas for this interpretation. 

The other physical problem is the large-amplitude vibrations of inorganic non- 
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rigid ionic molecules composed of a highly symmetrical rigid core and an atom 
which possesses almost free motion around this core. The appropriate examples 
are LiBH4, TlReO,, TlN03, etc. There exist some nonempirical calculations of 
the potential energy surfaces for such molecules (29) and a number of electron 
diffraction data (14, 30). The low-frequency spectroscopic investigations of 
such molecules in the gas phase are rather complicated. So to predict the prop- 
erties of these molecules in gas phase under high-temperature conditions theoreti- 
cal models are necessary. Such investigations were begun recently by the author 
of the present article and his collaborators (15,16,28,31,33). To relate the gen- 
eral treatment of the problem considered in this article to specific nonrigid mole- 
cules, we consider LiBH, as an example. Nonempirical study of this molecule 
(29) shows that the Li atom possesses a large-amplitude motion about the BH, rigid 
core. The potential energy minima correspond to the Li position above the middle 
of the side of the rigid tetrahedron (C,, symmetry), whereas the Li position above 
the top of the tetrahedron corresponds to a maximum of potential energy. The po- 
tential energy barrier separating one minimum from another corresponds to the 
Cpv position of the Li atom, and it is sufficiently low to permit the tunneling of Li 
from one minimum to another at reasonable temperatures. This is the qualitative 
description of LiBH, which is probably more suited for other examples of similar 
molecules. LiBH, is a natural starting point because of the existence of nonempiri- 
cal calculations which are surely not good enough to calculate the vibration- 
rotation energy levels but which nevertheless are qualitatively sufficient for 
constructing simple models of vibration-rotation spectra. The most crude approxi- 
mation is to hx the BH, core as a rigid tetrahedron and to consider Li as a rigid 
rotator in the tetrahedrally invariant field of the rigid core (33). The simplest form 
of potential reproducing the regularities described above is the VY$ tensor opera- 
tor which is tetrahedrally but not octahedrally invariant. VY:) possesses only four 
minima and it is antisymmetrical with respect to inversion. Thus the most simple 
model for treating the large-amplitude deformation of LiBH, is that described by 
Hamiltonian (39) studied in Section III. 

V. CONCLUSION 

An attempt to explain the general phenomenon of energy-level clustering in 
the spectra of tensor operators adapted to a nonstandard basis was undertaken in 
this article. A mathematical treatment of tensor operators was developed which 
is formally equivalent to the intuitive assumptions of basis functions by Hatter and 
Patterson (5). Tests involving the commutativity of J,, and Fk’ were proposed 
which indicate the types of basis functions to be used for clustered states without 
reference to the corresponding potential surface. Although a number of important 
questions are still unresolved the clustering itself no longer appears to be mysteri- 
ous or unexpected. The most interesting problem to be solved, in the author’s 
opinion, is the correlation between weak and strong coupling limits for nondiag- 
onal tensor operators. It seems also that a more rigorous mathematical explanation 
of tensor operator spectra is possible using the permutation symmetry associated 
with a given tensor operator. From the intuitive, physical point of view such sym- 
metry is due to permutation symmetry of the localized standard basis functions. 
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Additional numerical examples are also desirable, especially for tensor operators 
adapted to some different chains of groups, G C O(3). 
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