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When and Why Hund’s Cases Arise 

N. F. STEPANOV AND B. I. ZHILINSKII 

Molecular Spectroscopy Laboratory, Department oj Chemistry, Moscou~ State University, 
117 234, Moscow, LTSSR 

The conditions are found under which the general diatomic molecule equation reduces to 

the set of equations for certain Hund’s cases. The relations between some operators are given 

which are basic in characterizing a molecule as belonging to a definite Hund’s case on the 

basis of approximate nonempirical calculations. The accurate quantum mechanical explana- 

tion is given for a transition between Hund’s cases when such a physical quantity as the ro- 

tational or vibrational quantum number varies. 

1. INTRODUCTION 

To describe rotational-vibrational electronic spectra, Hund has introduced definite 
momentum coupling cases for diatomic molecules which are now well known and widely 
used (1-3). Presently, the treatment can be carried out for a great variety of electronic 
states both for ideal and intermediate Hund’s cases (3). All such treatments are based 
on the proper model Hamiltonian for each Hund’s case. At the same time, there is still 
no strict theory which could on the basis of some nonempirical calculations characterize 

a molecule as belonging to one of the ideal or intermediate cases. But modern calculation 
capabilities give good reason to hope that this problem for the diatomic molecules could 
be solved if the needed theory existed. 

It is doubtless that as a basis for the treatment of the rotational-vibrational electronic 
spectra, use should be made of the equation which is invariant under rotation of the 
system as a whole and translation of its center of mass. A convenient form of such equa- 
tion was proposed by Pack and Hirschfelder (4), who constructed later, using this equa- 
tion, the best adiabatic approximation (5). In this paper, various Hund’s cases are 
discussed on the basis of the exact electronic nuclear set of equations. Though Pack and 
Hirschfelder (5) briefly examined the equations for Hund’s cases “a” and “c”, they did 
not give reason for other Hund’s cases to arise. We have obtained here definite conditions 
on the operators from the total equation, under which the molecular system would be 
brought closer to one of Hund’s cases. This treatment also enables us to clarify and 
describe the observed change of Hund’s cases as the rotational or vibrational quantum 
number varies. 

2. GENERAL EQUATION FOR DIATOMIC MOLECULES 

Let us consider a diatomic molecule Schrbdinger equation which in the absence of any 
external field is invariant under the center-of-mass translation and rotation of the system 
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as a whole. The total Hamiltonian is given by 

Ht = Z$ bRa2 + C +P? + C V<j + C Via + C Vap + (Y~H~, (1) 
a * i<i i.a a<B 

where Pa, Pi are the momentum of nuclei and electrons, V,, Via, Ire, are the potential 
energies of two electrons, of an electron and a nucleus and of two nuclei, respectively, 
and a2Ha contains the relativistic and magnetic corrections accurate through O(CY”) 
where a! is the fine-structure constant (6). To separate the center-of-mass motion and 
rotation we proceed to the coordinate system related to the center of mass of the nuclei 
and to the body-fixed coordinate system. The so obtained Hamiltonian which governs 

the internal motion of the system is given by (4) 

+ He + !H, + LY~H,, 
P 

where LR is the relative orbital angular momentum of the two nuclei, H, is the sum of 
the kinetic and potential energy for the N electrons, and l/pH, is a mass polarization 
correction. We now represent LE by 

LR = J - J,, 

where J is a total angular momentum of the system and J, is a total electronic angular 

momentum. This completes the transformation of the Hamiltonian in representation 
of the eigenfunctions of J2 and J,. Since the dimension of the rotation group representa- 
tion is more than (or equal to) one the resulting equation has a matrix form (except 

J = 0) 
H\E(r, R; J, 52) = ,TiN(r, R; J, n), (4) 

HQLPP(J, 0 - 1) + Hn&(J, fi) + How*(J, Q + 1) = m(J, Q), (5) 

1 
HDQ =-PB2+ (6) 

2fi 
-&[J(J+ 1) - zv+J.p]+~.+~~, +d~~!, 
Ir2 p 

UJ, Q> 
H nn*1= -___ J eF, 

~/.LR~ 
(7) 

h*(J, iI> = [(J f D + l)(J =I= a)]+. (8) 

Equation (4) yields different sets of energy levels for different J's. We simplify the prob- 
lem by the electronic nuclear separation. First we represent the internal wavefunction 
in an exact form 

* = %(r,R).X(R), (9) 

where \E is a column vector, 9 is a column vector of electronic functions and X(R) is a 
nuclear function. 

(@I@), = 1, (10) 

(XIX), = 1. (11) 
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l<y applying a variational principle with a trial function in the form of Eq. (9) and nor- 

malization conditions Eqs. (10, 11) we obtain a matrix electronic equation (12) and one- 

dimensional nuclear equation (15) instead of Eq. (4). 

Hno_l”*(J, Q - 1) + Hnn”Q(J, G) + Hnn+P@(J, h2 + 1) = &(R)@(J, n>, (12) 

1 1 v,x 
Ijeep = H, + -HP + a2H, + 

1 
$2 + JeyZ - @) + 2R2 - -(-+, (13) 
cc ? P 

Han*1 
MJ, W e=-_ J eT7 (14) 

2pR2 

2~~ + E,(R) + &J(J + 1) x(R) = Rx(R). 
cc 2 I 

Equation (12) can be reduced to the best adiabatic equations (5) by neglecting the term 

(l/P) (vRx/x)vR, (16) 

in the electronic equation. Thereafter the familiar picture of energy levels is obtained, 
i.e., a number of vibrational states belongs to one electronic state. 

The neglect of only one term (16) in the set of equations (12)-(1.5) is not very useful 
since it does not result in obtaining an equation for which solutions are known, or at 

least, for which an analytical method of solution is available. So we take as a nonper- 
turbed initial equation the simplest diagonal electronic equation 

H&(J,Q) = E,(W(J,W, (17) 

which is moreover J-independent. The rest of the terms in the electronic equation will 
be considered as perturbations 

A* 
J -- 

eT1 
~/.LR~ 

(18) 

vR, 

(20) 

(21) 

AH,. (23) 
P 

It is clear that depending upon the problem different perturbations are essential. Some 
of them may be large enough to be included in the zero order Hamiltonian. In particular, 
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we shall be interested in interrelations between the operators (18-23) at various Hund’s 
cases or vice versa under what conditions on the perturbations (18)-(23) one or another 
Hund’s case arises. 

Now we outline the operators (18)-(23). 

(18) is the operator responsible for the electron orbital-rotational and spin- 
rotational couplings (Coriolis interactions). 

(19) is the relativistic term from the Breit-Pauli expansion accurate through O(&). 
(20) This term in an electronic equation is not taken to mean the nuclear kinetic 

energy. It takes into account nonsynchronism of electronic nuclear motions, 
i.e., the nonlocality of the electronic equation with respect to variable 
(parameter) R. 

(21) This term also makes a nonlocal contribution to the electronic equation but 
moreover it modifies the electronic potential valid for a number of vibrational 
states so that it fits best one of the vibrational states. If the nonadiabaticy is 
believed to arise when one potential function cannot be valid for more than one 
vibrational state, the operator (21) may be considered as a nonadiabatic part 
of the initial Hamiltonian. 

The operators (ZO), (21) lead to disappearance of the symmetry group O(Z), i.e., the 
rotation around the internuclear axis. The initial problem has the rotation group around 
the center of mass of the system as its symmetry group. This group certainly contains 
an infinite number of subgroups 0 (2) with the rotation axis running through the center 
of mass. But it is easy to see that the center of mass of the whole system does not lie 
on the internuclear axis. So the symmetry group O(2) for the fixed-nuclei electronic 
equation gets broken when the nuclear motion is taken into account. 

(22) is a term responsible for the fact that the electronic function is not an eigen- 
function of 52. 

(23) is a mass polarization correction. 

3. EQUATIONS FOR DIFFERENT HUND’S CASES 

We consider the change of the equations if additional “good” quantum numbers are 
introduced. This corresponds to the choice of a certain Hund’s case. Case “a” corresponds 
to the introduction of A, a projection of the orbital angular momentum on the inter- 
nuclear axis; 8, a projection of the spin angular momentum on the internuclear axis; 
and S, total spin. Introduction of K, an eigenvalue of an operator K2 = (J - S)2, A, 
and S corresponds to Hund’s case “b”. Case “c” corresponds to the general formulation 
of the problem without any simplifications. The eigenvalue of L2 being a “good” 
quantum number characterizes both cases “d” and “e”. For the case “d” S and an eigen- 
value K of an operator K2 = (LB + L$ are introduced, which is not, so far, case “e”. 
We shall not be interested in the differences between cases “d” and “e”, so we shall 
combine them and treat them simultaneously as a “good” LR case. 

We now write down the equations resulting from Eq. (12) after introducing additional 
quantum numbers. No perturbation is neglected for a while. Keeping in mind that a 
“good” quantum number is an approximate one, the raising and lowering operators 
for such a “good” quantum number should be kept in the Hamiltonian. Under these 
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assumptions we have the Hamiltonian for the case “a”. 

1 
HQ# = VR i- - 

~/.LR~ 

X&2 + LY2 + S+L + S-L,+ 

Hna = Ip,, + 
3.4 

&[/(J + 1) + s(S + 111 + L(R). 
EL 2 

For the case “b” we introduce a new angular momentum 

and use the expression 
K = LR + L,, 

- 
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- Cl2 - X2], (24) 

(25) 

(26) 

(27) 

LR2 = k’(K + 1) + A2 + La2 + Lov2 - (J+L, + J-L,+.) + (s+L, + S-L,). (28) 

This leads to the following Hamiltonian for Hund’s case “b”. 

1 
Hanb = H, + !H& + a2H, + -PR2 - 

M 2P 

1 
Haa*:1 a=_ -MJ, f%~, 

2PR2 

xiL2 + LY2 + S+L,_ + S-L, - AZ], (29) 

(30) 

Hnb = IPfi2 + 
1 

2k4 
-K(K + 1) + E,(R). 
~/.LR~ 

W) 

The set of equations for the case “c” is completely analogous to Eqs. (12)-(15) and there 
is no great point in rewriting them. 

For cases “d” and “e” the equations are identical 

1 
Hade = H, + AH, + (y2H, + -PEp - _ 

P 2P 
vR, (32) 

Hnng de = 0 
, (33) 

1 
Hnde = -PR2 + 

LR(LR + 1) 

2bl 2j.~.R~ 
+ E,(R). (34) 

The eigenvalue LR is strictly conserved here because there are no laddering operators 
in (32))(34). Such a form is rather simple and convenient for further use. 
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4. OPERBTOR CONDITIONS FOK HUND’S CASES 

Having written the equations for all Hund’s cases we can answer the question : What 
conditions have to be fulfilled to reduce the general equations (12)-(15) to particular 
ones. We shall seek the answer in the form of perturbation operator relations. 

We begin with the “good” LR case, i.e., “d” or “e”. It is necessary to account for con- 
ditions reducing the general set (12)-(S) to (32)-(34). Comparing these sets of equa- 
tions shows that two equalities have to be satisfied for this limiting case. 

@I 52 - 25,,21+)r - 0, (35) 

(+I Je*l@>, - 0. (36) 

Conditions (35), (36) are fulfilled if the solution @ is an eigenfunction of Je2 with a zero 
eigenvalue. When @ is an eigenfunction of J,2 with a nonzero eigenvalue and also an 
eigenfunction of J,,, Eq. (35) may be satisfied albeit occasionally for some values J, 
and J,, which are integer solutions of an equation 

J,(J, + 1) - 2J,,2 = 0. (37) 

(half-integer ones can not be obtained here). The solutions of Eq. (37) are J, = 0, 
J,, = 0; J, = 1, J,, = f 1; J, = 8, J,, = f 6, etc. If a function is not an eigenfunc- 
tion of Je2, equality (35) may not be fulfilled. For example, (35) is fulfilled for J,, = 0 
only if J, = 0. Consequently, a function Q must not be an eigenfunction of J,2 and J,, 
(except J, = 0) for Eq. (35)-(36) to be satisfied. Hence, the eigenfunctions of J,, are 
not typical for the case under consideration and this physically agrees with accepted 
angular momentum coupling in Hund’s cases “d” and “e”. The nonperturbed equation 

(17) leads to eigenfunctions of J,,. Hence to obtain an accurate description of cases “d” 
and “e” one must not omit perturbations which break down the O(2) symmetry with re- 
spect to an axis running through the nuclei (i.e., lead to functions which are not eigen- 
functions of J,=). Such perturbations are operators (20), (21). 

The outlined way leads to the conditions on the perturbation operators for Hund’s 
cases “d” and “e”. 

(lde) The most important perturbation is 

(2de) The expectation value of the operators (18), (22) over the solutions are close 
to zero1 (conditions (35), (36)). 

Cases “d” and “e” may be distinguished by the contribution given by the perturbation 
c?H~. Transition to case “e” takes place as this contribution increases. 

We represent here the criterion for occurrence of the cases “d”, “e” when solutions @ 
of a zero-order equation (17) are known. 

1 Estimates for operators are given here from first-order perturbation theory. Since the corrections 
have to be small, perturbation theory is valid and its first-order yields a reasonable answer. 
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(3dej Cases “d” and “e” occur if one of the following relations is satisfied. 

(@I JgBj+.), ‘v 0, cm 

where +. . . denotes the higher-order corrections of the perturbation theory for operators 

(20), (21) on the left side and for (22) on the right side of the inequality. 
Let’s proceed now to the case “a”. The corresponding conditions for its realization 

are evident enough. A solution must have definite A and Z ; thus, the relativistic term 
should be negligible. In addition operators (18) and 

S-L,, + S-L,, (401 

must weakly affect the solution. (Ideally both operators (18) and (40) are equal to zero 
but some neighborhood of the limiting case is of great interest.) Without any great 
difficulty one obtains the proper conditions on the operators for Hund’s case “a”. 

(la) It is necessary for the expectation value of the following operators over the 
solutions to be small. 

(42) 

@J I S+L + S-L+ I @p>T - 0. (43) 

The condition becomes sufficient if it is supplemented with additional ones. 

(2a) The expectation value of an operator (20) is small 

dpm)r - 0. (44) 

(3a) The Operator Sz2 + S,2 has various matrix elements 

(Z,A,S,n/ s,2 + Sy2jL:‘,A’,S’,?z’), = &,&s&*&r~[S(S + 1) - F-J. (45) 

Consider next the case “b”. A comparison of Eqs. (12)-(U) with Eqs. (29)-(31) 
shows that the diagonal operator Sz2 + S,z as well as the nondiagonal S, disappear 
when transition to case “b” occurs. This enables us to write down the operator relations 
for the case “b”. 

(lb) The relativistic corrections are small: 

(*l&5,j@)p - 0. 

(2b) Matrix elements of L,, and S, differ in order of magnitude and 

(~iL,*I~),>>(~jS*I~),-0. 

(46) 

(47) 
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(3b) Inequality (48) is satisfied for the matrix elements of (22) (by its parts to be 
more precise). 

@I S+Le- + s-L+I@), > (a/ s+s- - s,2 - (2L, + 1)&j@),. (48) 

(4b) The operator L,, itself gives a small contribution 

((a 1 L,, l%)r - small. (49) 

Criteria for the existence of cases “d” and “b” are obtained from a known solution of 
Eq. (17) directly by substituting the approximate function for the exact one in Eqs. 
(41)-(43) and (46)-(49). 

The conditions for Hund’s case “c” to arise are clear. 

(lc) The relativistic corrections are large. 
(2~) The expectation value of operators (18)-(20) are small. 

Thus all the conditions corresponding to the various Hund’s cases are summarized. 
One should mention that only the operator (23) was not included in any condition, i.e., 
it does not affect Hund’s cases; the others are essential. 

5. HUND’S CASES VIA PHYSICAL QUANTITIES 

5.1. Rotational Quantum Number Dependence 

Consider the inequality (47) as the rotational quantum number _7 varies, from the 
point of view of a transition from Hund’s case “a” to “b”. The right-hand side of in- 
equality (47) is J-independent because S is a “good” quantum number. At the same time 
the left-hand side of the inequality may be J-dependent. If the nuclear motion is not 
completely responsible for the total angular momentum J (that would be a “good” LR 
case which is not under consideration now), then an increase of J results in some effec- 
tive increase of L,, although L, may not be well defined. Hence, as J becomes greater 
the left-hand side of Eq. (47) does the same and so the inequality may become valid as 
J increases. The same reasoning is valid for inequality (48). This means that as J in- 
creases case “a” tends to turn into case “b”. 

Another tendency in the dependence of Hund’s cases on rotational quantum number 
may be explained qualitatively if one takes into account that the increase of J may be 
considered as a transition to the region where quasiclassical theory is valid (7). Then 
use may be made of the results obtained by Maslov concerning quasiclassical asymp- 
totics (8) for nonlinear equations produced by variational principles. These results show 
a significant increase of the nonlinear term contribution to the asymptotic region. Al- 
though the accurate asymptotic formula is not valid for such nonlinearity as in Eqs. 
(13)-(15) the qualitative result remains valid: an increase of J may be accompanied by 
a transition to case “d” or “e”. Since the nonadiabatic corrections decrease rapidly down 
as the reduced mass increases such a transition can take place apparently for light 
molecules only. If that is so, a transition to the case “d” comes into being because the 
relativistic terms for light molecules are negligible. This does explain the experimentally 
observed transition from Hund’s case “b” to “d” as J increases for Hz, Hez molecules (1). 
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5.2. Vibrational Quantum Number Dependence 

Consider now the vibrational quantum number dependence of Hund’s cases. So far 
an electronic equation has been under consideration (though a nuclear equation has 
also been written down). On the other hand a quantum number dependence may only 
be obtained from the nuclear equation. Indeed the electronic equation solution depends 

parametrically on R, i.e., there is a solution for each point R. So one can say that the 
above mentioned inequality is fulfilled only for some fixed R values. It is evident that 

different Hund’s cases can take place for different R’s. For example, a transition from 
“e” to “c” would occur, as R increases, because the contribution of AR goes to zero 
while the relativistic corrections remain finite (1, 9). There is a good reason to suggest 
that case “c” becomes free of a case “b” admixture as R increases since all the quantities 
in a proper inequality for the case “b” become very small. In the region where R is 

small (R << R,) the contribution connected with VB and AR seems to become larger 
quite rapidly, so the cases “d” and “e” predominate at R close to zero. 

Thus the potential curve from the electronic equation is divided into several regions 

corresponding to the various Hund’s cases. If one singles out from the electronic energ) 
E(R) the part Z&(R) that is independent of any particular Hund’s case, then the 

residual Eh(R) will be responsible for causing the observed Hund’s case to arise. Thus 
one may consider &(R) to be a solution of Eq. (17) and Eh(R) be connected with per- 
turbations (18)-(23). The nuclear equation may be written as 

J(J + 1) 

~/.LR~ 
+ E,,(R) + Eh(R) 

We suppose P(R) to be small and apply perturbation theory through the first-order. 
The corresponding correction 

lx I Eh (RI I x) 

may- be connected with only one kind of Hund’s case corrections if and only if a function 
X is localized in that region of R where the potential curve is described by one Hund’s 

case. 
Kramples. According to the above statements the most typical potential curves are 

those listed in Table 1. Transition from one case to another occurs of course step by step 
through intermediate cases. 

I. The low vibrational states correspond to case “I?‘, for the higher states the inter- 

mediate case between “c” and “e” may- occur. An admixture of the case “e” is exponen- 

tially small if “e” takes place only at R < p but it may be important if “e” penetrates 

into the R > p region. 

II. For small ‘u’s case “a” takes place. As v increases the transition to an intermediate 

case between “a” and “d” occurs, as happened for the “e” and “c” cases. 

III. For small v case “b” occurs. As ZI goes up the case there may be either an inter- 

mediate case between “a” and “b” or mixed “a”, “b”, “d”, or even an intermediate one 

between “a” and “d” (with a small admixture of “b”). The last would take place if the 

case “b” region is localized close to the potential energy minimum. 
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TABLE I 

SOME POSSIBLE DISTRIBUTIONS OF HUND’S CASES WITH R (See Fig. 1) 

1 2 3 

I c C 
II : a 
III d T; a 

a The Roman numerals denote alternative types of potential curves. 

R 

FIG. 1. The potential curve is divided into three regions with the one of Hund’s cases predominating 
in each region. The most typical curves are listed in Table 1. 

CONCLUSIONS 

It has been shown that on the basis of nonempirical calculations using the equations 
proposed, molecules may be divided naturally into groups corresponding to certain 

Hund’s cases to yield accurate description of their rotational spectra. A subsequent 
interpretation has been carried out for the changes of Hund’s cases as the rotational or 
vibrational quantum number varies. Further development of this approach may result 
in more detailed understanding of the regularities as well as irregularities in the rotational 
spectra. An extension of this technique to polyatomic molecules is also possible. 
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