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The pattern of the rotation—-vibrational energy levels in isolated vibrational components of CF,
has recently been described ( B. 1. Zhilinskii et al., J. Mol. Spectrose. 160, 192-216, 1993) in terms
of the semiclassical model for the rotation of molecules. The present paper discusses the interaction
between neighboring vibrational components due to a transfer from one component to the other
of either one 6-fold cluster, one 8-fold cluster, one 12-fold cluster, or two 6-fold clusters. The
rules for which transfers are possible are derived from a consideration of the formation of common
points between the two corresponding classical rotational energy surfaces. These rules are con-
veniently stated in terms of the local symmetry indices ( B. 1. Zhilinskii and S. Brodersen. J. Mol
Spectrose. 163, 326-338. 1994) characterizing the symmetries of the two vibrational components.
Three cxamples of such interactions are discussed in detail: first a crossing of one vibrational
component from the »; vibrational state with one of the components from the 2y, state: secand,
a crossing of one vibrational component from the v; vibrational state with the two components
of the F substate of 3v;; and finally, the rearrangement of the vibrational components of the F
and F; substates of the 2,4 vibrational state into five components of the combined I + /), substate.

€ 1995 Academic Press, Inc.
INTRODUCTION

With CF, as an example, the pattern formed by the rotation-vibrational states of
a heavy spherical top molecule has been discussed in two previous papers { /, 2). It
was found that the rotation-vibrational states belonging to one vibrational state are
split, primarily by anharmonic splitting into vibrational substates and secondarily due
to rotation-vibrational interaction into vibrational components, corresponding to a
complete breakdown of the vibrational degeneracy. The collection of rotation-vibra-
tional states within one vibrational component for one value of J was defined as a
manifold. Most of the rotation—vibrational states within one manifold was found to
collect in c/usters, forming one series of 6-fold clusters, one of 8-fold clusters, sometimes
one of 12-fpld clusters. and in exceptional cases onc series of 24-fold clusters. A cluster
index + was defined on the basis of the A-distribution, calculated from the wavefunctions
of the states involved. Within each series of clusters = always takes the values 0. 1. 2,
3.....and each cluster within one manifold is completely specified by the degeneracy
and the cluster index. collected in one symbol as, say. 12,. The pattern of clusters
within one manifold is often the one denoted type I, where a series of 6-fold clusters
starts with the 6, cluster from the low energy end of the manifold and a series of 8-
fold clusters starts from the high energy end with the 8, cluster, or the one denoted
type 11, where the order of the two series is reversed.

The semiclassical theory for the rotation of molecules was slightly redefined (2)
and used to explain these patterns on the basis of a discussion of the possible shapes
of the classical rotational energy surface (3). A corresponding discussion of the possible
changes of these shapes as a function of J was used to explain the details of complicated
patterns of clusters as a result of a transformation from type I to type II, or vice versa,
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as a function of J. Two cases were distinguished, the simple inversion, characterized
by the appearance of a series of 12-fold clusters, and the complex inversion, where in
addition the series of 6-fold and 8-fold clusters are folded as a function of energy and
where 24-fold clusters may be formed.

The detailed discussion in Ref. (2) of the possible patterns of clusters within one
manifold was limited to the case of isolated vibrational components, in which the
influence from the neighboring vibrational components could be neglected. In the
present paper this discussion is carried on to the more complicated case where vibra-
tional components interact by a transfer of clusters. It will be shown that these cases
also may be explained qualitatively in every detail by means of the semiclassical theory.

Each vibrational component may be characterized by a symmetry, indicated either
by an irreducible representation in the full rotational group Os, symbolized as, say,
D" ¥ or DY, or by means of the three local symmetry indices (74, 13, n2) defined
in a recent publication (4). In this paper, two methods were indicated for finding the
possible symmetries of the vibrational components into which a vibrational state or
substate of a given vibrational symmetry is split. Further, a detailed analysis was given
of the possible changes in the symmetries of two neighboring vibrational components
as the result of a transfer of one or two clusters from one component to the other.
The discussion in the present paper is based on this information.

The detailed analysis in Refs. (/. 2) was possible because the potential function of
CF, is very well known (5, 6), and also because the energies and wavefunctions of all
the rotation-vibrational states for J < 70 have been computed for the 10 vibrational
states of lowest energy for all three isotopic species '*CF,, '*CF,, and “CF,. The
examples given in the present paper are based on a highly refined potential function
(6) and are therefore in close agreement with the presently known experimental data.
The analysis given in Ref. (2) of isolated vibrational components was based on a
potential function belonging to a slightly carlier step in the refinement process, but
the differences between the results from the two potentials arc quite small and they
have no influence on the qualitative results and the general conclusions.

After the present work was finished, we were informed that Gabard e a/. (7) have
made a large number of assignments in the vy and 2v, bands for J < 32 by means of
a high-order effective Hamiltonian. A comparison of the energies computed from this
Hamiltonian and those from our Hamiltonian indicates a perfect qualitative agreement
and small quantitative discrepancies. This demonstrates that the predictions based on
our Hamiltonian are sufficiently accurate for the present purpose.

THE ROTATIONAL ENERGY SURFACES OF TWO NEIGHBORING
VIBRATIONAL COMPONENTS

In the semiclassical model (2) a classical rotational energy surface is defined for
each manifold, plotting the rotational energy as a function of the direction of the
angular momentum in a molecule-fixed coordinate system. In this section, a short
survey is given of the relations between the rotational energy surfaces of the two
manifolds for one value of J of two neighboring vibrational components. This leads
to a complete description of the rules for interactions between the components by
means of a transfer of clusters, and the remaining sections of this paper are devoted
to a discussion of exampiles of such interactions between the vibrational components
of the CF, molecule.
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If the two rotational energy surfaces are plotted in a common coordinate system,
immediately there seem to be five different possibilities for their relative positions (8):

1. The energy values indicated by the two surfaces are completely separated, so
that all energies of one manifold are well below all the energies of the other mani-
fold. This is the case of two isolated vibrational components, discussed in detail in
Ref. (2).

2. Some of the energy values of the low energy component are larger than some of
the energy values of the high energy component, but the two surfaces are well separated
from each other. This leads to a simple overlap of the energies within the two manifolds,
and there is no interaction between the two components. It was discussed in Ref. (/)
how it is possible by means of the cluster index to find which states (or clusters) belong
to each of the two components.

3. The two surfaces are very close without actually touching each other. This leads
to a complicated pattern of energy levels and to a strong coupling between the wave-
functions of both components. It is difficult to give a complete theory of the possible
interactions, but some examples are discussed below.

4. The two surfaces may touch each other. Because of the O, symmetry of both
surfaces a touch will always take place at many points simultaneously, either at all 6
C, points, or at all 8 C; points, or at all 12 C, points, simultaneously. As discussed
below, it is only these cases which lead to a transfer of one or two clusters between
the two vibrational components. In principle, a touch at 24 ¢ points or at 48 C, points
should also be a possibility, but from the previous discussion ( 2) of the possible shapes
of the surface it seems clear that this is only a theoretical possibility.

5. One should immediately think that the two surfaces might cross each other by
having a continuum of points in common, forming closed curves on the surfaces. As
discussed in the Appendix, it may be proved that such a crossing cannot take place,
and the two surfaces cannot pass each other as .J changes. This statement is a gener-
alization of the noncrossing rule for potential surfaces (9) and of the description of
the intersection between eigenvalues of matrices, the elements of which depend on
parameters ( /0).

A touch of the two surfaces may lead, in the corresponding quantum mechanical
calculations, to a transfer of one or two clusters between the components as J changes,
depending on the symmetries of the two components. A discussion of this is given in
the Appendix. Here only a short review is given of the results, based on the use of
local symmetry indices (4) to characterize the symmetries of the components.

If one of the local symmetry indices differs by 1 (here n, and n; have to be considered
modulo 4 and 3, respectively, so that for instance n, = 3 and #% = 0 belongs to this
case). the two surfaces may touch each other at the 6 C, points if ny and n} differ by
1, at the 8 C; points if n;3 and n4 differ by 1, or at the 12 C; points if #, and # differ
by 1. This case includes the major part of the differences between the symmetries of
two components. Such a touch of the two surfaces leads to the formation of a number
of double cones with each of the points of contact as the common vertex, and the C,
axes, the (’; axes, or the C, axes. respectively, as the axes of the cones. The important
consequence of this is that one cluster will have an energy equal to the energy £, of
the vertex, provided the maxima of the lower surface and the minima of the upper
surface are prominent enough to allow the formation of clusters. If ny and n}, differ
by | and the axes of the cones consequently are the 6 (4 axes. this central cluster i1s a
6-fold cluster, etc.



4 BRODERSEN AND ZHILINSKII

This kind of contact between the two surfaces can only take place for one (generally
not integer) value of J, say J... For J = J, the central cluster belongs to both manifolds.
If J is changed slightly, the two surfaces cannot touch, and the energy of the central
cluster will change slightly, in the first approximation linearly with J. This means that
for J < J, the cluster belongs to one of the manifolds, whereas for J > J. it belongs
to the other manifold. In other words, one cluster is being transferred from one vi-
brational component to the other as J varies through J... The transferred cluster has
always the cluster index 7 = 0 in both of the two components.

For J = J, the central cluster belongs to two series of clusters, one in each of the
two components. In the first approximation, where the double cone is symmetric with
respect to a plane containing the vertex and perpendicular to the axis, the energies of
the double series of clusters are given by

E=E.+taVl, (1)

wheret =0, 1, 2, 3, ... and « is a constant.

If the two components have identical symmetries (1, = 1%, ny = ni, and n, =
n5), the two surfaces cannot touch each other.

If ny and n have the values 0 and 2, or 1 and 3, they differ by 2 (even if considered
modulo 4), and a different kind of contact of the two surfaces may take place at the
6 (4 points. This leads to a simultaneous transfer of two 6-fold clusters as J varies
through J. . One of these clusters is a 6, cluster in both components, the other is a 6,
cluster.

Clearly such a transfer of one or two clusters must have consequences for the sym-
metries of both components. These have been discussed in detail in Ref. (4). Here it
is only necessary to mention that the transfer leads to an interchange of the two
corresponding local symmetry indices of the two components. The local symmetry
indices may be translated into the more familiar symbols for the symmetries in O5 by
means of Table 1V of Ref. (4). A simple calculation of the changes in the degeneracies
of the two manifolds from the A values in these symbols (the constants following J)
will in most cases immediately indicate in which direction the transfer takes place. in
other words, which of the two components is the “*donor™ and which is the “acceptor.”

If two vibrational components converge in the energy diagram as a function of J
so that they tend to cross, they do not cross in the usual sense, because the two surfaces
cannot cross. Instead, they must separate again in a kind of avoided crossing. In most
cases where the symmetries of the two components are different, this requires an
exchange of the symmetries, which is precisely possible due to a transfer of one or
more clusters. Which transfers are needed are easily seen if the two symmetries are
expressed as local symmetry indices. Several examples of this are given in the following
sections.

A CROSSING OF TWO VIBRATIONAL COMPONENTS

As a relatively simple example of a crossing of two vibrational components we shall
give a detailed discussion of the crossing in '*CF, between the highest component of
the vy vibrational state, having D'’ symmetry, and the lowest component of the
2v, vibrational state, having D}’*> symmetry. They cross at about J = 33 because in
13CF, the 2v, vibrational state has a higher energy than the »; vibrational state.

The first to be discussed is what can be concluded about such a crossing exclusively
on the basis of the symmetries of the two components. In order that the crossing shall
take place without the components actually crossing cach other, the symmetries of
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the two components have to be interchanged as a function of J. For low J values,
actually for J < 30, the component of highest energy (the upper component) has
D{*? symmetry and the component of lowest energy (the lower component) has
D" symmetry, but for some higher J values this must be reversed so that the upper
component has D{/*" symmetry and the lower component D{*?’ symmetry, and
these changes should be the result of one or more transfers of clusters between the
two components. The two symmetries may be rewritten in the form of local symmetry
indices (4) as (n4, n3, ny) = (220) for the upper component and (310) for the lower
component. This means that both ny and n}, and n; and »%, differ by 1. whereas n,
= n5. Thus one 6-fold cluster and one 8-fold cluster may be transferred between the
two components. The directions of these transfers is obtained by looking at the changes
in the total degeneracy of each component. The upper component shifts its symmetry
from D{*¥ 1o D{'*" as J increases, and the total degeneracy correspondingly drops
by 2 compared to a component with a constant A value. This is only possible if this
component loses one 8-fold cluster and gains one 6-fold cluster, in other words, if the
8-fold cluster is transferred from the upper to the lower component and the 6-fold
cluster is transferred from the lower to the upper component as J increases. A con-
sideration of the A values for the lower component leads to the same result,

This is as far as one can get on the basis of pure symmetry considerations. They
cannot tell in what order the two transfers take place as a function of J, and we are
left with two possibilities as sketched in the two diagrams given in the two halves of
Fig. 1. In order to distinguish which of these is the one actually occurring in the present
case, one has first to look at the energy level diagram and second to study the A-
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F1G. 1. Two possibilities for the diagram showing the effect on the symmetries of two vibrational components
with symmetries DY*% and DY+ of the transfers of clusters as needed for a crossing of the components as
J changes. Each diagram is a symbolic representation of the encrgy level diagram, indicating only the transfers
of clusters and the resulting changes in symmetries of the two components. Each component is symbolized
by a horizontal line. The symmetry of the component is given above this linc using the conventional symbaol
and below the line using local symmetry indices. A transfer of a cluster is shown as a number giving the
degeneracy of the cluster in a circle with two attached lines indicating the direction of the transfer.
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distributions (/) of some of the clusters. In the following discussion, it is convenient
to let Jy¢ mean the ( possibly noninteger) J value of the touch between the two surfaces
leading to the transfer of the 6-fold cluster, and analogously for J.g.

The energy level diagram is shown in Fig. 2. Here it is easy to see how the major
parts of the two components avoid a crossing by bending off each other as J increases.
Only one 6, cluster, marked by open circles in the figure, gradually leaves the lower
component and transfers to the upper component as J increases. Also an & cluster,
marked by squares, gradually leaves the upper component and is transferred to the
lower one as J increases. It is, however, not possible on the basis of the energy level
diagram alone to fix the values of J., and Jxg with an accuracy allowing one to
distinguish between the two possibilities indicated in Fig. 1. If the two surfaces were
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FIG. 2. A reduced energy level diagram showing the crossing of the DY+ companent of the v vibrational
state (lower component at low J; upper component at high J). and the D% component of the 2v, vibrational
state {upper component at low J: lower component at high J) in Y3CF,. The series of transferring 8-fold
clusters is marked by squares. The series of transferring 6-fold clusters is marked by circles.
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symmetrical in a region around the point of contact, corresponding to several clusters
in both components, it would be possible to determine J,, or J.; as the J value for
which the pattern of these clusters is symmetrical around the transferring cluster. This
is, however, not the case here (and in many other cases), as may be seen from the
fact that the senies of 8-fold clusters is practically absent in the lower component, but
rather well developed in the upper component, and vice versa for the 6-fold clusters.

Instead, one has to look at the k-distributions. As mentioned previously (4), the
transfer of, say, an 8, cluster from one component to the other must lead to a reor-
ganization of the cluster indices in the series of 8-fold clusters in both components,
and this must be seen in the k-distributions of the clusters in the two series. To dem-
onstrate this, Table I indicates the essential part of the k-distributions for the 8-fold

TABLE 1

Reorganization of a Series of 8-fold Clusters Due
1o the Transfer of One Cluster

dJd E Symmetry T k-distrubution x 1000

cm~! Jk=0 1 2 3 4 5

31 1441396 E+F+F, 2 5 155 58 4 31 T
1441214  E4F+F, 1 120 3 2 6 A4 0
1440942 A +A+F+F, 0 90 2 1 6 0 0

3 1466047 A+Ay+F(+F, 2 0 317 5% 1 2 33
1465764  E+F+F, 1 25 715 1 5 17 0
1465312 E+F;+F, 0 98 2 1 7 0 0

3 1479228 A +A,+F+F, 3 3 % 392 42 4 54
1479.000 E+F;+F, 2 14 408 519 0 19 27
1478671 E+F,+F, 1 39 612 1 4 12 0
1478071  A+A+F+F, 0 987 2 1 8 0 0

35 1492820 A +Ay+F +F, 1 8 40 38 259 13
1492633 E+F+F, 3 32 48 379 2 43
1492372  E+F+F, 17 501 49 0 14 17
1492004  A,+Ay+F +F, 494 493 1 4 8 0
1491213  E+F+F, 0 9% 3 2 8 0 0

3% 1506656 E+F,+F, 3 1 7 5 510 281 7
1506440 E+F+F, 2 2 37 557 M8 1 X
1506.149  A,+Ag+F+Fy 1 19 576 381 0 11 11
1505756  E+F|+F, 0 606 38 0 3 5 0
1504.738 E+F,+F, 0 972 3 2 9 0 1

37 1521066 E+F+F, 4 0 5 12 6 512 212
1520881  E+F|+F, 3 1 6 5 574 280 4
1520636 A +A,+F+F, 2 2 39 606 315 1 21
1520323 E+F,+F, 1 21 6% 327 0 8 7
1519914 E+F+F, 0 691 303 0 2 3 0
1518646 A +A,+F1+F; 0 983 3 2 10 0 0

40 1565802 E+F+F, 3 1 3 & 60 252 2
1565500  A+Ay+F +F, 2 1 4 689 249 1 10
1565.146  E+F+F, 1 % M0 27 0 4 3
1564719  E+F;+F, 0 85 173 0 1 1 0

0 94 4 2 12 0 1

1562666 A +A +F +F,
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F1G. 3. The reorganization of the k-distributions of the nontransferring clusters illustrated by the &-dis-
tributions for J — k = 0 of the 8-fold clusters (indicated by squares) and 6-fold clusters (indicated by circles)
nearest to the transferring clusters for the crossing shown in Fig. 2.

clusters for selected J values. However, as mentioned, all these clusters, except the
transferring cluster. unfortunately belong to the upper component, so that the reor-
ganization can only be seen in the upper component.

From Table I, it 1s seen that the determination of the value of the cluster index =
(1) represents no problem for J = 31 or J = 33, although the A-distributions are by
no means ideal. For J = 34 the assignment of + = 3 to the cluster at 1479.228 cm '
is only possible due to an extrapolation from the clusters with lower values of 7.
Correspondingly, for J = 35 the 7 value for the cluster at 1492.004 cm™' can only be
given if extrapolated from the clusters with higher 7 values. For J = 36 the cluster at
1505.756 cm™! definitely has = = 0, as seen both from its own k-distribution and from
an extrapolation from the clusters with higher 7 values. There are thus two 8-fold
clusters with 7 = 0 for J = 36. out of which the one at 1504.738 cm ! is the transferring
cluster. This construction goes on for J > 36, the A-distributions being closer and
closer to the ideal case as J increases. There can be no doubt that the transferring
cluster belongs to the upper component for J < 34 and to the lower component for
J = 36, so that J., is close to 35. The reorganization of the series of 8-fold clusters in
the upper component takes place over a rather large interval of J values, as seen from
the pseudo-continuous changes in the k-distributions. It is important to note that these
changes only apply to the nontransferring clusters. The A-distributions of the trans-
ferring cluster are almost ideal and nearly independent of J.

If one wishes to indicate a more precise value of /.y, it seems reasonable to base
this on the A-distributions of the nontransferring clusters with low values of 7, because
the theory discussed in the Appendix applies best to the region closest to the point
where the two surfaces touch. In the present case, this means that the almost identical
k-distributions for J — k = 0 and 1 for the cluster at 1492.004 cm™' (J = 35) indicate
that J.y is approximately equal to 35. For the same reason we find it dubious to assign
7 values to the remaining clusters for J = 35.

It is possible to get an overview of the reorganization of the nontransferring clusters
by plotting, as a function of J, the value of the A-distribution for J — k = 0 for the
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cluster nearest to the transferring cluster. Ideally this should be done for the cluster
at both sides of the transferring one, but in the present case there are only 8-fold
clusters above. This plot is given by the squares in Fig. 3. Several of these points may
be found in Table 1. It is seen that this value of the k-distribution has rather low values
for low J because these clusters have = = 1, but high values for high J where these
clusters have + = 0. At J = 35 the value passes 0.5, indicating that r changes at this
J value. The nontransferring cluster is above the transferring cluster; this means that
the transferring cluster belongs to the upper component for J < 35 and to the lower
component for J > 35, and J.g3 = 35, as also found by means of Table I.

A corresponding study of the k-distributions for the 6-fold clusters shows an anal-
ogous reorganization of the k-distributions, as illustrated in Fig. 3 for the 6-fold cluster
below the transferring one by means of circles. As these clusters all belong to the lower
components, the plot shows that the transferring 6-fold cluster belongs to the lower
component for J < 32 and to the upper component for J = 33, so that J. is close
to 32.5. This has the interesting consequence that for J = 32 the transferring 6, cluster
belongs to the lower component, whereas the transferring 8, cluster belongs to the
upper component, in apparent contradiction to their relative positions in the energy
level diagram (Fig. 2). This only means, however, that the two surfaces touch for J
~ 32.5 at the C, points at a slightly higher energy than the energy of the minima at
the C; points of the surface of the upper component. There is nothing special in this
situation which just leads to a simple overlap of the energies of the two components.

As J.¢ is smaller than J.g, the preceding discussion of the k-distributions indicates
that the upper half of Fig. 1 gives the correct diagram for the crossing of the two
components in the present case.

A CROSSING OF THREE VIBRATIONAL COMPONENTS

As the second and much more complicated example, this section presents an analysis
of the crossing in '°CF, between the highest component of the v; vibrational state,
having D{*" symmetry. and the two components of the 3v,( E) vibrational substate.
Out of these the lower component has D{** symmetry for low J values (below the
crossing). but D{" 2’ symmetry for high J values (above the crossing), whereas the
upper component has D!7/"2 symmetry for low .J values and D}*? for high J values.
This means that the two components of the E substate change from one of the two
most common possibilities for the symmetries (4) to the other as a consequence of
the crossing. It is thus not just a simple crossing leading to an exchange of the sym-
metries of the three components. A further complication, as compared to the first
example, is that the transfers of the clusters are not so easily seen directly from the
energy level diagram, given in Fig. 4. Consequently, it is essential to start the analysis
with a determination of which transfers of clusters are able to produce the needed
changes of the symmetries of all three components.

The result of this consideration is presented in Fig. 5, containing a diagram analogous
to Fig. 1. The symmetries indicated to the left and to the right in this diagram are
known, and the rest of the diagram is determined in the following way: The lowest
component changes the local symmetry indices from (310) to (210). This calls for a
transfer of one 6-fold cluster, which must leave the lower component as J increases
because A is lowered by 3. The upper component changes the local symmetry indices
from (011) to (310), necessitating a transfer of one 6-fold cluster and one 12-fold
cluster (4). Again the increase of A by 3 with increasing J shows that the 6-fold cluster
must leave this component, whereas the 12-fold cluster must go to this component as
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FIG. 4. A reduced energy level diagram showing the crossing of the D' component of the v; vibrational
state (lower component at J = 50; upper component at J = 55), and the two components of the 3u,(F)
vibrational substate in '2CF,. The first series of transferring 6-fold clusters is marked by circles, that of 12-
fold clusters by crosses, and the second series of transferring 6-fold clusters by squares.

J increases. As in the first example, this is as far as one can get exclusively on the
basis of the symmetries of the three components before and after the crossing, whereas
a choice between the six different ways these transfers may be ordered can only be
made on the basis of a detailed study of the energy level diagram and the k-distributions
of the clusters. The order given in Fig. 5, and the resulting intermediate symmetries,
is the one resulting from this study.
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FI1G. 5. A diagram. analogous to Fig. 1, showing the effect on the symmetries of three vibrational components
of the transfers of three clusters, as needed for a crossing of the DY " vibrational component of »; with the
DY and DY”® components of the 3u,(E) substate, as J changes. As indicated. the crossing also results in
a change in the symmetries of the two components of the 3v,(E) substate. The corresponding energy level
diagram is shown in Fig. 4.

Knowing that one 6-fold cluster must leave the lower component for increasing J,
there is no difficulty in localizing this in the energy level diagram, as indicated by
circles in Fig. 4. This interpretation is confirmed by the k-distributions of the 6-fold
clusters of the two lowest components, which also fixes the J., value to a little above
52, which means that the rather isolated 6, clusters for J = 52 definitely belong to the
lower component, in agreement with the values for the cluster indices of the nontrans-
ferring clusters, as indicated in Fig. 4. For J = 53 the transferring cluster is clearly
seen as the lowest one in the middle component, but for J = 54 it has already dis-
appeared as a consequence of a beginning complex inversion ( 2) in this component.

Again, knowing that a 6-fold cluster must transfer from the upper to the middle
component as J increases, it is possible to localize it, as indicated by squares in Fig.
4. Maybe the most convincing proof of this assignment is the fact that the k-distributions
for all these clusters is ideal (/) for all the J values included in the figure, the .-
distribution value for J — k = 0 being as high as 0.999 in all cases. The k-distributions
of the neighboring 6-fold clusters show unambiguously that J. in this case has a
value slightly below 54.

The transferring 12-fold clusters are the most difficult ones to find, because they
exist only for J = 51, 52, and 53, as shown by crosses in Fig. 4. Out of these three
clusters, the first and the last are fairly broad, and there is no sign of neighboring 12-
fold clusters. The series of 12-fold clusters seen in the middle component for J = 53
has nothing to do with this transfer. The value of J. > cannot be fixed with certainty,
but the energy level diagram seems to indicate that the transferring cluster belongs to
the middle component for J = 51 and to the upper component for J = 52, so that
J. > probably is between 51 and 52. This leads to the order of the three transfers given
in Fig. 5. It is interesting to note that the transfer for lowest J is between the two
components of 3»,(E), which means that the v; component does not cross each of
the two 3».( £') components separately, but all three components are interacting in a
rather complicated way.

The present example offers a unique opportunity to test the validity of Eq. (1) for
the energies of the double series of clusters formed for J = J,.. The two series of 6-
fold clusters in the lower and the middle component at J = 52 are unusually long
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and Jxe is close to the integer value of 52. In Fig. 6 the energies of this double series
of 6-fold clusters, including the central cluster, are plotted against the integer number
t from Eq. (1) on a symmetrical square root scale. Ideally this plot should show a
straight line. In general, the comparison indicates a most satisfactory agreement, al-
though two kinds of systematic deviations are seen. The first is an upward bend at ¢
= 0. There may be several reasons for this, and presently we cannot indicate which
is the most important. The second systematic deviation is a tendency for both series
to bend off toward more constant energies for high values of 1. This is to be expected,
because the energy cannot increase and decrease infinitely, as required by Eq. (1). At
some distance to the point of contact the two surfaces must flatten out to fit a more
or less perfect sphere, which causes the clusters to appear with a smaller and smaller
distance as ¢ increases. The analogous effect is observed in long series of clusters in
isolated components, as seen in the series of 6-fold clusters in Fig. 2 of Ref. (/).

REARRANGEMENT OF THE 2», STATE

As the third example of the effect of the transfer of clusters we shall discuss the
change in the symmetries of the vibrational components of the 2p, vibrational state
for '*CF, from the isolated £ and F, substates to the combined £ + F substate.

The 2v, vibrational state has the symmetry 4, + £ + F,. The corresponding an-
harmonic splitting into three substates at J = 0 is shown in Fig. 7.

At low J values the F, substate splits as usual into three components of symmetry
DYV DY and DY " with decreasing energy, precisely as observed for the »; vi-
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F1G. 6. The energies of the double series of 6-fold clusters from the lower and middle components of Fig.
4 for J = 52, plotted against the integer number f on a symmetrical square root scale. As required by Eq.
(1), the points form an almost straight line.
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FiG. 7. A reduced energy level diagram illustrating the rearrangement of the five vibrational components
of the ¥, and F substates of the 2», vibrational state of '*CF,. The thrce series of transferring clusters are
indicated by a circle, a square. and a cross, respectively.

brational state. This splitting is best seen in Fig. 7 for J = 2, 3, and 4. All of these
three components change their symmetries as J increases.

At low J values the E substate splits into two vibrational components, the upper
one having D{/"?’ symmetry and the lower one having D}’*?’ symmetry. This splitting
is easily seen in Fig. 7. It is interesting to note that this is not the usual sphtting for
most F states or substates of CF, (/1) but an alternative possibility (4) which seems
as probable as the more usual one. The symmetry of the upper component changes
as J increases, whereas the lower component keeps the DL‘“:) symmetry up to very
high J values.

The D vibrational component corresponding to the 4, substate is extremely nar-
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row for all the values of J. It is seen in Fig. 7 as a series of levels running precisely
horizontal as a function of J (because the energy reduction parameters were chosen
to obtain this). This component and its interaction with the other components will
not be discussed in the present paper.

For higher J values, for instance for J = 16, the five components from the E and
F, substates have changed their symmetries into D{"?, D™V, DV, DY*V, and
D{*? respectively, for decreasing energy, clearly acting as one vibrational substate
of symmetry £ + F,. This is in agreement with the well-known treatment of the
interacting v, and »4 vibrational states of spherical top molecules as one vibrational
state with the vibrational angular momentum / = 2 (/2-15).

The changes of the symmetries are caused by three transfers of clusters, as sketched
in Fig. 8. The first of these is a transfer of a 6,4 cluster, marked by circles in Fig. 7,
from the upper component of symmetry D{’*!! to the next component of symmetry
D!, causing the upper component to obtain the final symmetry of D}"?’. The sym-
metry of the other component is changed once more by a transfer of an 8, cluster,
marked by squares in Fig. 7, to the following component, causing the second com-
ponent to obtain its final symmetry of D{’""’. However, the third component also
changes its symmetry once more by a transfer of a 6, cluster, marked in Fig. 7 by a
cross, in order to obtain its final symmetry of D,i,'”. Finally, the upper component of
the E substate changes its symmetry from D" to D{/*? because of the transfer of
the 6-fold cluster.

Because of the low J value it is difficult to fix the value of J, for the first two of
these transfers. The most probable value seems to be between 6 and 7 in both cases.
For the transfer of the 6, cluster marked by crosses a study of the k-distributions of
the neighboring clusters clearly indicates a J.. value a little above 14.

E + J
Anergy D(‘;l 1) D(gJ 2)7
( (310 (210)
[6)] (J+3) WJ-1)
E, < Do D D¢
2 (201) (301) (321)
L D(‘;]_l) D(\'xhs) D(gJ)V
(120) (100) (000)
D(‘,J'Z) > D(éhl)
(011) o (111)
E
D(é)*2) D(él+2)
(220) (220)

—_—

FIG. 8. A diagram, analogous to Figs. | and 5, showing how the symmetries of four of the five vibrational
components of the /> and I substates of the 2», vibrational state of '*CF, arc changed by three consequtive
transfers of one cluster. The corresponding energy level diagram is shown in Fig. 7.
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It is interesting to note that this change of the symmetries of four components is
carried out by only three transfers of cluster, which is the minimum needed for such
a complicated change. Also, the unusual splitting of the E substate into two components
of symmetries D¢ ? and D}\"*? contributes to keep the number of transfers low.

APPENDIX

In this Appendix we consider two vibrational components which may interact with
each other, whereas the interactions with all other components are neglected. The two
components may belong to the same or to different vibrational states.

The corresponding effective quantum Hamiltonian operator may be represented
by a 2 X 2 matrix where each element is a rotational operator. By replacing the angular
momentum operators by their classical analogs, this operator is converted into a 2 X
2 Hermitian matnx, the eigenvalues of which are the classical rotational energies
described by the rotational energy surfaces of the two manifolds for a given J (2, 3,
8, 15-18). The elements R;; of this matrix depend on J and the two angles indicating
the direction of the angular momentum in a molecule-fixed coordinate system. The
two eigenvalues are

1 — 5
Ei2(J,8,¢) == (R + Rn) £ V(R — Ri2)* + | Rzl . (A1)
2

The two surfaces can only have common points if the square root vanishes, requiring
that

Ry = Ry (A2)
and
|R|:|2 =0, (A3)

where (A3) splits into two equations, one for the real part and one for the imaginary
part, showing that three real equations must be satisfied simultaneously in order that
the two surfaces may have points in common (9). Whether this is the case depends
on the symmetries of the vibrational components, for convenience expressed by the
local symmetry indices (n4, 13, 12).

We shall for the moment concentrate on the conditions that common points are
formed at the (' points. These depend exclusively on the local symmetry index #;,
numbering the irreducible representations A (n; = 0), E, (n; = 1), and E, (ny = 2)
of the subgroup C; of O;. As (5 is also a subgroup of the invariance group of the
quantum operator, it may be shown that all four elements R, have 4 symmetry if the
two vibrational components have identical values of n: (n; = n3), whereas if they
have different values of n;(#ny # n%) the diagonal elements have 4 symmetry and the
off-diagonal elements have E, or E, symmetry. If the angles # and ¢ are defined with
respect to the C’y axis, with @ indicating the angle between the angular momentum
and (5, any element R, may be expanded, if it has A symmetry, as

Ri = folJ)y + fp(J) sin?0 + - - -, (A4)
where the leading term is independent of 8, and, if it has E, or E; symmetry, as
RYy=gn(J, ¢)sinf+ - (AS5a)
and
RS =gn(J, ¢p)sinf+ - (ASb)
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with no term independent of § and g,.(J, ¢) = £, (J, ¢)* (where * means complex
conjugation).

As we consider only the C; points on the rotational surfaces, we have to insert 8 =
0. If ny = nh, all four elements are of the form (A4) with a J-dependent value for 9
= (. Obviously it is impossible in general to satisfy all three equations between the
four elements given by (A2) and (A3) by varying J. Consequently, the two surfaces
cannot touch at the C; points if #; = n5. If, on the other hand, n; # n%, the off-
diagonal elements vanish and the two equations given by (A3) are automatically
satisfied, leaving only one equation which in practice may be satisfied only for one
value of J = J.. This means that for n; # n3 the two surfaces may touch at the (53
points for the one value of J = J..

It is further possible to find the form of the two surfaces close to the points of contact
for J = J. by inserting (A4) and (A5) into (A1l). The result is

E J=J,0¢)=E.xg(J.)sinf+ ---, (A6)

where g(J..) = \/E(JX, ¢) g2 (J«. ¢) 1s independent of ¢ due to a compensation of
the two conjugated phases. For small values of # this is a double cone with (5 as
the axis.

The corresponding approximate quantization condition may be derived in analogy
with the derivation given in the Appendix of Ref. (2). A quantum rotational Ham-
iltonian, having in the classical imit (A6) as the form of the energy, may be expressed
as a 2 X 2 matrix with £, in the diagonal and J, * i/, as the off-diagonal terms. This
Hamiltonian has 2(2J + 1) analytical solutions for each value of J, but we are only
interested in the solutions corresponding to a small precession of the angular mo-
mentum around the (' axis. These are

E = FE, + const. g(J,) Vi. (A7)

where + = 0, 1, 2, 3, . . .. This means that a double series of 8-fold clusters may be
formed having these energies. with the consequences outlined in the text.

Next we concentrate on the conditions that common points are formed at the
points. These depend exclusively on the local symmetry index »n,, numbering the
irreducible representations 4 (n> = 0) and B (#n, = 1) of the subgroup C; of O;. The
same procedure as for the (’; points leads to the analogous results: the two surfaces
cannot touch if n, = n5, whereas a double cone is formed at each of the C, points if
ny # nh, leading to a double series of 12-fold clusters with energies given by (A7).

Finally, we discuss the conditions that common points are formed at the C; points.
These depend exclusively on the local symmetry index ny, numbering the irreducible
representations 4 (ny = 0), E,(ny = 1), B(ny = 2), and E,(ns = 3) of the subgroup
C,4 of Oz. Here it is necessary to distinguish three cases: (i) ny = ny, (ii) ng = n%y £ 1
modulo 4, and (i1i) ny = 14 = 2. In the first two cases the same procedure as for the
Cy and C; points leads to the analogous results: the two surfaces cannot touch if ny =
nly, whereas a double cone is formed at each of the C, points if 1y = n4 = 1 modulo
4, leading to a double series of 6-fold clusters with energies given by (A7). In the third
case the diagonal elements R;; have A symmetry and the form indicated by (A4). The
off-diagonal elements have B symmetry and their forms are

RE = Ma(d, ¢)sin®d + - e (A8a)
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and
R% = hu(J, ¢)sin’6 + - - - (A8b)

with no term independent of 8, and A,,(J, ¢) = sy (J, ¢)*.
This means that the two surfaces may have the C, points in common, but the form
of the surface is in this case given by

E2(J =Jx,0,¢) = Ex £ h(J)sin®0 + - - -, (A9)

where h(Jx) = Vhlz(.l, @) hy (J, ¢) 1s independent of ¢ due to a compensation of
the two conjugated phases. For small values of 6, (A9) indicates two paraboloids with
a common top point. The corresponding quantum Hamiltonian has many quasi-
degenerate solutions near E., and this probably leads to a transfer of two 6-fold clusters,
but several mathematical details of this case are not known at present.
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