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The Symmetry of the Vibrational Components in T, Molecules

B. 1. ZHILINSKII' AND SVEND BRODERSEN?

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

The rotation-vibrational states of a methane-shaped molecule may be divided into vibrational
components (S. G. Larsen and S. Brodersen, J. Mol. Spectrosc. 157, 220-236, 1993), each char-
acterized by a symmetry indicated as an irreducible representation of the full rotational group
O;. A simple group-theoretical method is presented, yielding the possible symmetries of the vi-
brational components for any vibrational state of a given symmetry. The method also indicates
which changes may occur in the symmetries of two interacting vibrational components. Finally,
local symmetry indices are introduced, and it is demonstrated that they represent an alternative
description of the symmetry of vibrational components, leading to the same results for the possible
symmetries and for the changes in these. The results are immediately valid for any 7, molecule,
but the general ideas should be easy to transfer to other molecules. © 1994 Academic Press. Inc.

INTRODUCTION

Spherical top molecules are characterized by a high vibrational degeneracy. Both
doubly and triply degenerate fundamentals occur, and the overtone and combination
states may be highly degenerate, as seen from the vibrational symmetry. Thus, in 7,
molecules the overtone states 2v; and 2r4 have the vibrational symmetry 4, + E +
F, and they are consequently six-fold degenerate in the harmonic approximation.

In some cases this high degeneracy is partly lifted due to anharmonic effects. The
overtone state 2», has the symmetry 4, + E and is thus three-fold degenerate. In CF,
this state is split by anharmonicity into a nondegenerate substate of symmetry 4, and
a doubly degenerate substate of symmetry E by 5 cm™' . Correspondingly the 3», state
of symmetry 4, + 4; + E is split by anharmonicity into a doubly degenerate substate
of symmetry E and another doubly degenerate substate of symmetry 4, + 4, by 9.5
cm™'. Also this last substate may be considered as split into two nondegenerate substates
of symmetry A4, and A,, although the splitting is only 0.1 cm™'. These splittings have
not been observed directly. They are found in an energy level diagram computed from
a fairly accurate potential function ( /-3).

If such an energy level diagram for CF, is computed for a large number of J values,
it reveals a further splitting of all the rotation—vibrational energy levels belonging to
the degenerate vibrational states (or substates) into as many vibrational components
as the vibrational degeneracy indicates (3). Thus the six-fold degenerate 2v4 vibrational
state is seen to split into six vibrational components, the doubly degenerate E substate
of 3v, is split into two vibrational components, and the six-fold degenerate v, + v,
vibrational state is split into six vibrational components. Contrary to the anharmonic
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splitting this further splitting is often highly dependent on J; in general it increases
with increasing values of J.

Each of the vibrational components for CF, is found empirically (3) to have a
certain symmetry in the full rotation group O;, in the sense that the correlation from
O to T, (see Table I) for a given value of J is found to indicate the symmetry in 7
of all the rotation-vibrational states belonging to the vibrational component for that
value of J. The symmetry is always of the form D{"**’ or D{/**), where A is a small
integer. For the 31 vibrational components of lowest energy in any of the three isotopic
species of CF, all values of A have been found to be in the interval —3 < A < 3,
equally distributed over negative and positive values for a given vibrational state or
substate. For instance, the six-fold degenerate v, + v, vibrational state of symmetry
F, + F; is split into six vibrational components, which in order of increasing energy
have the symmetries D™V, DI*®, DY, DU, DY, and D'V, In a way
these symmetries form a nice pattern, but there is no obvious explanation why these
six vibrational components have just these symmetries. The main purpose of the
present paper is to present a group-theoretical method for predicting which symmetries
may occur for the vibrational components of a vibrational state or substate of a given
vibrational symmetry. The results presented are valid for any molecule of symmetry
T, but the examples are taken from CF,. The group-theoretical method as such may
undoubtedly be extended to molecules of other symmetries.

The symmetry found empirically for a given vibrational component is not necessarily
the same for all values of J. Such a change of symmetry is always the result of some

TABLE 1

Correlation from O; to T,

J+A D+ DY+
12t tr+A, trC+ A,

1+12¢ tr+F, tr+F,
2+12¢ tr+E+F, tr+E+F,
3+12¢t tIr+A,+F [ +F, tr+A,+F; +F,
4+12t tIr+A+E+F;+F, tr+Ay+E+F +F,
5+12t tIr+E+2F,+F, tr+E+F;+2F,
6+12t tT+A;+Ax+E+F +2F, tT+A )+ A+ E+2F,+F,
T+12t tr+A+E+2F, +2F, tr+A;+E+2F; +2F,
8+12¢t tr+A+2E+2F,+2F, tC+A,+2E+2F; +2F,
9+12¢t tC+A;+A+E+3F; +2F, tr+A;+A,+E+2F; +3F,

10+12t  tTF+A;+A+2E+2F;+3F, tr+A +A,+2E+3F; +2F,
11+12t tTI'+A,+2E+3F +3F, tr+A;+2E+3F;+3F,

wheret=0,1,2,... and T = A1+A2+2E+3F1+3F2
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interaction between two (or three) vibrational components close to one another in
the energy level diagram, and the symmetries of the components involved are changed
simultaneously according to certain rules which are deduced below. A more detailed
treatment of these interactions between the different vibrational components of CF,
will be given in a forthcoming paper (4), based on the present theoretical results.

THE POSSIBLE SYMMETRIES OF THE VIBRATIONAL COMPONENTS
WITHIN ONE VIBRATIONAL STATE

Let us start by answering a relatively simple question: What is the sum I, of the
symmetries in 7, of all the rotation-vibrational states belonging to a vibrational state
or substate of a given vibrational symmetry T',;, for a certain value of J? Here we do
not take the splitting into vibrational components into account.

For the vibrational ground state the answer to this question is well known (5, 6).
It is given by the reduction of the irreducible representation D{” of O; to T, for any
value of J. In other words, the vibrational ground state consists as a nondegenerate
vibrational state of one vibrational component, and this has the symmetry D{”. The
starting point of the present paper is that T, for any other vibrational state of symmetry
I'.iv is given by the direct product

I =T ® D7, (1)

where either D}’ must be reduced to T, by means of Table I or I',;, must be correlated
to O;, also by means of Table I, before the direct product is formed. The first method
is always applicable, whereas, as seen from Table I, the second method may be used
only in rather few cases, including Iy, = 4, or F5, but not for the important case of
I'.i, = E. Equation ( 1) has been applied in several hundred cases for different isotopic
species of CF,, always indicating a splitting of the rotation-vibrational states in agree-
ment with the coarse structure of the energy level diagram. As an example, I, computed
from Eq. (1) for Ty, = E is given in the second column of Table Il for J = 0
through 11.

TABLE II
Two Solutions to Eq. (2) for Iy, = E

1. Solution 2. Solution
J Trn=E®DY DY+ DU DUD DUz
0 E E [+F,] [-Fy) E[+Fy) [-Fy)
1 Fi+F, [A)+] Fy+F, [-Aq] [Ag+] F +Fy [-Ag]
2 A+Ap+E+F+Fy Ay+E+F,+F, A A+E+F,+F, Ay
3 E+2F+2F, E+F+2F, Fy E+2F+F, Fy
4 A+A+2E+2F,+2F, A +A+E+2F +F, E+F, A +Ag+E+F42F, E+F;
5 A +A;+E+3F+3F; A +E+2F,+2F, Ay+F +F, A,+E+2F,+2F, A +F+F,
6  A,+A,+3E+3F +3F, Ay+2E+2F, +2F, A +E+F,+F, A +2E+2F 42F, Ag+E+F+F,
T Aj+Ay+2E+4F +4F, A+Ax+E+2F143F;  E+2F1+F, Aj+Ay+E+3F+2F,  E+F+2F,
8  2A,42A,+3E+4F +4F, A +Ay+2E+3F +2F, A +A+E+F+2F, A +A,+2E+2F |43Fy A +A+E+42F +F,
9 A +A,+3E+5F+5F, A,+2E+3F,+3F, Ag+E+2F42F, Ay+2E+3F+3F, A +E+2F42F,
10 2A;42A,+4E+5F |+6Fp A1 +2A0+2E+3F,+3Fy A +2E+2F +2F, 2A1+Ao+2E+3F 1+3Fy A,+2E+2F,+2F,
11 2A,+2A,43E+6F +6F,; A +A5+2E+3F 44F; A +A+E+43F,42F; A +A,+2E+4F 43F, A +A,+E+2F+3F,
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Knowing T, from Eq. (1), it is possible to put an important restriction on the
symmetries of the vibrational components for a vibrational state or substate of sym-
metry I'y;,. For any J the sum of the symmetries of the vibrational components must
equal I';,, because the vibrational components only indicate a splitting of the rotation—
vibrational states, the symmetries of which are given by I';,. The symmetries of the
vibrational components are, as mentioned above, always of the form D{** or
D**) so this condition may be expressed mathematically as

&vib
T, =2 D, (2)

i=1

where g.i,, is the vibrational degeneracy of the vibrational (sub)state and «; is either
g or u. As before the symmetries of the vibrational components should be correlated
from O; to 7, by means of Table 1.

As the total degeneracy for a given J of a vibrational component with symmetry
DY) is 2(J + A;) + | and the total degeneracy of the vibrational (sub)state is
g.in(2J + 1), it is easily seen that Eq. (2) cannot be satisfied unless

2 A =0, (3)

which explains the observation mentioned in the Introduction, that the values of A
are equally distributed over positive and negative values. However, if A, is negative,
2(J + A;) + 1 is a negative quantity for very low values of J, giving no meaning as
a degeneracy. This indicates that Eq. (2) should be understood in a special way for
these very low values of J.

As an example we demonstrate how Eq. (2) is solved for I',;, = E. First £ is multipled
on the reduction of D{’’ for 0 < J < 11, as given in Table I. The result is given in the
second column of Table II. From Eq. (3) it is clear that the two values of A must be
numerically equal, and it is easily seen by means of Table I that neither O, nor 1, may
be used for the numerical value. Consequently, the simplest solution is obtained if
one A is +2 and the other is —2. But there are still two solutions. If the first component
has a g symmetry, it is found that the other must have a u symmetry, or vice versa.
These two solutions are indicated in Table 11, as found directly from Table I for J =
2. For J = 0 and 1, one has to use the formal value of t = —1 for the component with
A = —2, yielding negative contributions. When these are subtracted from the contents
of the component with A = +2, the result is the correct one. It seems reasonable to
interpret this so that the component with A = —2 starts at J = 2, whereas the component
with A = +2 starts at J = 0, containing the one state of symmetry E for J = 0 and
the two states with symmetry F, and F; for J = 1.

Generally, if A is negative, the formally negative contents of the component should
be found from Table 1 using 1 = —1 and subtracted from the contents of the com-
ponent(s) with positive values of A.

In the example of 'y, = E there are more than the two solutions given in Table II.
There are thus also two solutions for A = +4 and —4. In fact there is an infinite
number of solutions, which may be indicated mathematically in the form

E®DY =D + pi ", (4)
where « and 8 equal g or u, but are always different in the two components, and &
may have the values 6 = 2, 4, 8, 10, 14, 16, etc. There is always a pair of solutions for
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each value of 4. This is basically caused by the invariance of the direct product of F
with any irreducible representation of T, to an interchange of the subscripts 1 and 2.
Consequently T',, is also invariant to such an interchange for any value of J. But an
interchange of the subscripts 1 and 2 in 7, is equivalent to an interchange of the
subscripts u and g in O3, as seen from Table 1, and any solution to Eq. (2) may be
transformed into another solution by such an interchange of u and g. The results
obtained here for I',;, = E are in agreement with previous results found by Michelot
(7) by a different procedure.

For Ty, = A4,, which is equal to D{”, Eq. (1) indicates T, = D{’, as already
discussed above. Equation (2) has consequently only one solution. The one component
of a vibrational (sub)state of symmetry 4, always has the symmetry D{".

For Ty, = A,, which is equal to D" according to Table I, Eq. (1) indicates Ty, =
DY, Again Eq. (2) has only one solution. The one component of a vibrational
(sub)state of symmetry 4, always has the symmetry D{”. These two cases are the
only ones for which Eq. (2) has a limited number of solutions; in all other cases there
is an infinite number.

For T, = F», which is equal to D{" according to Table I, Eq. (1) indicates

T, =D ® DY = DY) + DY + DY+ (5)

from the usual rule for the reduction of direct products within Q5. This immediately
indicates one solution to Eq. (2), but an infinite number of other solutions may be
found if T, is rewritten in terms of the irreducible representations of 7; by means of
Table 1. The only other solutions for which all the A values are in the interval —3 <
A < 3 may be written in the form

T = F,® DY = DY* + DYV + pY=> (6)
Tn = £, ® DY) = DY + DI + DY), (7)

and these four solutions are probably those which will appear most often in practice
in addition to the well-known (5) solution given by Eq. (5).
For Iy, = F), which is equal to D{" according to Table I, Eq. (1) indicates

I, = D{"® D = D"V + DY + DYV, (8)

again indicating one out of an infinite number of solutions to Eq. (2). All these are
obtained easily from the solutions to I'y;, = F» by substitution of all indices u by g
and all g by u, as is obvious from Table 1.

This example finishes the discussion of all vibrational states or substates for which
the symmetry is given by one irreducible representation of 7. If the symmetry I'yy,
of a given vibrational state is given by a sum of irreducible representations, two cases
must be distinguished. If the anharmonic splitting is large enough to split the vibrational
state completely into substates, the symmetry of each of which is given by one irre-
ducible representation of T,, the easiest way is to consider each substate separately.
If, however, the anharmonic splitting is insufficient to split all the rotation-vibrational
states completely, one gets immediately a number of solutions to Eq. (2) by adding
one solution to each single irreducible representation to those of the other ones in all
possible combinations. Thus, for I'y;, = F) + F, a total of 25 solutions are obtained
by adding one of the five solutions given by Egs. (5)-(7) to any of the corresponding
five solutions for I'y;, = F,. One of these solutions, obtained by use of Eq. (6) twice,
once for T',;, = F> and once for I'y;, = F), is the one mentioned in the Introduction
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as the solution observed in the v, + v, state of >CF,. In reality these solutions correspond
to the assumption of a large anharmonic splitting, and this procedure will not give all
the solutions. The simple example of T'y;, = 4, + A, will demonstrate this. From the
above given results one immediately gets the solution

Iy =(4,+4,)®DY =D+ DY, (9)
but in fact there is an infinite number of solutions given by
T = (4 + 4;) @ DY = DY + D™, (10)

where ¢ is any integer, and « and § are g or u, but are always different in the two
components.

An alternative method for finding all the solutions to Eq. (2) is to use local symmetry
indices as indicated in the last section of this paper.

CHANGES IN THE SYMMETRIES OF TWO NEIGHBORING COMPONENTS
AS A FUNCTION OF J

The semiclassical model for the rotation of spherical top molecules has proved to
be an excellent instrument for understanding the rather complicated pattern of clusters
in isolated vibrational components of the CF,; molecules (8). In the present section
we discuss some consequences of this model for the possible changes in the symmetries
of vibrational components due to a variation in J. In a forthcoming paper (4) we
shall present a number of examples of such changes in '*)CF, and '>CF,, with inter-
pretations based on the present results.

As shown previously (3, 9-12) the clusters within the manifold of rotation—vibra-
tional states for one value of J in one vibrational component may be ordered in one
series of 6-fold clusters, another series of 8-fold clusters, and possibly also a series of
12-fold clusters. Each cluster may be assigned a cluster index 7 = 0, 1, 2, etc., usually
with clusters of index 0 at both limits of the manifold. The symmetry of any cluster
is completely determined by 7, J, and the symmetry of the vibrational com-
ponent (3).

The semiclassical model indicates important information of how the symmetry of
a vibrational component may change due to a variation in J (4, /3). Such a change
in the symmetry is the result of a transfer from one component to a neighboring
component of one 6-fold cluster with cluster index 7 = 0 (termed 6¢), or of two such
clusters, 6o and 6,, or of one 8-fold cluster, 8y, or of one 12-fold cluster, 12,. This
means that the symmetry of an isolated component cannot change with J, whereas
the symmetries of two components may change simultaneously. In the following we
present the rules for what changes are possible for a given transfer of one or two
clusters. We refer to the component from which the cluster(s) is split off as the donor
and to the other component as the acceptor.

It is immediately clear that the values of A for both components must change,
depending on the degeneracy of the transferred cluster(s). Because the total degeneracy
of a given manifold equals 2(J + A) + 1, the value of A for the donor must decrease
by half of the degeneracy of the transferred cluster(s), and the value of A for the
acceptor must increase by the same amount. Thus, by a transfer of an 8-fold cluster
A for the donor is lowered by 4, and A of the acceptor is raised by 4. If two 6-fold
clusters are transferred, the corresponding change in the A values is 6.

That one cluster with cluster index v = 0 is transferred from the donor component
to the acceptor component means that the transferred cluster must have + = 0 both



332 ZHILINSKII AND BRODERSEN

in the donor before the transfer and in the acceptor after the transfer. This implies of
course that for any given J the symmetry of the cluster in the donor before the transfer
must be the same as the symmetry in the acceptor after the transfer. As mentioned
this symmetry may be found in Table IV of Ref. (3). Thus, for an 8, cluster the
symmetry is found to be 4, + 4, + F; + F>if J + A = 3p, where p is an integer, and
E + F| + F, otherwise, independently of the subscript u or g in the symmetry symbol
of the component. In order to maintain the symmetry this implies that if the superscript
in the symmetry symbol for the donor before the transfer is J + A, it must be J + A
+ 3¢ for the acceptor after the transfer, where ¢ is any integer. The superscript for the
donor after the transfer must then be J + A — 4 and that of the acceptor before the
transfer must be J + A — 4 + 3¢. These superscripts are included in the ‘“reaction
scheme” given in Table III for a transfer of one 8, cluster. The corresponding super-
scripts are a bit more complicated for a transfer of one 6, or one 12, cluster, because
the symmetry of the cluster depends on the subscript u or g. The results are given in
Table I11.

Knowing the symmetry of the transferred cluster it is easy by means of Table I to
show that the subtraction of one 8; cluster from the symmetry of any given manifold
always leads to the symmetry of the manifold for a component with the same subscript
g or u, but naturally with a superscript lowered by 4. This leads to the subscripts given
in Table III for this case. A subtraction of a 6, or a 12, cluster always leads to a new
component with the opposite subscript, from g to u or vice versa, and this leads to
the subscripts given in Table IH for these cases.

It is clear that the transfer of a cluster with 7 = 0 from one vibrational component
to the other requires some rearrangements in the cluster indices of both vibrational
components. This is precisely what has been observed in several cases in CF,, as
discussed in detail in a forthcoming publication (4).

TABLE 11

Possible Changes in the Symmetries of Two Vibrational Components
Due to a Change of J

By means of the transfer of one 6, cluster:

A-3+4 J+4-3 J+A+4L
D(&I+A) + D(g+—3+t) - D(B-» ) 4 D(u+ ) azp

T

D(&I+A) + D(g+A—1+4t) D(g#A—\'S) + D(BI+A+2+4t) a;gB

By means of the transfer of two 6-fold clusters:
— A6 J+A+4-+4t
D(&HA) + D(&HA 2+4t) : D(&h ) 4+ D(u+ )

D(&hA) + D(g+A+4t) : DghA—S) + D(BI+A+60-4t) azp

By means of the transfer of one 8, cluster:
D(&HA) + D(gw&—4+3t) : D&’*H) + D(g+A+3t) a=Poraxfh

By means of the transfer of one 12, cluster:
D%J+A) + D(g+A—6+2t) — D([;’*H’

+

D(&I +A+2¢) azp

-
D(&I+A) + D(&J+A—5+2t) : D(g*A‘S) + D(é]"’A”"zt) azp

o and B are the subscripts gor u. t is any integer.
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The transfer of two 6-fold clusters simultaneously is a bit more complicated than
the transfer of one cluster. Immediately it looks like there would be two possibilities
for such a transfer, one in which the cluster indices of both clusters are maintained
during the transfer, and another in which the 6, cluster is transferred as a 6, cluster
and vice versa. A detailed study of the symmetries of the clusters demonstrates, however,
that the transfer is possible only if the cluster indices are maintained; i.e., the 6 cluster
in the donor is transferred to the acceptor as a 6, cluster and the 6, cluster in the
donor as a 6, cluster in the acceptor. The resulting reaction schemes are included in
Table III.

The reaction schemes given in Table III are closely analogous to those for a chemical
reaction due to a transfer of a cluster of atoms. Each scheme may be read from left
to right or from right to left. In the first case the first symbol on each side of the two
arrows represents the symmetry of the donor and the second one that of the acceptor,
before and after the transfer, respectively. If read from right to left, this is reversed.

As an example of the use of Table III we may look at what changes are possible
due to a transfer of an §; cluster from a component of symmetry D{*?> and what
could be the symmetry of the acceptor component. In this case A = 2, and o = u, but
8 may be either g or u, and ¢ may be any integer. This means that there is an infinite
number of possibilities for the symmetry of the acceptor, out of which D{?,
DY, DY and DY may be the most interesting. With the first possibility as
an example, the reaction scheme becomes

DY) + DY = pYD + pYD, (11)

Knowing the symmetry of the transfered cluster, as indicated above, it is easy to verify
this equation for any value of J by means of Table I.

THE USE OF LOCAL SYMMETRY INDICES

The symmetry of a vibrational component has so far been characterized by an
irreducible representation of the full rotational group O;, indicated as D{/**), where
« is either g or u. In this section we present an alternative description of the symmetry
by means of the subgroups C,, C3, and (3, leading to alternative methods for finding
all the solutions to Eq. (2) and for finding the possible changes in the symmetries of
neighboring vibrational components.

In order to do this, it is convenient to introduce an alternative symbolism for the
irreducible representations of these subgroups. The new symbols are the small integers
n appearing in the characters of the irreducible representations of the C,, group, written
in the form exp(inw/m). Thus, for the subgroup (), this numerical symbol 74 has the
value ny = 0, 1, 2, or 3 as an alternative symbol for 4, E,, B, or E,, respectively. For
the subgroup C; the numerical symbol #; has the value n; = 0, 1, or 2 as an alternative
symbol for A, E,, or E,, respectively. For the subgroup C, the numerical symbol n,
has the value #; = 0 or | as an alternative symbol for 4 or B, respectively.

An irreducible representation of Os correlates to a sum of irreducible representations
for any of the three C, point groups with the axis chosen as a C,, C3, or C; axis. Each
of these irreducible representations is characterized by an integer number, indicating
the value of the projection of the rotational angular momentum on the axis. The
maximum value of this projection differs from the projection of the total angular
momentum due to the vibrational contribution. Selecting for each of the C, point
groups the irreducible representation characterized by the maximum integer number,
a description of the vibrational contribution is obtained which characterize each vi-
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brational component. The correlation from each of the C,, point groups to the cor-
responding Cy, Cs, or C, group then leads to a single irreducible representation. Each
of these is characterized by one of the three numbers n4, 13, and n, defined above.
These three numbers may be called the local symmetry indices of the vibrational
component. In the semiclassical model they indicate the length of the projections of
the vibrational angular momentum vector on one of each of the three axes, whereas
J + Aindicates the length of the angular momentum vector, resulting from the coupling
of the J vector and the vibrational angular momentum vector.

This special correlation from Oj; to the three subgroups leads to the following general
expressions for n4, 13, and n, as functions of A and « in the symbol D for the
symmetry in Os of the vibrational component

ns = A modulo 4 fa=g (12)
ny = (A + 2) modulo 4 ifa=u (13)
n3; = A modulo 3 (14)
»n; = A modulo 2 fa=g (15)
ny = (A + 1) modulo 2 ifa = u. (16)

The result of these expressions is indicated in Table IV. For 12 consecutive values of
A, there is a one-to-one correspondence between the symmetry in O3, as given by A
and a, and the local symmetry indices 14, n3, and n,. Considering that A usually is
confined to the interval —3 < A < 3, so that 7 in Table 1V is usually equal to zero, the

TABLE IV

The Local Symmetry Indices for a Vibrational Component
of Symmetry DY

a=g a=u

A ng Ng Ny ng ng ng
-5+12t 3 11 110
—4+12¢ 020 2 21
—3+12¢ 1 01 300
—2+12t 210 01 1
-1+12t 3 21 120
12t 0 00 2 01
1412t 111 310
2+12t 2 20 0 21
3+12t 3 01 100
4+12¢ 010 211
5+12t 1 21 3 20
6+12t 2 00 0 01

t is any integer
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local symmetry indices give in practice a complete description of the symmetry of any
vibrational component. The reverse relations to Eqs. (12)-(16) are

A= (6ns+ 8ny + 12m3)/2 + 12¢, (17)
where ¢ is any integer, provided that Eq. (3) is satisfied, and
a=g if ny + nyiseven, a=u ifn,+ n;is odd. (18)

The symmetry of a vibrational state or substate is given in the point group 7, but
may alternatively be given by the symmetries in the subgroups Sy, C3. and C;. These
subgroups are isomorphic to the subgroups C4, C;, and (5, and we use the same
numerical symbols n4, 13, and », to indicate the irreducible representations of these
groups. The irreducible representations of 7, are in general reducible if correlated to
these subgroups, as indicated in the left half of Table V by means of the traditional
symbols and in the right half by means of the numerical symbols. Table V may be
used to indicate the vibrational symmetry in the three subgroups of any vibrational
state. If the symmetry in 7, is given by a reducible representation, the corresponding
lines in the table are just added. The symmetry in any of the subgroups is always a
sum of g,;;, terms, where g,;, as above indicates the vibrational degeneracy of the
vibrational state.

This correlation from the symmetry in T, to the three subgroups for a given vibra-
tional state is analogous to Eq. (2), and the solutions to this equation may be found
by selecting all the vibrational components for which the sum of the local symmetry
indices equals the result of the correlation.

As an example the local symmetry indices are used to find all the symmetries of
the vibrational components for I'y;, = E. One starts by selecting out of the sums in
the third line of Table V three local symmetry indices for the first vibrational com-
ponent. One choice is (ny4, 713, 1) = (0, 2, 1). The sums in Table V then immediately
indicate that the local symmetry indices of the other component must be (n4, 13, 1)
= (2, 1, 0) because these are the only symbols left. Another choice for the first com-
ponent would be (74, 13, 1) = (0, 1, 1), with (ny4, 14, 1) = (2, 2, 0) left for the other
component. But there are still two other solutions as shown in Table VI. The symmetries
in Os are found either from Table IV or by use of Eqs. (17) and (18), in each case
giving an infinite number of solutions for different values of ¢. The symmetries given
in Table VI are those having the smallest numerical values of A. It is seen that the

TABLE V

Reduction of the Irreducible Representations of T,

Traditional Symbols Numerical Symbols
Ty S, Cy C, S, (Cp Cs C,(Cy
A, A A A’ 0 0 0
A, B A A" 2 0 1
E A+B E+E, A'+A" 0+2 1+2 0+1
F, A+E+E)  A+E+E, A'+2A" 0+1+3 0+142 0+1+1

F,  E+B+E, A+E+E;, 2A'+A" 142+3 0+1+42 0+0+1
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TABLE VI

Solutions for the Symmetries of Vibrational Components
Based on Local Symmetry Indices

Ty, ngngny DY nyngny DYP*Y  nyng ny DPY
A, 00 0 DY
A, 2 01 DY
E 0 2 1 DU+ 2 1 0 DY?
= 2
011 DY? 2 2 0 DYD
0 2 0 DY# 2 1 1 DU
010 D 2 21 DY
F, 3 1 0 DWW 2 01 DY 1 2 0 DYV
310 DD 2 2 0 DU 1 01 DYD
3 01 D&Y 2 10 DYP 1 2 0 DUV
300 DY® 2 2 0 DPD 1 1 1 DY
3 2 1 DYV 2 10 DYD 1 0 0 DU
3 1 0 DY 2 2 1 DY 1 0 0 DY
300 DU 2 1 1 DY 1 2 0 DY
311 DY 2 2 0 DPP 1 0 0 DU
300 DY® 21 0 DYD 1 2 1 DY
301 DUB 2 2 0 DY 110 DY
3 2 0 DY 2 01 DY 110 DY®
3 2 0 DU 2 1 0 DY? 1 01 DYD
311 DY 20 0 DYPO 1 2 0 DWYD
3 1 0 DYV 2 0 0 DGO 1 2 1 DD
321 DYV 2 00 DYO 110 DY
3 2 0 DUH 2 0 0 DY® 1 11 D@V
300 DU® 2 2 1 DU 1 10 DU
3 20 DUBH 2 1 1 DU 1 00 DU

Each line indicates one solution.

solutions found in this way are precisely those indicated by Eq. (4), demonstrating
that the two methods yield the same solutions, the advantage of the present method
being that it is easier to find all possible solution in less trivial cases. As a further
example all the solutions for I'y;, = F, are included in Table VI.

The local symmetry indices are also useful in the study of the changes in the sym-
metries of vibrational components due to an exchange of one or two clusters. Two
components will always form a basis of a reducible representation for all three
subgroups, and this cannot change as a result of an interaction. Consequently, any
change of symmetry can only be the result of an interchange of local symmetry indices
between the two components. If, say, the index n; for one component is changed from
0 to 1, the index n} of the other component must necessarily change from 1 to 0.

According to Eq. (17) such changes in n; and 74 lead to changes in the values of
A for both components, which again result in changes in the total degeneracies and,
according to Table IV of Ref. (3), also to changes in the symmetries of the 8-fold
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clusters. All of these changes agree with a transfer of 8-fold clusters from one of the
components to the other, and due to the presence of the 127 in Eq. (17) there is always
an infinite number of different solutions for how many clusters are transferred, in-
cluding the transfer of one cluster only. Similar results are obtained if the index n; is
changed from 1 to 2, or from O to 2, the important point being that a transfer of one
cluster is always included in the solutions. This means that a transfer of one eight-
fold cluster is always sufficient to produce the changes in the symmetries of both
components indicated by an exchange of the values of n; and n5.

Analogous results are obtained for an exchange of the values of n, and n5, where
a transfer of one 12-fold cluster is always sufficient to produce the corresponding
changes in the symmetries of the two components. The situation is slightly more
complicated if the values of ny and n} are exchanged. In most cases the transfer of
one 6-fold cluster is sufficient, but if the values of ns and n; are 0 and 2, or 1 and 3,
a simultaneous transfer of two 6-fold clusters is needed to produce the corresponding
changes in the symmetries of both components.

These results may be used to formulate the reaction schemes given in Table VII. If
the value of any local symmetry index ny4, n3, or n, gets outside its range according
to this table, it should be brought back by the addition or subtraction of 4, 3, or 2,
respectively. These reaction schemes are analogous to those given in Table III, except
that the order of donor and acceptor is not necessarily the one used in Table III. It is
possible to formulate some rather complicated rules for what is what, but it seems
easier to use Eq. (17) or Table IV to determine the A values, giving this information
immediately as discussed above in most cases. For a transfer of one 12-fold or two 6-
fold clusters the transfer may in principle always go both ways, because of the 127 in
Eq. (17) and in Table IV, but in practice one of these possibilities is often rather
unrealistic because of the numerically high A values.

Inserting Eqs. (17) and (18) it is possible to change the expressions given in Table
VII to those given in Table I1I, demonstrating once more that the local symmetry

TABLE VIl

Possible Changes in the Symmetries of Two Vibrational
Components Due to a Change of J, Expressed by Local
Symmetry Indices

By means of the transfer of one 6, cluster:

(ng ng, ny) + (ngtl, g, ng) 2 (ngl, ngny) + (ng ng,ng)

By means of the transfer of two 6-fold clusters:

(ng ng, ny) + (ng2,n3,ny) 2 (ngd2,ngny) + (ng, 0y, ng)

By means of the transfer of one 8 cluster:

(ng, ng, ng) + (ng,ngtl, ny) 2 (ngngil,ny) + (ng,ngny)

By means of the transfer of one 12, cluster:

(ngng, ny) + (ng,ng,nptl) 2 (ng, ng, nytl) + (ng,ng,np)
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indices lead to the same results as the purely group-theoretical method presented
above. When analyzing complicated interactions between vibrational components ( 4)
it seems, however, easier to use Table VII, or the equivalent rules formulated above,
together with Table IV than to use Table 111, because the contents of Table VII are
easy to remember. In reality this means that one works simultaneously with both
kinds of symbols for the symmetry of the vibrational components.

The local symmetry indices indicate immediately that any pair of vibrational com-
ponents of different symmetries may interact by means of an exchange of clusters.
Thus, a crossing of any pair of two vibrational components may take place as a “‘mod-
ified avoided crossing™ exclusively by means of transfers of clusters. Examples of such
crossings will be given in a forthcoming publication (4).
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