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The Pattern of Clusters in Isolated Vibrational Components of CF,
and the Semiclassical Model

B. I. ZHILINSKIL, ! SVEND BRODERSEN,2 AND MORTEN MADSEN

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

The semiclassical model for the rotation of molecules is used to interpret the rotation~vibrational
energy level diagram of CF,. The definition of the maodel is sharpened, partly by means of the
splitting of the energy levels into vibrational components and partly by introducing limitations
in the possible shapes of the classical rotational energy surface. The model is used 1o discuss the
pattern of clusters in each manifold of cnergy levels. The appearance of clusters in series ot 6-
fold, 8-fold, 12-fold, and 24-fold clusters is explained. It is also shown that folded series are a
simple consequence of the model. The pattern of clusters in isolated vibrational components as
a function of J is discussed with special attention to a rather common reversal of the pattern of
clusters. On the basis of the possible gualitative changes in the shape of the rotational surface,
these reversals are shown to appear only in two types, the simple inversion and the complex
inversion. By means of examples, the details of both kinds of inversion are shown to be in full
agreement with the qualitative requirements of the model. Finally, a quantitative application of
the model to the vibrational ground state is presented.  «© 1993 Academic Press, Inc.

INTRODUCTION

Heavy spherical top molecules are of special spectroscopic interest because of a
pronounced tendency for these molecules to form clusters of rotation—vibration states.
The best studied molecule of this type is CF,, which offers a wealth of examples of
such clusters. Also, the potential function of this molecule is known rather accurately,
making possible a calculation of both the energies and the wavefunctions, which are
essential in understanding the different patterns of clusters.

The potential function of CF4 has been fitted to the experimental transition fre-
quencies, and using a polynomial expansion including all 51 terms up to the fourth
degree in the symmetry coordinates, a very close agreement with the spectroscopic
data has been obtained (/, 2). This potential has been used to compute the energies
and wavefunctions of a very large number of rotation-vibration states (3). The fol-
lowing 10 vibrational states were included: the ground state, all 4 fundamental states,
v, + v, 2va, 3vs, 204, and v, + vy, The overall vibrational degeneracy of all these
states is 31. The energies have been computed for all J < 70, whereas the wavefunctions
have been calculated for all J < 50, and in some cases for J < 70. The calculations
have been performed for all three isotopic species of CF,4. On the basis of these wav-
efunctions, it has been possible to define a cluster index + = 0, 1, 2, . . . for any cluster,
and it has been shown that all the states may be divided between 31 vibrational com-
ponents, corresponding to a complete removal of the vibrational degeneracy (3). The
use of these two concepts allows a substantial ordering of all the vibration-rotation
states. The basic unit of this ordering is one manifold, which in the present paper
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means the collection of vibration-rotation states within one vibrational component
for one value of J. The clusters appearing within one such manifold can always be
arranged in one series of 6-fold clusters and one series of 8-fold clusters, and more
rarely also a series of 12-fold clusters; the cluster index in all cases varies from zero
to some maximum value. Also, 24-fold clusters appear, as discussed below.

The 31 vibrational components of the three isotopic species consist of about 6500
manifolds. It is clearly difficult to obtain a survey of the pattern of clusters within all
these manifolds without some kind of systematization. It has already been shown (3)
that the pattern of clusters within more than half of these manifolds follows one of
two schemes, termed type I and type 11, but many other schemes appear, and it seems
difficult immediately to find a general principle for an ordering. The scope of the
present paper is to present a procedure for finding what pattern of clusters may appear
and why they appear in different cases. The basis of this procedure is a comparison
to the semiclassical model for the rotation of spherical top molecules, consisting mainly
of a definition of a classical rotational energy surface for each manifold and certain
approximate quantization conditions. This model has been used extensively by Harter
and Patterson (4, 5, 6) to treat some cases of the pattern of clusters on the basis of
simple operators and by Zhilinskii ef al. (7, 8, 9, 10) for more realistic rovibrational
Hamiltonians. In the present paper the definition of this model is sharpened consid-
erably and the different possibilities for the patterns of clusters are presented on the
basis of a search for the possible shapes of the rotational energy surface and the possible
changes between such shapes. These possibilities are compared to the patterns of the
computed clusters, and a very nice agreement is found.

THE SEMICLASSICAL MODEL
Definition of the Rotational Energy Surface

The classical rotational energy E of a molecule rotating in a field-free space is given
as

P, P, P!
a+ I+z

= 1
21, 20, 21 M

where P,, P, and P, are the components of the angular momentum P on the principal
axis of the molecule, and /,, I, and I. are the corresponding principal moments of
inertia. The angular momentum may instead be characterized by |P| and two angles
¥ and ¢ indicating the direction of P in a molecule-fixed coordinate system. The
classical energy then becomes a function of |P|, 9, ¢, and the three principal moments
of inertia. The moments of inertia vary with the rotation (as described by P) and with
the vibration of the molecule.

We want to define a rotational energy surface for each manifold of rotation-vibration
states in the sense defined above. It seems safe to assume that the vibrational influence
on the moments of inertia is constant for one such manifold, so that the three moments
of inertia are functions of P only. When J is constant, |P/| is also a constant, and the
classical energy is a function of ¥ and ¢ only. Consequently, the rotational energy
surface corresponding to one manifold of states is defined as the surface illustrating
the classical energy E as a function of ¢ and ¢ for the constant value of |P|. This
surface is almost a sphere, because the three principal moments of inertia are always
nearly equal for a spherical top molecule. In fact, the deviation from a perfect sphere
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is never more than 3 cm ™! for CF, if J < 70, and is often much smaller. It is, however,
these small deviations which make the surface interesting.

The Shape of the Rotational Energy Surface

The rotational energy surface has some important symmetry properties. The value
of E is the same for two opposite directions of P when |P] is constant, and the surface
must have a center of symmetry i. It may be shown (11, 12) that the surface always
has the symmetry of T, ® i = O,, even if the molecule has lost some of its symmetry
because of centrifugal and vibrational distortions of the geometry.

The O, point group contains three (, axes (coincident with the S, axes of the
molecule), four C; axes, and six (> axes (perpendicular to the o, symmetry planes of
the molecule). The points where these axes cut the surface are of special importance,
and we call them the C,, the C;, and the C, points, respectively. There are thus 6 C,
points, 8 ( points, and 12 C, points on each surface. These numbers are closely
related to the appearance of 6-fold, 8-fold, and 12-fold clusters, respectively, as discussed
below.

Because of the high symmetry it is easily seen that the surface may be divided into
48 spherical triangles which are either identical or mirror images of each other. In
order to describe the detailed form of the surface it is sufficient to describe one of
these triangles. The vertices of such a triangle are one C, point, one C; point, and one
(', point (see Fig. 1). The side of the triangle from the C, point to the (, point is
defined by a ¢, symmetry plane of the O, point group, whereas the other two sides
both are defined by the o, symmetry planes ( /I, /0). Any point on one of these sides
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FIG. 1. One of the 48 equivalent spherical triangles on the classical rotational energy surface. The arrows
indicate the directions to the vertices of the neighboring triangles. As an example, the position of a set of
a4 points are included. Due to the problems in reproducing a spherical triangle as a plane figure, the angles
at the C, point are unfortunately not 90°.



PATTERN OF CLUSTERS IN CF, 195

is symmetrically equivalent to 23 other points. We shall refer to each of these 24
equivalent points on the surface as ¢,3, 024, Or o34 points, where the two indices
indicate the order of the two axes at the corresponding vertices. Thus, a o34 point is
one of the 24 points lying at the intersection between the rotational energy surface
and one of the ¢, planes defined by a C; and a C, axis (see Fig. 1). We refer to all
three kinds of such points as ¢ points. Finally, we use the term () for any member of
a set of 48 points inside the triangle.

In order to get more detailed information on the possible shapes of the surface we
use the general theory of surfaces, in which maxima, minima, and saddle points are
termed stationary points. These stationary points may be either degenerate or non-
degenerate, depending on the eigenvalues of the 2 X 2 Hessian matrix formed by the
second derivatives of the energy taken at that point. If any of these eigenvalues is zero,
the stationary point is degenerate, because a small change, for instance in the potential
function, may change, say, a maximum into a saddle point or a minimum. This would
be an unacceptable situation when describing a stable situation of the molecule, and
we define as an essential part of the model that all stationary points on the rotational
energy surface must be nondegenerate, which means that both the eigenvalues of the
Hessian matrix must be nonzero. However, in the description of the transformations
between stable situations, we allow degenerate stationary points to appear, as discussed
in the following section.

Functions with only nondegenerate stationary points are named Morse-type func-
tions (13, 11, 14, 15). If, as in the present case, they are functions of two spherical
coordinates only, there exist the Euler relation

Nmax + Hmin = Hsad + 2~ (2)
where np,,, is the number of maxima, etc., and the Morse inequalities
Hag + 1 2 Agin = 1. (3)

Because of the presence of the symmetry axis, the tangential plane of the surface
in any C, or (3 point is necessarily perpendicular to the axis (coincident with the
radius of that point), and the surface must have either a maximum or a minimum
in any of these points. and because of the symmetrical equivalence the same type
in all 6 or 8 points of the same kind. Thus, if, for instance, the surface has a maximum
at one of the C, points, it necessarily has a maximum at all 6 (4 points. At the 12 (5,
points it is possible to have a maximum, a minimum, or a saddle point (with a max-
imum in one section, but a minimum in another section). Finally, at the 24 ¢ points
and at the 48 C, points there may be a maximum, a minimum, a saddle point, or just
a slope. In connection with this information, Eqgs. (2) and (3) lead to important
restrictions on the possible combinations of minima, maxima, and saddle points on
the rotational energy surface.

If we first assume that only the C;, C3, and (', points are stationary (as they must
be), it is easy to see that there are only two possible shapes of the surface. If there are
minima at the C; points, there must be maxima at the C; points and saddle points at
the C; points. If there are maxima at the C, points, there must be minima at the Cy
points and saddle points at the C, points. At all other points of the surface, there is
just a slope in both cases. These two shapes are indicated as Nos. | and 2 in Table 1.
Below we show that they lead to the type | and type Il patterns of clusters mentioned
in the introduction.
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TABLE I

Shapes of the Rotational Energy Surface

No. Equivalent sets of points Pattern of clusters
6C, 8C; 12C, 240, 2405 Aoy

1 min max saddle 6 and 8-fold clusters, type [
2 max min saddle 6- and 8-fold clusters, type II
3 min max max saddle 6, 8-, and 12-fold clusters
4 min min max saddle 6-, 8-, and 12-fold clusters
5 max min max saddle 6-, 8-, and 12-fuld clusters
6 min max min saddle 6-, 8-, and 12-fold clusters
7 max max min saddle 8-, 8-, and 12-fold clusters
8 max min min saddle 6-, 8-, and 12-fold clusters
9 min min saddle max saddle 6-, 8-, and 24-fold clusters or
10 min min saddle saddle max folded series
27 min min min saddle max saddle  6-, 8-, and 24-fold clusters or

- _ -~ - - folded series

Next, if one set of ¢ points is allowed to be stationary, 6 different shapes are possible,
given as Nos. 3 to 8 in Table 1. Here is further utilized the obvious rule that a saddle
point must be present on the one side of the tnangle connecting either two maxima
or two minima. The next step is to allow two sets of ¢ points to be stationary, resulting
in 18 different shapes of the surface. Out of these, only two are included in Table I as
examples. These two possibilities have been chosen because they appear in practice
in one of the components of the v, state, as discussed in detail below. There is an
increasing number of possible shapes the more sets of stationary points that are allowed,
and Table I should thus in principle be infinitely long.

The Shape of the Rotational Energy Surface as a Function of J

Below we correlate the variation with J of the pattern of clusters within one vibra-
tional component with the changes in the shape of the rotational surface as a function
of J. In the present section we indicate what changes are possible in the rotational
surface due to variations in J (/6). Such changes are of three different kinds. First,
the surface may change quantitatively without any change in the position of maxima,
minima, or saddle points. Second, the position of, say, a maximum at any set of 24
¢ points, may vary continuously along one side of the triangle, or the position of a
minimum at some set of C; points may change inside the triangle. These positions
are not determined by symmetry, and such a change is again a quantitative change.
Third, new maxima, minima, or saddle points may turn up or they may disappear.
This is a gualitative change in the shape of the surface, and therefore such changes
are of special importance.

Any qualitative change in the shape of the rotational surface goes through a transition
state in which each member of one set of symmetrically equivalent points becomes a
degenerate stationary point. This is best seen by means of an example. Let us assume
that the rotational surface ( besides other stationary points) has one set of 24 maxima
at some o point and another set of 24 saddle points at some other ¢ point very close
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by. If these two sets of stationary points move towards each other due to an increase
in J, they will coalesce into one set of degenerate stationary points. As stated above,
this corresponds to a physically unstable situation which should be considered as an
unobservable transition state. The degenerate stationary point will immediately trans-
form into a nonstationary point, which means that the maxima and saddle points
have annihilated each other, leaving just an ordinary sloped surface at the actual
position.

This change in the shape of the rotational surface is indicated in line No. 11 of
Table II, if read from right to left. It is immediately clear that the reverse change is
also possible, creating close to any set of ¢ points, one set of 24 maxima and simul-
taneously a set of 24 saddle points. But two further changes of this kind are possible,
in which 24 minima are involved instead of the 24 maxima. Thus, line No. 11 of
Table 11 indicates the possibility of four closely related qualitative changes in the shape
of the rotational surface. The important point is that only 48 different qualitative
changes are possible due to a change of J, as listed by the 12 lines of Table II, where
each line indicates four changes, obtained by reading both ways and by replacing
maxima by minima and minima by maxima. For each line of Table II the set of
intermediate degenerate stationary points is indicated in the last column.

A few more examples will illustrate the use of Table I1.

Line No. 5 states that 12 maxima at the C, positions may change into 12 saddle
points, if simultaneously a set of 24 new maxima are formed at some 0,3 points very
close to the ', points. This means that each > maximum is transformed into a saddle
point and two close-lying new maxima.

Line No. 4 indicates that if maxima exist at all 8 ('; points and each of these are
surrounded by three neighboring g,3 saddle points, these three saddle points may pass
through the (5 point and become three ¢34 saddle points, changing the C; maximum
into a minimum. Such a passage of three saddle points for each C; point is the

TABLE 11

All Possible Qualitative Changes in the Shape of the Rotational Energy Surface Due to Variations in J

No. Change Deg. stat.
point

1 6C max. < 6C min. + 240, sad. + 24 03¢ max. C,

2 6C max. & 6C,min. + 240y sad. + 24 gy, max. Cy

3 6C max. + 2405, s8ad. & 6C,min. + 24 gy, sad. Cy

4 8Cymax. + 24053 8ad. ¢ 8Cymin. + 24 oy, sad. C3

5 12Cymax. & 12Cysad. + 24 0py max. Cy

6 12Cy;max. & 12C;s8ad. + 24 gy max. C,

7 12Cy8ad. & 12 Cymax. + 24 6,5y sad. Cy

8 12Cysad. ¢ 12C,max. + 24 6y, sad. C,

9 240; max. © 240, sad. + 48C;max. L
10 2408ad. & 240; max. + 48C,sad. L
n slope & 240, max. + 24 0;; sad. Oy
12 slope & 48C, max. + 48 C, sad. C,

Each line indicates four possible changes obtained by reading both ways and
by replacing maxima by minima and minima by maxima.
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only way in which the maxima at the C; positions may be changed into minima or
vice versa.

Six maxima at the C4 points may also be changed into minima, as indicated in line
No. 3, by means of a passage of saddle points. But for the C, points there is one further
possibility given in line Nos. 1 and 2. The six C; maxima may be changed into minima
if a set of 24 ¢34 (Or 024) maxima and a set of 24 o34 (0r o34) saddle points are formed
simultaneously at neighboring positions. After this transformation each C; minimum
1s surrounded by four maxima and four saddle points, forming a nim around the
minimum.

The most important information given by Table II is that several qualitative changes
of the surface are impossible as the result of a variation of J in the present model.
Thus a set of maxima cannot just change into minima. Such a change must always
be accompanied by some other qualitative changes. This has very important conse-
quences for the possible changes in the pattern of clusters within one vibrational
component as the result of a change in J, as discussed in detail below.

The Quantization Condition

The most common shape of the rotational energy surface is the one indicated as
No. | in Table I. It has 8 equivalent maxima at the C; points, 6 equivalent minima
at the C, points, and 12 saddle points at the C; points. We shall use this as an example
in the following to state the form of an approximate quantization condition and to
illustrate the correlation to the pattern of clusters.

Let us call the energy of the eight maxima FE,.,, that of the six minima E;,, and
that of the saddle points E 4. If we choose an energy value E, between E;, and Egg,
we may illustrate this by a perfect sphere of radius E. This sphere will intersect the
rotational energy surface along six closed contour curves which are more or less de-
formed circles with centers on the C, axes. This 6-fold degeneracy is what causes the
formation of a 6-fold cluster. The six contour curves are identical in shape, and they
each enclose an approximately plane figure. The area A of this figure may be used to
express the quantization condition, simply by requiring this area to be proportional
to the cluster index 7 plus one haif,

1
Ao v+ 5" (4)
Unfortunately, it is complicated to express the proportionality constant explicitly. It
1s, however, not needed for the purpose of the present paper where we use mainly
qualitative arguments. More rigorous formulations may be found in the literature, for
instance in Ref. (17).

The quantization condition expressed by Eq. (4) is closely analogous to that of the
linear harmonic oscillator, and it yields a number of equidistant energy values starting
by half a step. In the present case, it means that the quantization condition is satisfied
for a number of equidistant values of E starting half a step above E;,. At each of
these energies a 6-fold cluster will appear, characterized by a cluster index 7 = 0, 1,
2, ... starting with 7 = 0 for the cluster with energy E, closest to En,. It should be
emphasized, however, that this simple form of the quantization condition is only
approximate, but becomes better the closer E, is to E,;,, mainly because it assumes
that the rotational energy may be approximated by a second-order surface in the
neighborhood of a minimum. As E4 comes close to Eg 4, the contour curves come
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closer to one another, and it becomes very complicated to express the quantization
condition. In the quantum mechanical description and in the experiment, this manifests
itself by a broadening of the clusters with increasing values of the cluster index 7, and
it finally becomes a matter of definition whether a cluster is present or not. The present
quantization condition seems sufficient for qualitative or semiquantitative comparisons
between the model on the one side and the experiment or calculations based on quan-
tum mechanics on the other.

If, instead, we chose the energy E to be between F,4 and E,,, the constant energy
sphere will intersect the rotational energy surface along eight closed contour curves
near the C; points. The quantization condition is the same as above, and the result is
a series of almost equidistant 8-fold clusters where the cluster with index = = 0 is
closest to E, ... Again the series deteriorates when E, comes close to Eg 4. In both
series the clusters will only be equidistant as long as the rotational energy surface is a
second-order surface with good accuracy, which will be the case for sufficiently low
values of the cluster index 7. In the following, each cluster will for convenience be
indicated by the degeneracy with the cluster index as a subscript; e.g., 6, for the first
cluster in the series of 6-fold clusters.

The approximate quantization condition discussed here is by far the most important.
There are, however, special cases where certain parts of the rotational energy surface
have sufficiently simple forms so that it is possible to derive other approximate quan-
tization conditions. One such example is discussed below in connection with folded
series of clusters. The details of the derivation in this special case is given in the
Appendix.

PATTERN OF CLUSTERS IN ONE MANIFOLD
Type I

The most commonly observed pattern of clusters for any manifold of rotation—
vibration states in any of the three isotopic species of CF, is the one described above,
corresponding to the shape of the rotational energy surface indicated as No. 1 in Table
1. It is characterized by two series of clusters, one series of 6-fold clusters starting with
7 = 0 at the low energy end of the manifold and another series of 8-fold clusters
starting with 7 = 0 at the high energy end of the manifold. Where these two series
meet, close 10 Egq, a number of states do not appear in clusters but rather form a
kind of transition region from one series to the other. This is the pattern of clusters
termed type I in Ref. (3).

In Fig. 2 of Ref. (3) an energy level diagram is given for the J = 60 manifold of
the vibrational ground state of '2CF,. It is seen that the clusters are indeed approxi-
mately equidistant, but the deviation from this is significant, even for low values of
1, in agreement with the fact that the rotational energy surface can never be precisely
a second-order surface.

The length of the two series varies over a wide range for different manifolds. For
the vibrational ground state the 6-fold sertes is generally three times as long as the 8-
fold series. In the semiclassical model this means that the six minima at the C4 points
on the rotational energy surface are much more prominent than the eight maxima at
the (; points when measured from the level of the saddle points; in other words Eqq4
— Enin = 3(Emax — Ewa). In other vibrational components, the proportion between
the length of the two series is often very different from the case of the vibrational
ground state. One of the two series may thus contain only one cluster {(with 7 = 0)
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or it may be missing completely. This corresponds to the case where either the maxima
or the minima are so flat that the quantization condition will only be satisfied for one
value of E, or, because of the 1, not at all.

Tvpe 11

Also very common is the pattern of clusters termed type II in Ref. (3). This cor-
responds to the shape of the rotational energy surface indicated as No. 2 in Table 1.
It is simply the reversed situation of type 1 in the sense that the series of 6-fold clusters
appear with the 6, cluster at the high-energy end of the manifold, whereas the series
of 8-fold clusters appear with the 8, cluster at the low-energy end of the manifold.
Otherwise the pattern of clusters and the transition region are analogous to the type
I case.

If one calculates the energies within a certain manifold by means of an effective
Hamiltonian truncated after the centrifugal distortion term ¢R**-'” the resulting
pattern of clusters will be either of type I or of type II depending on the sign of the
coefhicient ¢ (18, 19, 12). Also, one obtains a precise value of 3 for the proportion of
the length of the 6-fold series to that of the 8-fold series.

Three Series of Clusters (12-Fold Clusters)

While the first two shapes given in Table I indicate one type of maxima and one
type of minima on the rotational energy surface, leading to two well-separated series
of 6-fold and 8-fold clusters, each of the following six shapes in Table I indicates three
types of maxima or minima, leading to three series of clusters, one 6-fold, one 8-fold.
and one 12-fold. In these cases two of these series must proceed more or less from
one end of the manifold and the third series from the other end.

As an example, Fig. 2 gives the energy level diagram of the J = 45 manifold of the
D{” vibrational component of the 3v,(4, + A,) vibrational state of '>CF,, showing
three series of clusters. The series of 12-fold clusters starts at the top of the manifold,
and the two other series start almost at the same energy at the bottom of the manifold.
This example corresponds to shape No. 4 in Table I. From the energy interval covered
by each series it is seen that the maxima at the 12 (, points on the rotational energy
surface are rather prominent compared to the 24 o34 saddle points, whereas the minima
at the 6 (4 points and the minima at the 8 (; points are less prominent and of about
the same depth.

Compared to the ground state manifold discussed above, the series in this manifold
are much shorter. The high degeneracy of the 12-fold clusters leaves no possibility for
long series, except for very high values of J. The example chosen here is in fact an
exception with respect to the length of the 12-fold series. Usually it consists of one or
two clusters only. If the energy corresponding to the maxima or minima at the 12 C,
points is very close to the energy of the saddle points, the 12-fold series may not show
up at all, and the pattern of clusters is effectively reduced to type I or 11. Similarly the
6-fold or the 8-fold series may be missing if the corresponding maxima or minima
are very flat.

In order to compute manifolds including 12-fold clusters from effective Hamiltonians
one also has to include in this the R®*" term (20).

24-Fold Clusters

So far we have discussed only the first eight shapes of the rotational energy surface
indicated in Table 1. All other shapes will include at least one set of maxima or minima
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FIG. 2. The energy level diagram for the J = 45 manifold of the D{” vibrational component of the 3v,(A,
+ A,) vibrational state of '’CF, showing one series of 6-fold clusters, one of 8-fold clusters, and one of 12-
fold clusters. Each cluster is indicated by the degeneracy with the cluster index as a subscript and by the
rotation-vibrational symmetry of the states forming the cluster.

FIG. 3. The energy level diagram for the J = 57 manifold of the D{/*?! vibrational component of the »,
vibrational state of '2CF, showing the presence of 24-fold clusters.

outside the C,, C3, or (5 points, usually at some ¢ point as a set of 24 maxima or
minima. If these maxima or minima are prominent enough, they will lead to the
formation of a series of 24-fold clusters.

Twenty-four-fold clusters are very rare. We have found them only in the Dy
vibrational component of the v, and the », + v, vibrational states of all three isotopic
species for J values close to 57. In this case there are minima at all C,, Cs, and C»
points, saddle points at a set of o34 points, another set of saddle points at a set of a3
points, and maxima only at a set of o34 points (see shape No. 27 in Table I and Fig.
9¢). It is these maxima which give rise to the 24-fold clusters appearing at the maximum
energy end of the manifold.

Figure 3 gives the energy level diagram of the J = 57 manifold of the D{/*? vibra-
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tional component of the », vibrational state of '>CF,. The cluster indices for the 6-
fold, 8-fold, and 12-fold clusters have been determined in the usual way from the k-
distributions of the computed wavefunctions (3). A similar determination for the 24-
fold clusters is difficult because the precise position of the ¢34 maxima is not determined
by symmetry, and the angles by which the wavefunctions should be rotated ( 3) are
thus unknown. The cluster indices indicated in the figure are derived simply from the
position of each cluster. From Table IV of Ref. ( 3) it is immediately obvious that any
24-fold cluster must have the symmetry 4, + 4> + 2E + 3 F, + 3 F, equal to the total
symmetry of a complete cycle of four 6-fold clusters or three 8-fold clusters. The
symmetry is thus independent of the cluster index, which means that the symmetry
unfortunately cannot be used to check the assignment of 7.

Twenty-four-fold clusters have never been discussed before within molecular spec-
troscopy or dynamics, but only in more general theories (16). In principle, a set of
48 maxima or minima at one of the general points C'; might lead to the formation of
48-fold clusters. We have seen no indication of the presence of such clusters.

Folded Series of Clusters

There are at least two reasons why 24-fold clusters are so rare. First, the total de-
generacy of the manifold must be high to give room for 24-fold clusters in addition
to two (or three) series of more ordinary clusters. This means that 24-fold clusters
can only appear at high J values. Second, there is in practice a marked tendency for
the presence of maxima or minima at the ¢ points not to lead to a series of 24-fold
clusters but to the formation of a folded series of 6-fold or 8-fold clusters. We shall
discuss this phenomenon by means of the J = 45 manifold of the D{/*!) vibrational
components of the », + v, vibrational state of '2CF,. The energy level diagram of this
manifold is shown in Fig. 4. The determination of the cluster indices for the folded
series of 6-fold clusters in this manifold from the k-distributions of the wavefunctions
has been discussed in detail in Ref. (3). Here we shall give the explanation of the
folding in terms of the shape of the rotational energy surface.

In order to see what the shape of the surface is in this case it is useful to consider
it as a development from the shape corresponding to the type II pattern of clusters,
given as No. 2 in Table 1. In that case there is a maximum at any C, point. We may
now introduce the qualitative change of the surface indicated in the second line of
Table II, resulting in a change of each of the maxima at the C, points into a local
minimum surrounded by four maxima at o»4 points and four saddle points at o34
points. If these four maxima and four saddle points are moved a little away from the
C, point, the resulting surface is as illustrated by Fig. 5. In the actual case the difference
in energy between the new maxima and saddle points is so small that the ! in the
quantization condition prevents the formation of 24-fold clusters due to the 24 maxima
at the 0.4 points. Instead, the four maxima and the four saddle points form an almost
circular ridge around the minimum. This results in the formation of a series of 6-fold
clusters, for which the deformed circle starts near the minimum at the C4 point, goes
first up to the almost circular ridge, and then proceeds toward lower energies as usual.
The energies of the clusters as a function of the cluster index 7 consequently go through
a maximum.

Clearly, the usual quantization condition cannot be applied when the deformed
circles are close to the circular ridge. Instead, another approximate condition may be
developed, as shown in the Appendix. The result is that the energy of the clusters as
a function of the cluster index 7, after the usual approximately straight line for low
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FIG. 4. The energy level diagram for the J = 45 manifold of the D}’*" vibrational components of the »,
+ vy vibrational state of '*)CF, showing a folded series of 6-fold clusters. The energy of the clusters as a
function of the cluster index r is shown by means of a dot for each cluster.

values of 7, should follow a parabola, corresponding to a position of the deformed
circles near the circular ridge, and possibly end in another approximately straight line
when the deformed circles have passed the circular ridge. A plot of the energy of the
folded series of 6-fold clusters versus 7 is included in Fig. 4 by means of a 7 axis and
a dot for each cluster. The energies are seen to follow the expected curve very nicely.

Folded series of clusters appear quite often and in different versions. It is immediately
clear that if all maxima in the present example are replaced by minima and all minima
by maxima, the circular ridge is replaced by a circular depression around a maximum
at the C, point, and the result is a folded sertes of 6-fold clusters with the bend at the
low-energy end of the manifold. But it is also possible to find folded series of 8-fold
clusters. These are due to a formation of an almost circular ridge or depression around
each of the C; points, caused for instance by a set of g3, maxima and a set of o3
saddle points.
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FiG. 5. The shape of the rotational energy surface responsible for the formation of the folded series of 6-
fold clusters shown in Fig. 4, indicated by means of a diagram of one of the 48 spherical triangles, analogous
to the one shown in Fig. 1. Maxima are indicated by ©, minima by @, and saddle points by ®.

If the rotational surface has, for instance, one set of maxima at some ¢34 and two
sets of saddle points, one at a ¢,4 point and the other at a o, point, it 1s clear from
the above discussion that three different patterns may result: (i) a folded 6-fold series,
folding at the high-energy end of the manifold; (ii) a series of 24-fold clusters starting
at the high-energy end of the manifold; or (ii1) a folded 8-fold series, folding again at
the high-energy end of the manifold. In the discussion given below of the pattern of
the D{/*? vibrational component of the v, vibrational state as a function of J, we
show how the variation of the pattern with J is explained partly as a continuous
transformation from the first of these possibilities over the second one to the third
one, due to a quantitative change of the surface, resulting primarily in a displacement
of a set of ¢34 maxima from a position near the C; point, through a position near the
midpoint between the C; and the C; points, to a position near the C; point. From
this example it is tempting to conclude that the choice between the three possibilities
in general depends on the precise position of the maxima (or minima) at the ¢34
points, but this is only an idea open to future discussion.

In order to compute manifolds with folded series of clusters from effective Ham-
iltonians, one has to include also the R** term (21).

THE PATTERN OF CLUSTERS WITHIN ONE ISOLATED VIBRATIONAL COMPONENT
AS A FUNCTION OF J

The type I pattern of clusters is the most commonly observed in the 6500 or so
computed manifolds. For '>CF; there are 9 vibrational components in which all man-
ifolds for J < 70 are of type [ (3). For the two other isotopic species the situation is
similar. Also, the type II pattern of clusters is observed quite often, but in '*CF, only
one vibrational component is exclusively of type II.

In many other vibrational components, type I manifolds appear for J below a
certain limit, and often only type 11 manifolds are present above a higher value of J.
The manifolds for J between these two limits represent an almost continuous trans-
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formation, resulting in an inversion of the type I pattern into the type II pattern. Or
the situation may be the reversed one with type II manifolds up to a certain value of
J. a region of inversion, and type I manifolds for J above some higher value. The
present section is devoted to a rather detailed description, based on Table 1, of how
this inversion may take place, so to speak, as a function of J. Only isolated vibrational
components are treated in this paper. Overlapping components and intersecting com-
ponents represent different problems which will be treated elsewhere (22).

We shall relate the changes in the patterns of clusters during an inversion to the
corresponding changes in the shape of the rotational surface. One might imagine that
the simplest way for these changes to take place would be that the rotational energy
surface be transformed directly through a perfect sphere to the new form. But this is
never the case because of the restrictions placed on qualitative changes in the shape
of the rotational surface, as indicated by Table 1. Instead, the transformation takes
place through a number of intermediate shapes of the surface, where the formation
of new saddle points causes consecutive transformations of maxima into minima and
vice versa, The details of these transformations may differ significantly, but it is possible
to sort out two main types, the simple inversion and the complex inversion. In the
following these two types will be discussed in detail, partly by means of two examples.

The Simple Inversion

In order that an inversion may take place, the maxima (or minima) at the C, points
must be changed into minima (or maxima), and the minima (or maxima) at the
points must be changed into maxima (or minima) as a consequence of a change in
J. From the above discussion of the possible qualitative changes of the rotational
surface, 1t is clear that such a change at the C; points can only take place as the
consequence of a passage of saddle points. The simplest way to obtain the corresponding
change at the C, points is then to let the same saddle points also pass the C, points.
The simplest way to create these saddle points is to let the (; saddle points change
into maxima or minima with a simultaneous creation of .3 or 0,4 saddle points.
These may then move around the spherical triangles, passing both the C; and the C,
points, and finally change the C, points back into saddle points as they disappear.
These are the changes of the shape of the surface corresponding to any simple inversion
(9. 23). It should be emphasized, however, that the primary event is a change of the
molecular geometry due to a change of J, and this change of the molecular geometry
gives rise to a change of the rotational surface, the essence of which may be described
as this moving of the saddle points.

The simple inversion is thus initialized by a creation of the ¢ saddle points, but this
is not observed directly in the pattern of clusters. What is seen is the appearance of a
series of 12-fold clusters due to the formation of maxima (or minima) at the C, points,
Then either the C4 points or the ('3 points are changed from maxima to minima or
vice versa. This is observed first as a disappearance of the 6-fold or the 8-fold series,
followed by a reappearance of the same type of series starting from the other end of
the manifold. Next the other series is transformed in an analogous way, and finally
the 12-fold series disappears as the o saddle points turn the C, points back into saddle
points.

As an example of the simple inversion we discuss in detail the inversion in the
DY*? vibrational component of the 2v, vibrational state of '>*CF,. This component
is well isolated and shows the type 1l pattern of clusters for J < 31 and type I for J =
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38. The inversion thus takes place over the eight values of J from 31 to 38. Figure 6
gives the energy level diagrams for 30 < J < 39, all on the same scale, but displaced
as indicated. The corresponding changes in the shape of the rotational energy surface
are sketched in Fig. 7 by means of a number of drawings, each of which is analogous
to Fig. 5. The following discussion thus refers to Figs. 6 and 7 simultaneously, and
also to Table 11.

The manifolds for J < 31 are all of type Il, but the 8-fold series is extremely short,
consisting of the 8, cluster only, and even this disappears at J = 31, whereas the 6-
fold series is very long. This means that the maxima at the C, points are prominent,
whereas the energy of the minima at the C5 points is close to that of the C; saddle
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FIG. 6. The reduced energy level diagrams for the D{’*? vibrational component of the 2v, vibrational
state of 12CF, for 30 < J < 39 demonstrating the details of a simple inversion. The energy has been reduced
as indicated to fit all diagrams on the same figure.
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F1G. 7. The changes in the shape of the rotational energy surface responsible for the stmple inversion
shown in Fig. 6, illustrated by six drawings, each of which is analogous to Fig. 5. Maxima are indicated by
©, minima by @, and saddle points by ®.

points (see Fig. 7a). In other words, the surface is close to a sphere, except for the six
prominent maxima at the C, points.

As stated above, the start of the inversion is observed in the energy level diagram
by the appearance of a series of 12-fold clusters starting at the low-energy end of the
manifold. This is due to the formation of minima at the C, points, simultaneously
with the formation of a set of a3 saddle points, as given by line No. 7 in Table II, if
maxima are replaced by minima. The resulting shape of the rotational energy surface
is indicated in Fig. 7b. The series of 12-fold clusters is seen for all J values from 32
to 37. For J = 32, 33, and 34 the manifold thus contains two series of clusters, a short
12-fold series at the low-energy end and a long 6-fold series at the high-energy end.
There is no 8-fold series; it is prevented from appearing by the surface being too close
to a perfect sphere near the C; points.

The passage of the o,3 saddle points through the C; points and the change of the
minima at the C; points into maxima corresponds to line No. 4 in Table 11 if maxima
are replaced by minima and minima by maxima. The resulting shape of the surface
is sketched in Fig. 7c. This change of the surface does not show up in the pattern of
clusters because the surface is still very flat around the C; points until the new o34
saddle points are far from the C; points, allowing the maxima at the C; points to be
prominent enough that a new series of 8-fold clusters is formed for J = 35. In principle,
there is now both a 6-fold and an 8-fold series starting from high energies. For J =
35 the 8-fold series only shows up as an 8, cluster, appearing in the middle of the
manifold. For J = 36 the §; is at the high-energy end of the manifold, with the 6-fold
series starting at a slightly lower energy, but now only consisting of the one 64 cluster.
This means that most of the surface is very close to a perfect sphere. The maxima at
the C; points are now the most prominent ones, and a large part of the inversion has
been carried through. At J = 37 the 8-fold series has increased to four members. This
shows that the o34 saddle points are now rather close to the C, points (Fig. 7d).
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Next the o34 saddle points pass the C, points, transforming them into minima, as
given by line No. 3 in Table II. The shape of the resulting surface is outlined in Fig.
7e, but the corresponding pattern is not seen in the energy level diagrams; it is, so to
speak, hidden between J = 37 and J = 38. The inversion is completed by the o2,
saddle points transforming the C, points into saddle points, as given by line No. 8 in
Table Il when read from right to left and replacing maxima with minima. The resulting
shape of the surface, outlined in Fig. 7f, is the one which corresponds to the type I
pattern of the clusters, and this is precisely what is seen in the energy level diagrams
for J = 38 showing a long 8-fold series from the high-energy end of the manifold and
a somewhat shorter 6-fold series from the low-energy end of the manifold.

The simple inversion has been seen in six different vibrational components of '>CF,,
but the inversion is only complete in two components; in the other four cases the
component mixes with some other component before the inversion is complete.

There is by no means a linear relation between the J value and the single steps in
the changes in the pattern of clusters due to the different changes of the shape of the
surface. This is caused by the nonlinear relation between changes in J and the changes
in the moments of inertia and in the potential energy. This nonlinearity is nicely
demonstrated by the example used above, showing how one change in the shape of
the surface may correspond to several J values, whereas some other steps do not show
up at all because they are performed between neighboring J values. It is this complicated
behavior of the pattern of clusters which makes the assignment of inversions a nontrivial
problem.

The Complex Inversion

The complex inversion differs from the simple one in that the inversion at the Cy
points is not caused by a passage of some saddle points, but by the simultaneous
creation both of a set of ¢ minima (or maxima) and of a set of o saddle points, giving
rise either to a folded series of 6-fold clusters or to the formation of 24-fold clusters,
as discussed above. The inversion at the C; points must be caused by a passage of
saddle points, as follows from Table 11. These saddle points may either be the ones
just mentioned, originating at the C, points, or they may, as in the simple inversion,
be created at the C; points, giving rise also to the creation of a series of 12-fold clusters.
However, we have seen no sign of the first possibility, so we do not discuss it further.
After the passage of the (5 points the o34 saddle points originating at the C, points
and the o414 maxima (or minima) from the C, points annihilate each other, as indicated
by line No. 11 of Table II. The o, saddle points created at the C; positions move to
the C; points and turn these back into saddle points, as in the simple inversion, causing
the series of 12-fold clusters to disappear at the end of the complex inversion. There
is a large number of possibilities for the details of complex inversions, but those observed
are all of the type discussed below.

We exemplify the complex inversion by the D{*? vibrational component of the
v, vibrational state of '*CF,. All manifolds are of type 1I for J < 48 and of type I for
J = 63, and the inversion thus takes place in the interval from J = 49 to 62. Figure
8 indicates the energy level diagrams for 47 < J < 60, all on the same scale, but
displaced as indicated. The corresponding changes in the shape of the rotational energy
surface are outlined in Fig. 9 by means of a number of drawings analogous to Fig. 7.

For J < 48 the cluster pattern is of type I, although the two first clusters in the 6-
fold series are rather close at J = 48. The corresponding shape of the rotational energy
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FIG. 8. The reduced energy level diagrams for the DY/*? vibrational component of the v, vibrational state
of "*CF, for 47 < J < 60 demonstrating the details of a complex inversion. In the regions where the clusters
are very close some cluster symbols have been left out. The 6, and 8, clusters are marked by dots. The
energy has been reduced as indicated to fit all diagrams on the same figure.

surface is thus the simple one indicated in Fig. 9a. At J = 49 the 6-fold series starts
to fold at the high-energy end of the manifold. As discussed above this folding is caused
by a change of the maxima at the C, points to minima and a simultaneous creation
of 24 ¢,, saddle points and 24 o34 maxima, as indicated by line No. | in Table Il. The
resulting shape of the surface is shown in Fig. 9b.

The bending of the 6-fold series increases with J, so that at J = 53 the 6,4 cluster
has the highest energy within the manifold. This is the result of a deepening of the C;
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FiG. 9. The changes in the shape of the rotational energy surface responsible for the complex inversion
shown in Fig. 8. illustrated by eight drawings, each of which is analogous to Fig. 5. Maxima are indicated
by ©, minima by @, and saddle points by ®.

minima and a simultaneous moving away from the C, points of the 4,4 saddle points
and the 014 maxima, as indicated by Fig. 9c.

At about J = 53 the (), saddle points are transformed into minima, simultaneously
with the formation of 24 new 043 saddle points, also indicated in Fig. 9¢. The result
is the appearance from J = 54 to J = 62 of a series of 12-fold clusters, usually consisting
of only the 12, cluster, but for J = 57, also of a 12, cluster, the position of which
demonstrates that minima, not maxima, have been created at the (; points by the
process indicated in line No. 7 in Table II if maxima are replaced by minima.

Already at J = 53 it is possible to postulate the presence of one 24, cluster instead
of the four 6-fold clusters of highest energy. As J increases such a conversion of 6-
fold clusters into 24-fold clusters becomes more and more obvious, until at J = 57
the eight 6-fold clusters of highest energy have disappeared completely, being replaced
by the 24, and 24, clusters, as discussed above. Probably the corresponding shape of
the surface is close to the one indicated by Fig. 9d. As J increases further, the 24-fold
clusters are gradually transformed into a folded series of 8-fold clusters, as clearly seen
at J = 59. This series is the same as the one observed as a very short series for J <
56. It has disappeared completely at J = 57 because the surface is too flat round the
C; points, but for J = 58 and 59 the minimum is apparently more prominent. The
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folding of the 8-fold series is caused by the o3, maxima, created at the C, points, and
the 0,3 saddle points, created at the C, points, forming an almost circular ridge around
the C; points, as shown in Fig. 9e. Note that the shapes given by Figs. 9¢, 9d, and 9¢
differ only quantitatively, as discussed above.

Between J = 59 and J = 60 the 0,3 saddle points pass through the C; points, in
agreement with line No. 4 of Table II if maxima are replaced by minima and minima
by maxima. The resulting shape of the surface for J = 60 may be the one indicated
in Fig. 9f or the 24 5,5, maxima and the 24 s, saddle points may already have cancelled
each other, leaving just a slope from the minima at the C, points to the maxima at
the 5 points, as indicated by line No. 11 of Table II if read from right to left. In the
last case the shape of the surface is given by Fig. 9g. For J = 60 the energy of the 8,
cluster is only slightly less than that of the 8, cluster (they cannot be distinguished in
Fig. 8), showing that the maxima at the C; points are rather deformed, but for J =
61 the series of 8-fold clusters is a normal and rather prominent series, indicating that
the maxima at the (; points are now of the usual shape and of rapidly increasing
prominence as J increases.

The complex inversion is completed by the 24 o,4 saddle points moving into the
C, points, transforming the minima into saddle points, as given by line No. 8 of Table
II if read from right to left and if maxima are replaced by minima. This causes the
series of 12-fold clusters to disappear from J ~ 62. The final shape of the surface is
thus the simple one given in Fig. Sh for J = 63.

In Fig. 8 all the 6, and 8, clusters have been marked by a dot to make it easier to
follow how these limiting clusters interchange their positions very smoothly as a func-
tion of J.

This example of the complex inversion is very nearly duplicated not only in the
D{/*?) vibrational components of the v, vibrational state of '*CF, and '*CF, but also
in the D{/*? vibrational component of the v, + v, vibrational state of all three isotopic
species. The complex inversion is seen also in other vibrational components, but no
24-fold clusters are formed, in most cases probably just because the J value is too low
to give room for clusters of such a high degeneracy. Inversions are seen both, as here,
from type 1l to type I and from type I to type 11. In the model this only corresponds
to an interchange of maxima and minima. For '*CF, a total of six complex inversions
are seen, out of which the five are complete inversions, whereas the sixth is incomplete
because of a crossing with some other vibrational component.

Width of the Manifolds

In connection with the inversion it is interesting to look at the width of the manifolds
within one isolated vibrational component as a function of J. By the width of a single
manifold we understand the difference between the highest and the lowest energy in
that manifold. Apart from two half-quanta the width equals E,., — Fnin. as defined
above, and is thus a reasonable measure of the deviation of the rotational energy
surface from a perfect sphere. This deviation is due to centrifugal distortion of the
equilibrium geometry of the molecule, depending in a complicated way on the de-
formation of the molecule due to vibrational movements.

Figure 10 shows a plot of the widths of the manifolds within three different vibrational
components as a function of J. The simplest case is that of the vibrational ground
state. Here the rotational energy surface has shape No. | (see Table 1) throughout,
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FIG. 10. The width of the manifolds of the vibrational ground state (@), the D}’ vibrational component
(X), and the DY*? vibrational component ( +), both of the v, vibrational state. The last case illustrates the
effect of an inversion,

and the width increases regularly as a function of J, because the centrifugal distortion
of the geometry naturally increases when the molecule rotates faster.

The next case is that of the D{’~?) vibrational component of the », vibrational state
of 'CF,. Again the width increases regularly as a function of J, but more rapidly
than that for the vibrational ground state. This indicates that the effect of the vibrational
movements in this component of », adds to the rotational effect, increasing the cen-
trifugal distortion compared to the vibrational ground state.

The third case is that of the D{/*?’ vibrational component of the v, vibrational state
of "’CF,, showing the effect of the complex inversion. Here the vibrational effect
counteracts the rotational effects for J larger than about 25, causing the width to go



PATTERN OF CLUSTERS IN CF, 213

through a very deep minimum at J = 55 which is in the middle of the region of the
inversion. This minimum is also clearly seen in Fig. 8. In fact the width for J = 55 is
only 5% of the width of the other vibrational component of »,. In terms of the shape
of the rotational surface, this means that the surface deviates most from the ideal
sphere when the shape is No. | (see Table I) as for J < 48 or No. 2 as for J = 63,
whereas the surface is closer to the ideal sphere for the shapes of higher numbers. The
inversion goes through shapes very close to the ideal sphere, but the interesting point
is that these shapes have a higher number of maxima and minima than shape Nos. |
and 2. In other words, shape Nos. 1 and 2, with few maxima and minima, represent
two opposite extremes of a highly deformed rotational surface, and the transformation
from one to the other goes through shapes with more maxima and minima, smoothing
out the surface, not through the extremely improbable case of the ideal sphere, but
through the formation of a large number of small maxima and minima. Physically
this is the most probable way, although mathematically it looks quite complicated.

QUANTITATIVE APPLICATIONS TO THE VIBRATIONAL GROUND STATE

The main virtue of the semiclassical model is its ability to yield qualitative infor-
mation on the possible degeneracies of the clusters, on the different patterns of clusters,
on the possible changes of these patterns, etc. Generally it is not recommended to use
it quantitatively, for instance to make predictions of the patterns of clusters. Such
calculations are better performed by means of precise quantum mechanical calculations
based on a diagonalization of the Hamiltonian matrix. We have, however, found it
interesting to make a calculation of the energy values E,..., Emin, O Eqg in the simple
case of the vibrational ground state, in order to see how well it is possible to reproduce
by means of the semiclassical model the much more accurate values from the quantum
mechanical model.

These calculations are based on the following principles which may be considered
as extensions of the semiclassical model. The classical energy of the molecule is a sum
of the rotational energy, the vibrational energy, and the potential energy. For the
vibrational ground state the vibrational energy is set equal to zero. The rotational
energy is replaced by

h2J?

Ero =m0
v20

(5)
where 7 is the moment of inertia around the actual axis of rotation. Instead of J? one
might use J(J + 1), but it does not make any great difference to the final results. For
the potential energy we use the harmonic part of the potential function (/). Again no
significant changes are found by adding cubic and quartic terms.

The fundamental idea is to compute the energy for a given axis of rotation and a
given J by requiring the energy to have a minimum as a function of the centrifugal
distortion of the molecular geometry. The moment of inertia and the potential energy
are both expressed in terms of a number of independent parameters describing the
deformation, and the minimum is easily determined by the computer. Thus, in prin-
ciple, the classical energy and the corresponding geometry may be computed for any
axis of rotation and for any value of J, which means that the complete rotational
energy surface may be computed. We have, however, only determined the energy and
the corresponding deformations for rotations around the C,, the C;, and the C, axes.
The energy values are the quantities called above E .., Emin, and Eqq4, respectively.
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TABLE 1l

Energy Differences for the Vibrational Ground State

Emax = Enin Esad - Enin
quant. mech. semi-classical quant. mech. semi-classical
P 0.0046 0.0045 00034 0.0033
0 0.0231 0.0225 0.018 0.0168
40 0.0724 0.0709 0.055 0.0531
50 0.1754 0.1725 0.136 0.1298
&0 0.362 0.358 0.27 0.269
0 0.667 0.657 0.51 0.496

Energy differences are given in cm~1, the number of digits indicating a
rough estimate of the accuracy.

The results obtained naturally depend on J, but vary smoothly in a reasonable way.
The energy values are all too low, at J = 70 by about 10 cm ™', the error being roughly
proportional to J. However, when the differences between the energies are formed,
amazingly accurate results are obtained, as shown in Table 1II, where a comparison
is made with the results from the quantum mechanical calculations. These calculations
do not give any of the values E,,,x, Emin, or Esqg directly, but E,,,, and E,,;, may be
found rather accurately by extrapolating the energy values of each of the two series of
clusters by one half-quantum, and the position of £y may be estimated with reasonable
accuracy from an energy level diagram (see Fig. 2 of Ref. (3)). The results given in
Table III indicate that the semiclassical model in the special case of the vibrational
ground state yields accurate energy differences, but it should not be concluded that
this model in general is suited for quantitative calculations.

The centrifugal distortion corresponding to a rotation around the C; axis is shown
in Fig. 11 for J = 70. The interesting points are that the centrifugal deformation is

FiG. 11. The computed centrifugal distortion in the vibrational ground state of '*CF, for J = 70 due to
a rotation around one of the (5 axes, projected on to one of the FCF-planes, assuming that the C nucleus
does not move. The displacements of the nuclei are exaggerated by a factor of 500.
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very small and that the movements of the off-axis nuclei are almost as much a stretching
of the CF bonds as an angular deformation, contrary to what may falsely be concluded
directly from the magnitude of the single constants in the harmonic part of the potential
function.

We have tried to make similar calculations for the triply degenerate v, vibrational
state, but without success. Once more, this just stresses that the semiclassical model
should be used only for qualitative purposes.

CONCLUSION

The semiclassical model is conceptionally very different from the quantum me-
chanical model. Nevertheless, the two models supplement each other in a very useful
way. The quantum mechanical model yields a large number of very accurate data,
and the semiclassical model allows an understanding and ordering of these data, ap-
parently without any contradiction between the two models. The present treatment
is limited to the isolated vibrational components of CF,. In a forthcoming paper (22)
we shall demonstrate that the semiclassical model is able to explain also the structure
of the mixing vibrational components.

APPENDIX

The purpose of this appendix is to outline the derivation of an approximate quan-
tization condition that is valid close to the bend of a folded series of clusters, assuming
the rotational energy surface to have the form of a perfectly circular ridge or depression
centered at a C, or a C; point. We have to find a quantum mechanical system having
the same number of variables and the same form of the energy in the classical limit.
A possible choice 1s a one-dimensional rotor (24), describing the rotation of one
particle confined to move on a circle. This system has two vanables, one in the range
0 to 27 measuring the position of the particle and the other indicating the angular
momentum L. The Hamiltonian of this system is

H=al?, (A1)

independent of the position variable. So the form of the energy in the classical limit
is a perfectly circular ridge or depression, depending on the sign of the constant a.
The energy levels of the one-dimensional rotor are given by

E = am?, {(A2)

where m is a quantum number having the values m = 0, +1, £2, . ...

However, the phase space of the one-dimensional rotor is a cylinder, whereas it is
a sphere for the original problem. Consequently, we have to limit the comparison to
low values of |m{. Also, it might improve the comparison to add a noninteger cor-
rection my (0 < my < 1) to m. The cluster index 7 of the folded series cannot be
identified with the quantum number m, because the start of the series is determined
by the part of the rotational energy surface which is inside the circular depression or
ridge, but in order that the energy levels should fit near the bend, the difference » —
m must be a constant integer 7.

The quantum condition is consequently

E=a(r — n+ mo)>. (A3)
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The energy of the clusters near the bend should thus follow a parabola as a function
of the cluster index 7. The presence of the correction m, only indicates that the vertex
of this parabola does not have to be at an integral value of 7.
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