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The structure of bending overtones of the H$ and D$ molecular ions at the energies below the 
barrier to linearity is analyzed using energies and wave functions from full three-dimensional 
discrete variable representation calculations. The lowest-in-energy states of the vibrational poly- 
ads ~~=4,5,6 are shown to follow the localization pattern of local bending modes, three 
equivalent-by-symmetry principal periodic trajectories of the corresponding classical two-mode 
system near the equilibrium. 

I. INTRODUCTION 

Since the early days of molecular mechanics harmonic 
(i.e., linear) normal mode classification has dominated the 
discussion of molecular vibrations near the equilibrium. ’ 
At certain excitations, the energy of which depends on how 
nonrigid a particular molecule is, the system becomes 
strongly nonlinear. In this case one can switch to more 
general methods of classical mechanics, such as periodic 
trajectory analysis, to understand the dynamics of the mo- 
lecular motion. On the other hand, to compute the quan- 
tum energy spectrum one must in general resort to (mul- 
tidimensional) variational calculations. The recent study 
of the “horseshoe states” of the Ht molecular ion2 is a 
good example of such an approach. 

Perhaps because of the quantum-classical correspon- 
dence principle, nonlinear dynamics analysis is not usually 
applied to the lower states of molecules, where the simple 
normal mode approach is generally assumed to be appro- 
priate. However, molecules are inherently nonlinear sys- 
tems due to strong anharmonicity effects. In many cases, 
even at energies as low as those of vibrational fundamen- 
tals, molecules behave very differently from the plain lin- 
earized picture. 

If we associate the modes of a nonlinear dynamical 
system with periodic trajectories two different situations 

, may be easily distinguished. 

Almost linear problems 

Linear, or harmonic, approximation is well defined: 
Harmonic frequencies are nonzero (Wi> 0) , and there are 
no resonances (w,+tii if i#j). The set of periodic trajec- 
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tories at low energies (near the equilibrium) correlates 
with the normal modes of the linearized system. In partic- 
ular, their numbers are the same.. 

Essentially nonlinear problems 
(a) Linear approximation applies only at very low en- 

ergies. However, with increasing energy, periodic 
trajectories rapidly bifurcate (due to strong an-- 
harmonic couplings), so that already at the ener- 
gies of one vibrational quantum the set of (stable 
and unstable) periodic trajectories, or nonlinear 
modes, differs qualitatively from the normal mode 
set, e.g., the number of such trajectories is larger. 

(b) Linear approximation is ambiguous: There are 
some resonances or zero harmonic frequencies, 
i.e., certain special a priori properties of the mo- 
lecular Hamiltonian, such as tinite group symme- 
try, cannot be properly represented by lineariza- 
tion. In this case the set of periodic trajectories 
arbitrarily close in energy to the equilibrium dif- 
fers from any possible normal mode set. It is im- 
portant to stress that like the normal modes such 
a set of (principal) periodic trajectories of a res- 
onance symmetric Hamiltonian system near equi- 
librium~is mainly defined by symmetry, i.e., is not 
dependent on the particular form of the Hamil- 
tonian under study. To reflect the fundamental 
role such trajectories play in understanding the 
dynamics of the system they are called nonlinear 
normal modes.3 

The best known example of kind (a) is the water molecule, 
where coupling of symmetric (SS), and antisymmetric 
(AS) stretching modes causes the appearance of a pair of 
new equivalent-by-symmetry stable periodic trajectories 
called local modes4 ( LM’s). Already at the energy of one 
stretching quantum the classical analog of this system pos- 
sesses four principal periodic trajectories:5 AS (stable), SS 
(unstable), and two LM’s. 
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Probably the simplest example of kind (b) is the dou- 
bly degenerate bending vibration of a triatomic DSh sym- 
metric molecule. In this case the corresponding classical 
system has eight principle periodic trajectories near equi- 
librium (compared to the two modes of the linearized 
problem with continuous symmetry). This molecular prob- 
lem is equivalent to the near-equilibrium analysis of the 
well-known H&on-Heiles Hamiltonian whose eight non- 
linear normal modes are called l&s ( stable), Il 1,2,3 (stable), 
and lI4,5,6( unstable) .317 

As we show in the present paper three stable nonlinear 
(bending) normal modes, 111,2,3, of .a Djh symmetric tri- 
atomic molecule are associated with local bending; a clas- 
sical motion characterized by a predominant deformation 
of one of the three valence angles of the molecule. In the 
vibrational energy spectrum such localized states form 
quasidegenerate triads. More evidence of the localization 
near 111,2,3, which correspond to the three C, symmetry 
axes in the configuration space of the molecule, can be 
obtained from analyzing the wave function. We use the 
results of Henderson, Tennyson, and Sutcliffe’ for Hz and 
new calculations on D$ to demonstrate that such a local- 
ization does indeed occur. 

II. NONLINEAR NORMAL MODES OF A D3,, SYMMET- 
RIC TRIATOMIC MOLECULE 

If a classical Hamiltonian function (on a 2n- 
dimensional phase space, where n is the number of degrees 
of freedom) can be approximated near a potential mini- 
mum by a nondegenerate harmonic oscillator (the linear- 
ized system is nonresonant), the complete nonlinear 
Hamiltonian system possesses families of periodic oscilla- 
tions, or nonlinear normal modes, which converge towards 
a normal mode of linearization. In this case the number of 
nonlinear normal modes is the same as the number of de- 
grees of freedom. 

In the case of resonance and especially in the presence 
of symmetry the situation becomes more complicated. As 
shown by Montaldi, Roberts, and Stewart,3Jg many char- 
acteristics of the periodic trajectories near equilibrium 
(nonlinear normal modes) in the case of resonance and in 
the presence of symmetry can be directly obtained from a 
group theoretical treatment, in particular by studying the 
group action on the set of classical trajectories and imple- 
menting the Weinstein-Moser theorem. The important 
point of such an analysis is the possibility of studying pe- 
riodic trajectories over the whole initial phase space. In 
this way possible families of periodic solutions near an 
equilibrium, or nonlinear normal modes, are characterized 
by their isotropy group which is a subgroup of the symme- 
try group acting on the set of trajectories. 

On the other hand, an n-dimensional oscillator prob- 
lem near an equilibrium inherits the dynamical symmetry 
of its linearization and possesses additional approximate 
integral(s) of the motion.” A particular important exam- 
ple is an approximately conserved action 

J= Elk, k=l,..., n, (1) 
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where Ik is the action variable of kth oscillator. The cor- 
responding quantum case has an SU (n) approximate dy- 
namical symmetry with the total number of quanta 

W=N= z a$zk, k= f,..., ti, (2) 

the Casimir operator of SU( n), as a good quantum num- 
ber. The spectrum of this quantum problem is formed by 
vibrational polyads, quasidegenerate groups of states with 
the same total number of quanta, so that N is often called 
a polyad number. Such a polyad approximation has a wide 
range of applications in molecules.” Thus it applies even 
for a floppy molecule such as Hz provided one is close 
enough (in energy) to the equilibrium; a requirement 
which does not interfere with the nonlinear normal mode 
analysis. 

Taking advantage of the approximate dynamical sym- 
metry, one can transform the initial problem to a simpler 
one defined over a reduced phase space. The stationary 
points in such a reduced phase space correspond to peri- 
odic trajectories in the complete phase space. In our case 
the dimension of this space is 2(n--. 1) and the topology of 
it is that of CPn-1.12213 Since CP,- I. is a compact space, the 
analysis of the group action on it together with its topo- 
logical properties gives a complete set of critical orbits,14 
i.e., a set of points necessarily stationary for any symmetric 
Hamiltonian defined on this space. As demonstrated by 
Sadovskii and Zhilinskii for a number of problems,” the 
analysis of critical orbits on the reduced phase space is 
essentially adequate for and gives the same set of nonlinear 
normal modes as the direct study of the periodic trajecto- 
ries of the full initial problem near equilibrium. We com- 
ment below on the application of this analysis to a D3~ 
symmetric triatomic molecule. 

Such a molecule has two normal modes, a totally sym- 
metric “breathing” mode, yl, and a doubly degenerated 
El-type bending mode, v2. We note that the actual sym- 
metry group acting on the vibrational variables ql, q2x, and 
q2,,, and hence on any quantities constructed from them, is 
a group smaller than D3h since the oh operation of D3h 
leaves all the coordinates invariant. Thus, the action of the 
D3h group on the configuration space itself is equivalent to 
the natural action of the C,, group with the C3 axis corre- 
sponding to ql. It is said that the image of the D3h group in 
the A; B E’ representation (spanned by vibrational coordi- 
nates) is the C3, group. It is the C,, group which should be 
considered when studying the action of the molecular sym- 
metry group, D3h, on the periodic trajectories in the total 
phase space of the problem.16 

A. Two-mode case: v2(k) mode 

If we consider only the bending vibrations near the 
equilibrium our problem becomes an analog of the Henon- 
Heiles Hamiltonian at low energies with the approximate 
integral of the motion 

(3) 
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Equation (3) gives the well-known Schwinger representa- 
tion of the angular momentum’7 with the components as 
follows: 

J+=(JJf=a$.$ 

(4) 

The relation of the components (J1,J2,J3) to the actual 
reference frame of ( qx ,q,,) can be derived by studying the 
transformation properties of J,(q,p) induced by the trans- 
formation properties of qk ,pk . Thus we find that J and J2 in 
Eqs. (3) and (4) are invariant with respect to any C, 
rotation of the (qx,qY) coordinate plane (the C, axis is 
usually chosen to be axis z) . Therefore J2 can be labeled as 
J,, a projection of J on the C,, axis. In practice, the quan- 
tity 2J, is often called Z, the “vibrational angular momen- 
tum” of the two-mode axially symmetric system.** The 
representation spanned by (J2=Jz,JI,J3) is (Ai $ E’) (the 
J, component has the A, symmetry) and the group image 
in this representation is D3; this is the group that should be 
used in the reduced phase space. 

Thus the two-mode problem with J=const, i.e., with 
the SU (2) dynamical symmetry, is equivalent to an effec- 
tive rotational problem [up to the well-known homomor- 
phism SU(2) -PSO(~)].“~*~ In particular, the reduced 
phase space of this two-mode problem is the same as the 
classical phase space of the rotational problem, a two- 
dimensional sphere S2 , often called a polyad phase 
sphere21-23 (note that CP, =S2). Therefore, we consider a 
familiar problem of the stationary points of a classical 
Hamiltonian function, an energy surface,24 detined on S2. 

The only important point to stress is that in the sim- 
plest possible case, which is the case near the equilibrium, 
the set of possible stationary points of such a function is 
entirely defined by the action of a particular group, namely 
the image of the molecular symmetry group in the 
(J1,J2,J3) representation, on the S2 space and by the to- 
pology of S2. This set corresponds to the set of nonlinear 
normal modes of the initial problem. 

Thus the action of the D3 group on the polyad phase 
space is identical to the natural action of this group on the 
sphere and has three (isolated) critical orbits with the isot- 
ropy groups C3, C2, and Ci (the D3 group has two non- 
conjugating C, subgroups). The numbers of equivalent 
points in each orbit are 2, 3, and 3, respectively. It proves 
that a generic, or Morse function25 which has (eight) sta- 
tionary points only on these critical orbits can exist in the 
S2 topology.‘5 Moreover, since the two C3 stationary points 
must be stable26 there are three equivalent stable C2 points, 
while three others are unstable as prescribed by the topol- 
ogy of the S2 space.15 Consequently, the only “choice” a 
particular system may have is between the E(C,) 
> E(CG) > E( C2) or E( C3> < E(Ci) < E(C2) arrange- 
ments of the energies of the stationary solutions. 

The stationary points of the simplest Hamiltonian on 
the reduced phase space and the periodic trajectories of the 

initiallsystem near the equilibrium correspond. The isot- 
ropy symmetry group is the guide to this correspondence. 
Thus, the two C3 points correspond to the H,,s modes with 
the same isotropy symmetry group. The two triads of sta- 
tionary points with the C, and CG isotropy groups corre- 
spond to the two families of equivalent periodic trajecto- 
fies, HI,*,3 and n4,5,6, with the C, and Ci isotropy groups.27 
Here we retain the notation used in the analysis of the 
H&non-Heiles Hamiltonian.7P3 

There are two properties of nonlinear normal modes 
which deserve particular attention in molecular applica- 
tions: their stability and their configuration space image. 
Again, these properties (of nonlinear normal modes) are 
generic and can be predicted without any analysis of a 
particular nonlinear Hamiltonian. 

If we consider a coordinate plane (q,,q,) the classi- 
cally allowed region for any energy E=const can be rep- 
resented on it by a deformed circle, invariant with respect 
to the C,, group.27 As shown in Fig. 1 the two II,,, periodic 
trajectories lie within this region and have a similar closed 
curve shape since they remain invariant under the C3 o@- 
eration. Moreover, since these trajectories are equivalent 
they can be transformed into each other by any of the a,, 
reflections. This is similar to the two corresponding sta- 
tionary points~ on the polyad phase sphere (two poles of 
S,) being interchanged by any of the C2 rotations. We 
conclude that II7 and IIs must therefore coincide in space 
but differ in time evolution, shown by arrows in Fig. 1. 

Similar simple considerations give the image of the 
f+invariant trajectories. They form two qualitatively dif- 
ferent triads of equivalent degenerate periodic trajectories. 
The degeneracy, i.e., that the trajectory image in the coor- 
dinate plane consists of a line with the turning points at the 
border of the classically allowed region, follows from the 
C2 invariance. As shown in Fig. 1 one triad, II1,2,3, can be 
placed on the three C2 axes, and another, &5,6, in a gen- 
eral position. It can also be shown15 that n4,5,6 should be 
intermediate in energy and thus be unstable. 

We conclude that a Dsh symmetric triatomic molecule 
near equilibrium has two different types of stable bending 
vibrations. For the same value of the approximate integral 
of the motion J=const these two periodic motions lie at 
the opposite ends of the corresponding energy region. The 
“circular” II,,,-type vibrations form a double degenerate 
nonlinear normal mode and correspond to a collective ro- 
tation of the three nuclei around their equilibrium posi- 
tions.28 The II 1,2,3 periodic trajectories form a triply degen- 
erate nonlinear normal mode. Its visualization in Fig. 1 
shows that a single valence angle is predominantly de- 
formed for each of the three classical trajectories. There- 
fore such a mode may be called a local bending mode. 

Nonlinear normal modes provide a qualitative insight 
into the dynamics of the system and, in particular, into 
mode localization phenomena at low energies. To visualize 
these phenomena we can use the classical trajectory calcu- 
lations for the Henon-Heiles Hamiltonian.2g”1 Regular 
trajectories, precessing and librating, “coil” around the sta- . . ble periodic trajectories, n7,g and IIy2,3 (cf. Refs. 29 and 
30). They correspond to the precession of J around the C, 
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FIG. 1. Nonlinear normal modes of a D,-symmetric 2D oscillator and the bending vibrations of a Djh symmetric triatomic molecule. 
_. 

axis, and each of the three C2 axes (cf. Fig. 7 of Ref. 3 1) . 
We note that the n7,g modes are common to any axially 
symmetric system: J, (or Z) is nearly conserved, whereas 
the III,*,3 modes are specific to our problem: we should 
consider the projection of J on one of the three C2 axes. 
Irregular, or chaotic, trajectories are close in energy to 
&5,$ and tend to occupy the entire potential well.3o’31 
They lie in the vicinity of the separatrix on the polyad 
phase sphere. 

B. Three-mode case: v2(E’) and q(A;) 

The treatment of the full three-dimensional (3D) vi- 
brational Hamiltonian brings essentially no new informa- 
tion in the nonlinear normal mode analysis. Indeed, since 
the third coordinate under consideration is totally symmet- 
ric, the nontrivial action of the symmetry group is simply 
that on the v*(E)) subspace discussed in the preceding 
section. 

A formal scheme of analysis would be as follows. Con- 
sider the Hamiltonian functions defined over the CP2 re- 
duced phase space.13 The action of the D3 group (the im- 
age of D3h in the space of all bilinear combinations a$ag, 
c@=2~,2y,l is D3) on this space is given in detail by 
Zhilinskii in Fig. 3 and Table II of Ref. 13. We summarize 
these results in Table I. The only critical orbit associated 
with the vI(A1) vibration is II,. It is isolated and stable. 
The corresponding periodic trajectory is degenerate, and 
its image in the 3D coordinate space (q2x,q2,,,ql =z> lies on 
axis z (the classically allowed region of the coordinate 
space in this case is a C3, invariant closed surface, a de- 
formed sphere). 

As seen from Table I, the stationary points of the sim- 
plest Morse Hamiltonian lie not only on the critical orbits 
of the group action: The n7,g and n4,5,6 stationary points 
lie on critical orbits, whereas the II,,*,3 points do not.32 The 
II,,,, points are no longer fixed in phase space, but can 
move (on the surfaces of the three equivalent spheres) if, 
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TABLE I. Action of the D, group on the CP, reduced phase space of the 
vZ(E) +q(A,) polyads of a D,J, symmetric triatomic molecule (after Ref. 
13).=- 

Isotropy Type of Stationary 
group Orbit orbit point(s) 

4 1 point critical n0 

c3 2 points critiCa n7,8 

G 3 points critical U4,5,6 

GT 3 points noncritical l-I 1~3 

‘Note: a,b stand for the two nonconjugating C2 subgroups of D3. 

for example, the polyad number J changes. Figure 1 may 
be treated as representing the projections of the n7,g, rI1,2,3, 

and H4,&6 3D trajectories on the (qb,q2,,) plane of bending 
coordinates. The trajectories themselves can come out of 
this plane as v2 mixes with vi. However, since a,(II,) 
=Hs, the 3D configuration space images of the two “cir- 
cular” modes still coincide. On the other hand, the degen- 
eracy of the Ill,*,3 trajectories-may not persist, since they 
are located in the 0, planes and no operation of the C3, 
group changes their time evolution property. Thus the ac- 
tual images of U1,2,3 might not reach the boundary of the 
classically allowed region. It is interesting to understand 
the relation between the changes these trajectories can un- 
dergo remaining in the three a, planes, such as a transition 
from a degenerate to a nondegenerate trajectory, and the 
position of the III,*,3 stationary points on the three C2 in- 
variant spheres of the reduced phase space (on the contin- 
uous S2 part of the C2 stratum, see Fig. 3 of Ref. 13). 
COnVersely, the l&s,6 trajectories remain degenerate.33 It is 
equally interesting to mention that the broken degeneracy 
is associated in this case with the broken a, symmetry 
( n4,5,6 stationary points lie on the isolated orbit-any de- 
parture from this point breaks the C, symmetry). 

C. Quantum-classical correspondence 

There are two aspects in the quantum problem which 
can be qualitatively understood on the basis of the classical 
trajectory analysis: patterns in the energy level spectrum, 
such as regular sequences of levels, or clusters, i.e., groups 
of quasidegenerate levels, and corresponding localization 
patterns of quantum wave functions (cf. the broad discus- 
sion on these topics in the H&on-Heiles literature30’34’35). 
Both ares associated with the existence of stable periodic 
trajectories in the classical problem. Thus, at low energies 
we may expect three different regular groups of quantum 
states: Those localized near II0 are just overtones of the y1 
mode, those localized near II,,8 form I doublets, and the 
last but not the least are those which are localized near 
III,*,3 and form quasidegenerate triplets. 

The H1,2,3 type states, or local bending states, are, per- 
haps, the most interesting. The vibrational angular mo- 
mentum (3) in these states has a small projection Z=2J, on 
the C3 axis and is quantized along one of the C2 axes. The 
vibrational energy levels form A +E clusters, e.g., 
4’A, +42 E, or 5t E+ S3 A,, where we use the conventional 
N’ r labels of vibrational states. Of course, the I label for 

these states has very little physical meaning. To better vi- 
sualize the localization of corresponding quantum wave 
functions, one should build three equivalent combinations 
O1,2,3 of the symmetrized wave functions IE,), IE,,), and 
IA,) as follows:36 

%=A (IAd+ I-G), 

1 1 v3 
e2,3=z (IA+j IEx)q IE,)). (3 

Functions O1,2,3 cannot be the eigenfunctions of the prob- 
lem; however, the subspace spanned by the three wave 
functions can be equivalently represented by such mode 
localized functions.37 Such a representation is physically 
meaningful if the &responding eigenvalues are (nearly) 
degenerate. If localization near Ill,*,3 occurs, then 01,2,3 will 
be localized near each of the C2 axes in the (q2x,q2,,) coor- 
dinate plane. Moreover the images of the node planes of 
f31,2,3 in the coordinate plane would be orthogonal to the C2 
axes, so that for given N every 01,2,3 function would have N 
nodes on its stability axis C2. 

The quantum analogs of the H7,s-type, or “circular,” 
motion can be best understood by an analogy to the well- 
known eigenfunctions of the isotropic (C, symmetric) 2D 
oscillator.38 We are particularly interested in the I=N 
states since they are most prominently localized near the 
n7,g trajectories. Indeed, the radial part of the Z=N wave 
functions has only one maximum and the angular depen- 
dence is cos(Np) for “even” functions and sin(Np) for 
“odd” functions, so that they look like “2N-petal daisies.” 
Of the even-odd pair of the eigenstates of 12, we can con- 
struct “circular” states with the angular part exp( ~NF). 
The latter are the eigenstates of I: The projection of J on 
axis z, 2J,=l, is well defined so that these states correspond 
to the counterclockwise and clockwise, II7 and Hs, circular 
motions. Breaking symmetry down to D3 results in a cor- 
responding distortion of the “daisies.” Again, from an 
even-odd pair of Z-doublet eigenfunctions we can construct 
two “circular” states: 

1=3,6,... 
(6) 

E (IE,)filEJ), ~#3&- - : 

We note, that in the 1=3,6,... case the two complex wave- 
functions $$,s (6) have exactly the symmetry of the n7,g 

trajectories. However, for the sake of visualization it is 
more convenient to use two equivalent real “daisy” func- 
tions with the symmetry prOpertieS of n7,g: 

erg=; ( iAl) A iA&, 

such that “circular” states differ only by a constant phase: 

(8) 
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TABLE II. Calculated band origins, in Cm-‘, for D: below the barrier to polyad approximation itself rapidly deteriorates. Since at 
linearity. Ht band origins from Ref. 8 are given for the same energy low polyad numbers quantum states cannot localize effec- 
region. 

state r (u,Jg ‘4+4 D: 

tively we are confined to the analysis of the N=4,5 poly- 

Hz. ads. It is also natural to study the energy spectrum of a 

1 Al 
2 E 
3 Al 
4 ‘4, 
5 E 
6 E 
7 Al 
8 E 
9 -4 

10 A2 
11 Al 
12 E 
13 E 
14 Al 
15 ‘4 
16 E 
17 E 
18 E 
19 Al 
20 A2 
21 Al 
22 E 
23 E 
24 E 
25 A, 
26 A2 
27 E 
28 Al 
29 Al 
30 E 
31 E 
32 E 
33 ‘4 
34 A2 
35 Al 
36 E 
37 Al 
38 E 
39 E 
40 Al 
41 E 
42 A2 
43 E 
44 Al 
45 E 
46 A2 
47 AI 
48 E 
49 E 
50 Al 
51 Al 

WO) 0 0 
W’) 1 1 835.1 
(Loo) 1 2 301.2 
K42o) 2 3 530.7 
ov2) 2 3 651.2 
(Ll’) 2 4 060.0 
cwO) 2 4 554.6 
(0,3’) 3 5 214.0 
(0,3’) 3 5 400.6 
(0,3’) 3 5 470.0 
(1,2°) 3 5 712.1 
( U2) 3 5 795.7 
cu’) 3 6 236.5 
(3,OO) 3 6 760.7 
(0,4O) 4 6 772.9 
(o,42) 4 6 858.5 
(o,44) 4 7 169.2 
(1,3’) 4 7 368.3 
(1,3’) 4 7 452.2 
(1,3’) 4 7 535.1 
cuO) 4 7 830.8 
W2) 4 7 892.5 
W’) 5 8 295.6 
(3,l’) 4 8 364.9 
(0,5’) 5 8 372.5 
(095’) 5 8 599.7 
( 1,42) 5 8 789.2 
(1,4O) 5 8 863.4 
(4,OO) 4 8 919.8 
(0,5? 5 9 030.7 
( 1,44) 5 9 162.3 
C&3’) 5 9 423.1 
C&3’) 5 9 460.6 
(2,3? 5 9 553.4 
m9 6 9 691.3 
(W2) 6 9 726.1 
(3,2? 5 9 895.0 
W2) 5 9 941.2 
(Oh9 6 10 124.2 
(1,5’) 6 10 265.3 
(1,5’) 6 10 352.3 
(1,5’) 6 10 406.5 
(491’) 5 10 445.3 
KG9 6 10 66818 
W2) 6 10 700.2 
(O,@) 6 10 798.0 
(2,4? 6 10 919.6 
(1,5? 6 10 962.0 
(0,7’) 7 10 999.2 
(47’) 7 11 014.7 
(5,OO) 5 11 031.9 

.O 
2 521.3 
3 178.3 
4 777.0 
4 997.4 
5 553.7 
6 262.0 
7 003.4 
7 282.5 
7 492.6 
7 769.1 
7 868.6 
8 487.0 
9 251.5 
8 996.6 
.9 107.6 
9 996.5 
9 650.6 
9 964.0 

10 208.4 
10 592.1 
10 642.6 
10 853.3 
11 321.5 
10 913.1 
11 525.4 
11 651.1 
11 809.2 
12 145.9 
12 073.2 

. . . 

heavier isotopomer, D$, for which the N=4,5,6 polyads 
can usefully be studied. 

A number of calculations of pure vibrational energies 
of H3f were recently reported.8T-2 All of them agree well 
(to within 0.1 cm-‘) in the energy range of interest. In this 
work we use H3f energy levels and wave functions from the 
recent 3D discrete variable representation (DVR) calcula- 
tions of Henderson, Tennyson, and Sutcliffe.’ These calcu- 
lations used scattering coordinates ( r1 is an H-H distance, 
r2 the distance from the midpoint of r1 to the third H, and 
8 is the angle between ri and r,) and, for the results we 
show, a final Hamiltonian of dimension N=6500. 

The scattering coordinate calculations are performed 
usmg C,, rather than D3h symmetry. 43 In this case the even 
calculation gives the levels of A; and EL symmetry and the 
odd one gives those of A; and EI, symmetry. 

Df calculations were performed using the 3D DVR 
program of Henderson and co-workerssP4 and a final 
Hamiltonian of dimension N=3500. This is sufficient to 
converge all the energy levels in the region of interest, 
which are presented in Table II, to within 0.1 cm-‘. 

The problem of assignment of low-lying levels of Hz in 
terms of N’ was partially solved by Tennyson and Hend- 
erson by plotting node patterns of the wave functions.40 
These assignments were extended by Carter and Meyer 
whose hyperspherical coordinates are more convenient in 
this respect.4’ In Table III we list the energies of the vi- 
brational polyads of Hz and DC. We note that these poly- 
ads do not overlap in energy; however, the validity of the 
N’ assignments above the barrier to linearity is arguable.45 

TABLE III. Quasidegenerate vibrational triads in the structure of bend- 
ing (ul =0, u2=N) polyads of Hz and D: . Band origins o and energy 
gaps, AE=E(I@) -E(Nlm2), are given in cm-‘. 

-- -jci+ -‘. 3 j-,: - 

NV Cd AE w AE 

6’ A, 15 179* 516 10 798 130 
66A, 14 662” 1082 10 668 544 
64 E 13 580* 1286 10 124 398 
62 E 12 294* -69 9 726 35 
6OA, 12363 ... 9 691 . . . _ 

III. LOCALIZED VIBRATIONAL STATES OF Hz AND 
D3+ 

The Hz molecular ion can be used as a naturai and 
simple example of a real molecular system which has non- 
trivial vibrational behavior, such as localized bending vi- 
brations, at arbitrarily low energies. However, the potential 
of H$’ has a low barrier to linearity ( - 12 000 cm” above 
the vibrational ground state3’), so that only a few bending 
overtones, N < 6, lie below this barrier while above it the 

5’E _ 12073 __.~ 548 9 030 431 
5’ A, 11 525 612 8 599 227 
5’ A, 10 913 60 8 372 77 
5’ E 10 853 . . . 8295 *:. 

44 E 9 996 889 7 169 311 
42 E 9107 111 6 858 85 
4’A, 8 996 . . . 6773 *** 

3’ A, 7 492 210 5 470 70 
3’ A, 7 282 279 5400 186 
3’ E 7003 . . . 5214 *** 

“As assigned by Carter and Meyer (Ref. 41). 
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FIG. 2. Equivalent combinations 0 I,*,’ of the low-l wave functions of D$ showing the mode localization near the three equivalent C2 axes. Combinations 
of IO,4'A,) and 1 0,42E) are shown in the upper row, of ]0,5'A,) and ]0,5’E) in the middle row, of ]0,6'A,), and 1 0,62E) in the bottom row. The number 
of nodes bn the &es equals N=4,5,6. 

It can be seen that the structure of the polyads corresponds 
to EUb,,) >E(n,,,,d >EUJ,,,,,). 

A. Localized bending states 

The bending states localized near Ilr2,s can be recog- 
nized for N=5, 6, and, perhaps,46 N=4, at low energies of 
each polyad as A,+E clusters (see the distances between 
neighboring levels, AE, in Table III). Particularly charac- 
teristic is the near degeneracy of the 6’ and 62 states and 
the splitting of the 53 levels, which is far larger than the 
energy gap between the lowest 5l E and 53 A, levels. 

To obtain further evidence of the localization near 
ll1,2,3 we analyzed the behavior of the wave functions cor- 
responding to the low-l levels in Table III. Initial functions 
in the Jacobi coordinates ( r1 ~~$3) were represented in the 
symmetrized displacement (from the D3h equilibrium) co- 
ordinates (qi ,qti,q2J, and plotted at q1 = 0 in the form of 
combinations 01,2,3 in Eqs. (5). 

Plotting 3D wave functions computed in scattering co- 

ordinates in another coordinate system, such as symme- 
trized displacement coordinates, is not straightforward. 
For this purpose we have developed programs which use 
3D linear interpolation between DVR points to obtain the 
amplitude of the wave function at an arbitrary point. As 
the even and odd calculations were performed on slightly 
different DVR grids,’ it is necessary to perform the inter- 
polation prior to taking linear combinations of these func- 
tions. 

The results, such as in Fig. 2, clearly show the ex- 
pected localization pattern. At the same time the influence 
of the &5,6 type motion, in particular at low N, should 
probably be acknowledged. In principle, the combinations 
61,2,3 (for any Al + E pair) should be (i) identical up to the 
C3 rotation, and (ii) invariant with respect to a particular 
o, reflection. Since the wave functions we used are obtained 
in the basis symmetrized only according to the C,, group,& 
only the a,,(x) symmetry properties are exactly respected 
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FIG. 3. Wave functions of the high I=N states of D$ : 
functions (bottom). 

(0,5’)E, and E,, (top), (0,66)A, and A, (middle), equivalent combinations e,,s of the (0,6(‘) 

in our plots. Comparison of Hz and D$ wave functions 
shows that the mass of the molecule has little effect on the 
localization: Both the states of D$ and H$ are mode lo- 
caked. 

B. Circular states 

As we discuss in Sec. II C, high-l bending states, espe- 
cially the Z=N states, of D$ and H3$ can be interpreted as 

quantum analogs of the I17,$ype classical motion. How- 
ever, due to symmetry limitations~ only the Z=N=6 states 
are best suited for such interpretation (N=3 is too low to 
fully observe the quantum-classical correspondence). 

The Z=N states themselves, such as (O$‘) and (0,66) 
states in Fig. 3, clearly show expected “circular” localiza- 
tion patterns with, respectively, 10 and 12 nodes on the 
I17,s line. In the latter case we can actually construct the 
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FIG. 4. The resonance between the (0,44)E (left) and (1,3’)E (right) states of D$ : odd (E,) components in the (ql=0,qznq2J plane (top) and in the 
(4, ,q2mq2y=O) plane (bottom). 

wave functions 0,,, (7) with exactly the same symmetry as 
trajectories II17,s in Fig. 1: They appear at the bottom of 
Fig. 3 as “right” and ‘“left” C,-symmetric “propellers.” 

We note that of the two states, Al and A,, the odd state 
is higher in energy and less perturbed (there are few A, 
states in the spectrum and they are far apart), so that it 
exhibits a clearer circular localization. Comparing Hz and 
D$ (cf. Table III) we also conclude that, perhaps because 
they lie relatively deeper in the C,, potential well, high-l 
states of D3f show more prominent “circular” localization. 

C. The 1:i resonance of v1 and v2 

Above we analyzed Dt and- Hz wave functions in 
terms of noninteracting y1 and vZ vibrational modes and 
find mode localization of bending states, as predicted from 
a classical analysis. However, as noted in Sec. II B, to com- 
plete such an analysis the consequences of possible vl, vz 

resonances should be considered. This involves studying 
other projections, such as q1 vs qti or q1 vs q2,,, of full 3D 
Give functions.47 

bne of the features we observed this way is mixing of 
high-l bending states with close-lying “breathing” states 
such that Au1 = -Au,= 1. In general, this 1:l resonance of 
the v1 (A i ) and v2 (E) modes can be ascribed only to quar- 
tic anharmonic terms while the 1:2 (Fermi) resonance is 
caused by cubic terms. However, spacing between the lev- 
els coupled by the 1:l (quartic) terms can be very small 
and consequently significant mixing of these states occurs. 
Thus the simple three-mode polyad model and the analysis 
in Sec. II B find certain confirmation. Moreover, at higher 
energies (see N=6 in Table II) it also appears that major 
mixing occurs for the states of the same polyad: AL+= 
- Av2= 1,2, as can be described by different quartic terms 
of the same order of magnitude. 
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A particularly strong mixing of the states in D$ as- 
signed as (0,44> and ( 1,3l) in Table II is illustrated in Fig. 
4. In this case mixing is nearly 50% so that we can recon- 
struct the “pure” (0,44) and ( 1,3l) components by simply 
taking f combinations of the computed eigenfunctions. 
Indeed as shown in Fig. 5, this produces a clear 4 4E “cir- 
cular” state with eight “petals” (cf. Fig. 3), while another 
combination is a clear (1,3i) state, and is a part of an 
E+A1 triad (not shown). Therefore, as predicted in Sec. 
II B, we observe the same basic localization patterns. 

The resonances of the above kind also contribute to the 
dynamics of lower states. Thus, for example, in the case of 
(0,33)A, we need to consider a contribution (of, to our 
estimate, as high as 20%) by the nearby ( 1,2’)A,. The role 
of resonances increases for higher states, such as (0,6’j)A,. 

IV. DISCUSSION 

The analysis of low-lying excited bending vibrational 
states of H$ and Dz gives a clear illustration of the local- 

(a) 

0.5 

g 0.0 
c9 

-0.5 

0.5 

0 
q 0.0 
& 

-0.5 

ized and circular vibrational bending states. These states 
correlate with the nonlinear normal modes, the periodic 
trajectories of the system near the equilibrium. 

In general the mode localization we observe can be due 
to different reasons: 

(i) Anharmonicity of the “static” 2D potential in the 
(qh,q2,,) bending coordinates. One should note 
that such “static” potential, obtained as a section 
of the full 3D potentia13’ at the equilibrium value 
of the y1 coordinate, is highly isotropioits three- 
fold symmetry is clearly seen only near the barrier 
to linearity. Hence the anharmonicity of this po- 
tential itself may not be the major cause for local- 
ization, as it is, for example, for a Henon-Heiles 
potential. Such a conclusion is also supported by 
the extent to which the quantum wave functions 
spread over the area, classically allowed by the 
“static” 2D potential. 

(ii) Anharmonicity of the “dynamic” 2D potential of 
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FIG. 5. Mixed states of D$ assigned as (0,44) (top part) and ( 1,3’) (bottom part). Eigenfunctions are shown in the first row of each part. Combinations 
(0,4’) + (1,3’) and (0,44) - (1,3’), which display “pure” 44 and 3l behavior, are shown in the lower row. 
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FIG. 5. (Continued.) 

the bending mode which effectively takes mixing 
of vi and vZ and the influence of the domain of 
highly excited states into account. More rigor- 
ously, we should speak of an effective 2D Hamil- 
tonian, the one we actually imply in Sec. II A. In 
this case y1 and V~ are still nearly separable, i.e., u1 
and us, the number of quanta in each mode, are 
still good quantum numbers. This mechanism can 
be dominant unless strong resonances of y1 and 
vZ, such as described in Sec. III C, occur. 

(iii) Anharmonicity of the full 3D potential is such 
that v1 and v2 are (generally) nonseparable but 
the 3D Hamiltonian is in some sense “simple”: its 
set of principal periodic trajectories is qualita- 
tively the same as that of the system near linear- 
ization. The latter is the set of nonlinear normal 
modes we obtain in Sec. II B. One of these non- 
linear modes, IIe, is totally symmetric with re- 
spect to the Cs, group and coincides with v1 in 
the configuration space, so that for the states lo- 

calized near the II,, trajectory v1 % v2 and v1 and 
v2 are nearly separable. This does not generally 
hold for other nonlinear normal modes since cor- 
responding trajectories may significantly come 
out of the v2 plane. On the other hand, their 
projections in this plane are similar to the non- 
linear normal modes of the 2D problem, so that 
similar mode localization patterns can be ex- 
pected in these projections. An essential feature 
in this case is the existence of (at least) one ap- 
proximate integral of the motion, the one the 
problem possesses near linearization. Table II 
and the analysis of resonances in Sec. III C indi- 
cate45 that the classical action of the form (1) 
can well play the role of such integral, so that 
iV= v1 + v2 may be considered as a good quantum 
number, sometimes called a “superpolyad num- 
ber.“48 

(iv) Dynamical mixing with highly excited states in- 
cluding those lying above the barrier to linearity 
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is essential. It seems, however, unlikely that the 
N= v1 + v2 polyad approximation completely 
breaks down” for the states we consider. Rather 
we deal with a c‘dynamic” 3D and 2D potentials, 
or effective Hamiltonians which can implicitly ac- 
count for other states within this approximation. 

We conclude that vibrational mode localization in H$ 
and D$ is a complex, essentially three-mode effect. A great 
number of vibrational states of D3f and H3f can be quali- 
tatively understood in terms of dynamics with at least one 
approximate integral of motion, N=z++u~, so that con- 
ventional “assignments” remain valid even at fairly high 
energies.47 This phenomenon of regularity, or quasiperiod- 
icity, was to some extent discussed and understood.30’34’3s 
In this context a 3D semiclassical study with the H3f po- 
tentia13’ is of great interest. In particular, the manifestation 
of unstable II4,5,6 trajectories and of their long-term regular 
behavior3t may be better understood in such a study. 

Another interesting problem is a further study of pos- 
sible polyad, or SU(3) dynamical symmetry approxima- 
tion used” in Sec. II B, and a closely related problem of 
vibrational resonances briefly discussed in Sec. III C (cf. 
Ref. 48). 
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