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Vibration-Rotation Problem for Triatomic Molecules with
Two Large-Amplitude Coordinates

Spherical Model?

V. A. IstoMmiN, N, F. STEraNov, anND B. L. ZHILINSKII

Molecular Spectroscopy Laboratory, Department of Chemistry, Moscow State University
Moscow, 117 234, USSR

The vibration-rotation problem of a triatomic molecule composed of a rigid diatomic core
and an atom which possesses almost free motion around this core is discussed. Such molecules
as LiCN and KCN are appropriate examples. A model with two large-amplitude coordinates
is used for calculations. Numerical results are presented using model potentials corresponding
to the ab initio potential surface for the LiICN molecule.

I. INTRODUCTION

The theory of the vibration-rotation spectra of nonrigid molecules with one large-
amplitude coordinate is now developed in detail (/-12). Besides this, group-theoretical
techniques enable us to classify the vibration-rotation states of such nonrigid molecules
(see review (13)). However, there are molecules for which more than one large-ampli-
tude coordinate must be introduced (8).

Let us consider, for example, inorganic salts with ionic or partially ionic chemical
bonds. Such molecules exhibit large-amplitude motion of the metal atom relative to
the acid residue. Electron diffraction data for TIReO, (/4) demonstrate the validity of
a model according to which the motion of Tl is nearly spherical around the ReO,
tetrahedron. Such molecules as M2S04, MNO;, MCN, MBO,, etc. (M = alkali metal
atom) possess similar properties. (See, for example, the recent review by Rambidi
(15)). The van der Waals-type molecules X-A4,, X-4B, X-ABC (X, inert gas atom;
As, AB, ABC, valence saturated molecues) provide other examples (12). All these
molecules have a rigid core and an atom allowing for the large amplitude motion. To
describe the low-frequency intramolecular motion in such systems it seems insufficient
to use one large-amplitude coordinate. The problem becomes more complicated if the
low-frequency motion is coupled with the core bending motions (16, 17).

In this paper we consider the simplest case of a molecule composed of an atom and a
rigid diatomic core. An example of this kind of molecule is LICN; Clementi ef al. (18-19)
have shown by ab initio calculations that the Li* ion in LiCN can move almost freely
around the CN~ group at the appropriate temperature.

1 Presented at the Third All-Union Symposium on Molecular Spectroscopy of High and Super-high
Resolution, Novosibirsk, September 1976.
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A general approach was developed recently (20, 21) which permits the investigation
of molecules with any number of nonrigid coordinates. Some theoretical publications
have been devoted to triatomic nonrigid van der Waals molecules (12, 22, 23). But the
explicit introduction of the body-fixed coordinate frame is not used in these works.

To calculate the vibration-rotation levels of a triatomic system with a diatomic
rigid core, we suppose first the fulfillment of the adiabatic approximation then separate
the center of mass of the system and introduce a body-fixed frame, connected only with
the diatomic fragment. The location of the atom with respect to the diatomic core is
characterized by two large-amplitude coordinates, 7, 8 (Fig. 1). An effective Hamiltonian
is constructed to describe the motion of the atom around the core and the rotation of
the molecule as a whole. The variational method is used to calculate the vibration—
rotation energy levels and wavefunctions. In our treatment we follow the ideas of earlier
works (3-3, 7, 9), and extend them to a more general scheme.

II. INTERNAL COORDINATES AND HAMILTONIAN

The choice of the internal coordinates is presented in Fig. 1. 7, 75, 7. are the position
vectors of particles ¢, b, ¢ in the space-fixed axis system. We define the relative coordin-
ates R and 7 in such a way that the point 0 is arbitrarily placed on the B vector. When
atom ¢ is chemically bound to atom e or b it is suitable to put the point O into coinci-
dence with atom a or b, respectively. If atom ¢, in contrast, may be found in the neighbor-
hood of atom ¢ as well as b, to put the point 0 between ¢ and & is more appropriate.
Putting 0 at the center of mass of ¢ and & results in the usual Jacobi coordinates for
three particles. To specify the internal coordinates we use the body-fixed coordinate
system with the z axis directed along the diatomic core. Then R, 7, and 6 are used as the
internal coordinates. The core composed of atoms @ and b is supposed to be rigid and thus
R is a small-amplitude coordinate whereas r and 6 are two large-amplitude coordinates.

Under the adiabatic approximation the Hamiltonian may be written in Cartesian
coordinates as

1 1 1
H=——A; ——As — — Az, + V(|7 — 7). 1
2m, 2m 2m,

F1c. 1. Coordinates for three particles.
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Introduce the vectors Re.m., R, 7 (in analogy with (24))

— mafa + mbr_b + mcfc

c.m. = ma+ mb+ e ’
IE =7—'b'—77a, (2)
_ _ Bafa'i_ﬁbfb
r=re—————.
Ba"{—ﬁb

Variation of 8 moves the point 0 along the R vector. (For example, the choice Ba = #4;
Bs = m; put the point 0 into the center of mass of the rigid core.) Using coordinates (2)
the Hamiltonian (1) may be rewritten as

1 1 x x° 1 _
H=——Ap s —— [AE + - (VrV: + ViVR) +""AF] —— A+ V(FHR), (3)
2M 2uy 2 4 2
where
1 1 1 1 1 1
- = + T = + —'— ’
My Ma my Mo M. Mo + my

My — Mg ﬁb_Ba
Mot my  Bat By
M =m,+ my + m..

X =

Now we transform the Hamiltonian to the body-fixed coordinate system with the z
axis directed along the diatomic core. Such a choice of coordinates was used earlier in
the theory of diatomic molecules (25, 26) and in the three-particle problem (24). The
body-fixed coordinate system is defined in the space-fixed coordinate frame by the Euler
angles a, 8, v, connected with the spherical coordinates of vectors B = (R, 81, ¢1) and
7 = (r, 03, ¢2) by relationsa = ¢1,8 = 61, v = 0.

1 02 2 9 x? :| 1

H = ——[—~+———+—A; ——A;
2#1 6R2 RaR 4 2}1.2

T [J24 12 — (1% + Lo+ L_J,)]

2uiR?

X
———[LyP-+ L. P+ P L+ P L]

M1
+ 2P+ PT] x[a il L2 vk @
4P ] - —|—— .7,0).

4R T 44, laRaz 9z 0R Raz] ’

Here
L:!: = Lx '_‘}: iLy,
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and L., L,, L, are components of the angular momentum operator for particle associated
with vector 7, P is a momentum operator for the particle associated with vector 7.
The operators L and P are identified in the body-fixed system x, v, 2.

J is the total orbital angular momentum for the three-particle problem. The defini-
tion and the explicit expressions of the J. operators in terms of angular variables are
represented in Appendix 1. The rules for J acting on generalized spherical functions
are listed there as well.

The terms including Py and 8/9z operators correspond to mass polarization cor-
rections in the theory of diatomic molecules. They vanish under the x = 0 coordinate
choice. In such a case there are no cross terms involving the products of the differential
operators with respect to the rigid coordinate R and the angular variables. The Hamil-
tonian (4) is suitable in this sense for the approximate separation of the rigid (R)
coordinate.

To construct the effective nonrigid Hamiltonian with two internal degrees of freedom
we average the Hamiltonian (4) with the vibrational harmonic function depending on
R. The resulting Hamiltonian depends on 7 and @ as well as on the external variables

01, o1, @

a? 1
H=- (— + —) As+
8,111 2;1.2

(]2 + L?) —
2u1R% 2u1R%

QL%+ L J_+ L_J,)

X

o R (PiL_+P L+ L P +LP —2PJ +PJ)]+ V(0. )
L3 RAN]

V(r, 6) is the potential integrated over the R-dependent vibrational function. R, is
some effective value of R. A more accurate treatment should use the second-order
perturbation theory in analogy with the work of Hoy and Bunker (5). But here we use
the simple form (5) and consider the evaluation of eigenvalues and eigenfunctions of
operator (5). For this purpose auxiliary Hamiltonians will be constructed with the help
of the subdividion of operator (5). Certainly the representation of potential energy in
spherical coordinates is not suitable for highly elliptical potential surfaces due to the
bad separation of variables. The preliminary scaling may be useful to obtain coordinates
more suited for the potential representation and on the other hand to yield a rather
simple form of kinetic energy. The resulting elliptical model will be discussed in a later
work.

IIT. VARIATIONAL TECHNIQUE

In order to avoid the two-dimensional numerical integration we use the special form
of potential expansion which is suitable for the problem considered:

V =3 Cim(r — ro)* cos™d, (6)
k,m

where 7, is some averaged value of 7.

Then we employ the variational procedure. We construct the basis by preliminary
crude separation of variables in the Hamiltonian (5). For the sake of simplicity we put
% = 0 which means that the point 0 coincides with the center of mass of the rigid core.
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(The bending Hamiltonian for x 5 0 will be discussed in Appendix 2.) On the first
step we introduce two Hamiltonians I7, and Hy:

1 4 ad
= — —<r2—) V.0 )

2usr? 9r or.

1 1 1
Hy=-——1J"+ ( + )1
2” LR20 2M1R20 2/1,;37’20

(2L + LiJ-+ LT ]+ V(). (8)

2R

The motion over the 7 variable is supposed to be close to 7, and V.(r) as well as V()
are effective potentials obtained in some way from the total potential (6). For example,

V() = ;L:,O Cro(r — 70)F,

9)
Ve(@) = X Comcos™.

m==0
If the radial motion is significantly more rigid than the angular one, the effective
angular nonrigid Hamiltonian should be constructed from the operator (5) through

averaging over the r-dependent function or even through the second-order perturbation

theory.
Consider now the calculation of the eigenvalues and eigenfunctions of operators (7)
and (8). The following functions are appropriate as basis functions for operator (7):

(1) Radial eigenfunctions R,,; of the three-dimensional harmonic oscillator.
(i) Eigenfunctions of the operator

1 4 a 2w’
Hosc = - - (7'2 "“) + (7 - 70)2-
2u0r? Or ar

{(w is a variational parameter.) This operator possesses no analytical eigenfunctions. An
approximate solution may be obtained by increasing the integration range from (0, =)
to (—o, ), supposing r, is sufficiently far from zero.

(iii) Radial eigenfunctions of the operator

= — (1/28)A7 — 2D[(a/r) — 3(a*/r) ],

which have proved to be useful as zero-order functions for the vibrational problem (27).
Basis (ii) enables us to perform the matrix element calculation in the most simple way.
The operator (8) is natural to diagonalize in the basis

1
[l ky = E[DJko(wl, 01,0)Y 1(8, ¢) == D_so(1, 01, 0)Y 18, ©)], (10)

[, 0) = DYV 1o,
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where DYy, are the Wigner functions, Yy are spherical harmonics, J is the quantum
number of the total angular momentum, & = 0, ..., J. Unfortunately, large values of
J require too large a basis. In such a case another method of solving the eigenvalue
problem may be used which is briefly discussed in Appendix 3.

The multiplication of eigenfunctions of operators (7) and (8) leads to the basis for
the calculation of the eigenvalues of operator (5). This basis gives the possibility of
analytical evaluation of all matrix elements except (R.|1/7?| R,). ones, which may be
evaluated analytically only after the expansion of 2 near the value ,.

Some other methods of finding the eigenvalues of Hamiltonian (5) are considered in
Appendix 3.

IV. COMPUTER PROGRAM

In the preceding section we proposed the algorithm which does not require numerical
integration schemes. Here we briefly describe a computer program based on it. The
program uses radial harmonic oscillator functions to find the eigenfunctions of H.. No
more than 60 functions may be used. Operator H, is diagonalized in the basis of functions
(10) and up to 100 functions may be used. The potential V (r, 8) is taken as expansion
(6) with 0 € £ < 4, 0 < m < 4. Hence V(r, ) depends maximally on 25 coefficients
rm. Potentials V,(r) and V4(6) are constructed from V (r, 8) by formula (9). Besides,
the effective potential ¥ may be obtained in terms of the second-order perturbation
theory by using eigenfunctions of H,. Such a procedure is necessary when the cross
coefficients cxm In the potential expansion are rather large.

The total basis may include up to 15 eigenfunctions of H, and 20 eigenfunctions of
H,, with the total number of basis functions not exceeding 120. The program permits
the calculation of the vibration—rotation energies up to J = 8 (J, = 0). But results
for high J values are good only for such favorable cases as the ArO; molecule where the
nearly free rotation of the Ar atom around the O; core takes place. As we noted earlier
the other algorithms are more suitable for the caiculation of states with high J values.

V. RESULTS AND DISCUSSION

The program described above was used for vibration-rotation level calculations of
the LiCN and KCN molecules with model potential of the form

V(r, 8) = k.(r — r0)* + ko(1 — cost). (11)

The choice of the model potential is based on the known experimental and theoretical
results on M CN-type molecules. The potential surface for the LiICN molecule was studied
in (18, 19). The linear configurations of LICN and LiNC were investigated more care-
fully. The LiNC configuration was shown to be more stable (0.3 eV = 2420 cm™
lower than the LiCN one). Such a low barrier results in hindered rotation of the Li
around the CN group at temperatures of about 1000 K. This indicates clearly that the
LiNC molecule may be regarded as linear only for several lowest bending states.

Ismail ef al. (30, 31) have studied the ir spectra of LINC, NaCN, and KCN molecules
incorporated into the inert gas matrix. The bending frequency of LiNC was found to be
equal to 119 cm™ (Ne matrix).
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Recently the microwave spectrum for the KCN molecule was detected for J: 8§ —9;
9— 10, and 10— 11 transitions at a temperature of about 600 K (32). The authors
could not interpret the data obtained in terms of a linear KCN molecule, so they
believed that the motion of K around the CN fragment takes place.

All these results suggest that the numerical investigation of the triatomic problem
with the potential (11) would be interesting. We note that the model proposed is rather
crude to yield quantitative agreement with the known experimental and theoretical
results because the potential (11) reproduces the barrier height rather than the shape o
the potential function. Nevertheless we hope that our results are interesting from the
qualitative point of view.

Calculations for the LiCN molecule were performed with the following parameter
values:ry = 436 a.u., k, = 5 X 102au.,and by =1 X 1073,3.5 X 1073,5.5 X 10 a.u.
Results are obtained for J = 0-4. The C-N distance is equal to 2.19 a.u. (ab initio
calculations of the potential surface were performed for LINC nonlinear configurations

at this internuclear distance). The value of the force constant k. = 5X 1072 a.u.

i

treatment of Clementi’s data (79) for linear conﬁguratlon leads to w, = 720-740 cm™.)
The 7, value is also taken from the linear configuration LINC. The bending force con-
stant ks = 5.5 X 1072 a.u. results in the same barrier as the ab initio calculations.

TABLE I
Energy levels (cm” 1) of radial-bending-rotation Hawiltonian

v, (N,L) v, (§,L) Vs (N,L)
378,075 0,0 407,033 0,0 422,806 0,0
441,944 0,1 528,858 0,1 576,185 0,1
503.033 0,2 648,036 0,2 726,942 0,2
561.113 0,3 764 471 0,3 875.006 0,3
615,881 0,4 878,056 0,4 1020,297  O,4
666.890 0,5 988,667 0,5 1115,049 1,0

713.441 0,6 1096.163 0,6 1162,728 0,5
7534952 0,7 1099.266 1,0 12684513 151

787,167 0,8  1200,376 0,7  1302.200 0,6
822,099 0,9 122,160 1,1 1419354 1,2
865.851 0,10  1301.105 0,8 1438.606 0,7
916,911 0,11 4340.402 1,2 1567.438 4,3
1037.290 0,12 1398.106 0,9 1571.820 0,8
1070,563 1,0 456,899 1,3 1701,.702 0,9
1105,.924 0,13 1491,067 0,10 1712,.866 1,4
1134.101 1,1 1570,542 1,4 1807.291 2,0
87rie] potentials: ¥V, = 5.0x10"2(r-r )2Ak (1-cos4) a.u.,

N,L, - radial, bending quantum numbers.
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TABLE II
Bnergy levels (cm—1) of radial-bending-rotation Hamiltonian for LiNC model?,

J=0 (N,L) J=1 NI J= 1 (N,I) J=2- (N,IL) J =2+ (N,L)
422,806 0,0 500,787 0,0 423,699 0,0 502,594 0,0 425,485 0,0
576.185 0,1 652.890 0,1 500,777 0,1 579.173 0,1 5024563 0,1

726.942 0,2 802.339 0,2 577.088 0,2 654,732 0,2 578,909 0,2
875,006 0,3 949,060 0,3 652,868 0,3 730,004 0,3 579,178 0,3
1020,297  O,4 1092,969 0,4 727.858 0,4 804,219 0,4 654,768 0,4
1115,049 1,0 1193.074 1,0 802,304 0,5 878,150 0,5 730.050 0,5
162,728 0,5 1233.975 0,5 875.935 0,6 950,983 0,6 730.242 0,6

B(r,0) = 5.06107(r-r)? + 5.5x1073(1-c086) a.u. ; r =4.36 a.u. ; radisl

frequency - 692.2 cm'1. (N,L) - radial, bending quantum numbers.

In the KCN calculations £y = 5.0 X 1072 and 4.0 X 10~% a.u. The geometrical param-
eters for the KCN molecule are: 7, = 2.57 A, R(CN) = 1.15 A (31). The influence of
the basis size on the accuracy is discussed in Appendix 4.

v Energy levels for some model potentials are listed in Tables I and IT. Figure 2 repre-
sents for the sake of clarity the energy levels of the bending-rotation Hamiltonian Hy
for J = 0. The distribution of low levels corresponds to the anharmonic oscillator model.
The level separation becomes smaller at the top of the barrier. Above the top the
arrangement of the levels resembles the free rotator one. The same behavior was earlier
observed for the quasi-linear molecules. The correlation between free rotation and re-

10505 . 8
ar ”
of :
ol ___-———/4/—_
ok
5h
4L
3l
2l

-~
T

Fic. 2. Bending states for the LINC molecule. ¥V {8) = — 3.5 X 107 cosf a.u.
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F1c. 3. Frequencies of the L — L 4+ 1 transitions (numbered as LR) in the LINC molecule for mode}
potentials V(8). L, quantum number for #» Hamiltonian, J = 0. 1 — V() = — 5.5 X 10 cosf a.u.;
2—V({@ =—35X103cosfua.;3— V@ =—10X103cosfan.;4— V) = 0.

stricted rotation levels permits correlation of the quantum numbers z, I’ of the two-
dimensional isotropic harmonic oscillator with the free rotator quantum numbers.
A similar correlation can be obtained for levels which differ significantly from the lincar
molecule levels. The effect of the high level density at the top of the barrier is shown
in Fig. 3. The frequencies of the L — L 4 1 transitions are presented there for three
different potentials (L denotes the quantum number of Hamiltonian Hs). The L de-
pendence is linear for low levels. The minimum takes place at the top of the barrier
and above the barrier all curves go to their asymptotic values corresponding to the
linear change of the frequency for the free rotator. The analogous frequency dependence
is shown in Fig. 4 for the KCN molecule.

140 1~
*o-\

\'E r P~ —
S 201 ‘,\0\\0\ \7\3{_/
L:; /00 i J\("\\ )\0\)\‘\\

T v
80 ~
'\ .
I - é/
1

PN PR RO RS EUNS U DO S ‘
o 2 4 8 & W0 2 14 5 18 20 22

LR=(L+1)~(L)

I16. 4. I'requencies for the L~ L + 1 transitions in the KCN molecule for model potentials V (6).
L, quantum number for I7, Hamiltonian, J =0. 1 — V() = — 5.0 X 1073 cos8 a.u.; 2 — V{6)
= — 4.0 X 1073 cosf a.u.
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F16. 5. Average values of cos™ for the LINC model Hamiltonian Hs (J = 0), V() = — 3.5 X 1073

cosf au. 1 — [(L|cos|L)|;2 — (L|cos’®@|L)¥; 3 — |(L|cos®9[L)|}; 4 — (L|cos'd|L)

Average values of cos™d, n = 1-4, at J = 0 are calculated along with the energy
characteristics. These values are presented in Fig. 5 for one of the trial potentials as
functions of the quantum number for the bending Hamiltonian. The change of {cos 8)
with increasing barrier height is shown in Fig. 6. The value 8 = 0 corresponds to the
linear configuration LINC. As the barrier exists for the LiCN linear configuration,
(cos 8) is close to 1 for low bending levels and decreases with excitation of the bending
vibration. For the levels at the barrier top the average value of cos § becomes negative.
This may be explained by the fact that for this energy the turning points are in the
angle region § > /2. The wavefunctions for the levels lying above the barrier closely
resemble the Vo ones. So the average value of cos # goes to zero. The analogous depen-
dence of the average value of cos @ is shown in Fig. 7 for the KCN molecule.

10

<Ljeoss/L>

—04 |-

Fi1G. 6. The average value of cosf for the LINC model Hamiltonian (J =0). 1 — V(@) = — 5.5
X103 cosfau.;2— V(@ = — 35X 103cosfau.;3— V(@ = — 1.0 X 103 cosf a.u.
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Fic. 7. The average value of cosf for the KCN model Hamiltonian (J = 0). 1 — V(@) = — 5.0
X 1073 cosf a.u.;2 — V(@) = — 4.0 X 103 cos 6 a.u.

The average values presented in Figs. 5-7 are calculated for J = 0. But they do not
practically change under J variation, especially for low vibrational levels.

The effective rotational constants B, and D, may be introduced regarding LINC
as linear molecule. The B, and D, dependence on quantum number v for the bending
Hamiltonian is of primary interest in view of the preliminary results of the microwave
spectrum of KCN for which the anomalous D, dependence was obtained (32).

Figure 8 shows the J(0— 1) dependence for the bending Hamiltonian with some
trial potentials. The ordinary linear molecules demonstrate a linear J(0 — 1) depen-
dence. As it follows from Fig. 8, even the first levels of the LiCN model with the po-
tential V(#) = — 1.0 X 10~* cos 6 do not lie on a straight line. The barrier for this
molecule is significantly higher for the ab initio potential. Nevertheless the J(0— 1)
transition has a well-defined parabolic dependence for low-lying levels. Using the
J =0, 1, 2 energy levels enables us to construct the B, and D, dependences. We sup-
pose that the relation

E, = Bv—,(] + 1) - Dv]2(] + 1)2

is valid for I = 0 (¥ is the quantum number of the vibrational angular momentum for
the two-dimensional harmonic oscillator) and introduce

Eln = EJ=1,U - EJ=0,'U; Ezn = EJ=2,1J - E.L—-O,v-
Then
B, = (9%, — F%)/12; D, = (E, — E%)/24.

The dependences obtained in this way are represented in Fig. 9. The anomalous D,
dependence is obvious. Unfortunately we cannot obtain the D, and B, dependences
taking into account the J = 0, 1, 2, 3, ... levels. The reliability of level positions with
simultaneously high J and » values is insufficient for such purposes. (We believe an
accuracy of about 0.001 cm™ would be needed.)



276 ISTOMIN, STEPANOV AND ZHILINSKII

/

260 -

258 -

P TR RV SR PR B
0'44048/2 4 20 v

Fic. 8. Dependence of the J = 1-0 transition on quantum number » for the LiNC molecule. 1 — V(8)
=—1.0X103cosf au.; 2— V(@) = —35X103cosf au.; 3— V(@) = — 55 X 103 cosf a.u.

Figure 10 shows the frequencies of the L— L 4 1 transition:
tion Ham

22aill Ciii Fariia

e 8
iltonian for a different choice of internal coordinates (
The corresponding Hamiltonian is presented in Appendix 2.

Until now we considered the Hy Hamiltonian. The diagonalization of the H operator
results in the bending—rotation structure of each radial vibrational level. The bending
frequencies do not significantly change under the excitation of radial levels (see Table
IT). This is connected with the absence of terms responsible for radial-bending inter-
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F16. 9. B, and D, dependence on the quantum number # for the LINC molecule. V(@) = — 5.5 X 103
cosf au.;1 — B,;2 — D,

~n

1 1
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F16. 10. Frequencies of the L — L 4- 1 transitions in the LiINC molecule for model potentials 17(6)
with special choice of coordinates (v #0). 70 =3.349 au.; 1 — V() = — 5.5 X 103 cosf a.u.;
2—-V(@) = —35X10%cos# au.; 3— V(@ = — 1.0 X 107%cosf a.u.; r is the internuclear dis-
tance N-Li.

action in the potential. Such terms arise when the elliptical character of the Li motion
is introduced. Here the centrifugal distortion is only taken into account in the total
Hamiltonian. But it is relatively small due to the high frequency of the radial vibrations.

One should mention that the frequency v, = 78-98 cm™ was obtained for the model
potentials which reproduce the ab initio barrier. These results are not in good agreement
with the value of Ismail ef al. (30), v» = 119 cm™. Two sources of errors may be re-
sponsible for this discrepancy : the neglect of the elliptical character of the Li motion and
the difficulty in obtaining proper quantitative information about the potential surface
for the Li motion from the data of Clementi ef al. In particular, the recalculation of the
LiCN potential surface for nonlinear configurations would be desirable.

In concluding this section we note that the main idea of our calculations was to clarify
the qualitative regularities in the vibration-rotation spectra of specific nonrigid
molecules.

CONCLUSIONS

The results presented here are the first ones obtained with our program for ionic
molecules. We intend to apply the model to the interpretation of the microwave spectra
of the KCN molecule. At the same time this technique can be used for the calculation
of vibration-rotation spectra of van der Waals complexes. The more detailed information
on this investigation will be published elsewhere. Further theoretical extension of our
work will concern more complex molecules consisting of a rigid core and one atom
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performing a large-amplitude motion around this core (for example, a LiBH, molecule),
however, the specific type of molecule would depend mainly upon the experimental
data for the gaseous molecules which are now available.

nhT

A WTTNTYF 4
ArrLNULIA 1

The explicit expressions for the J%, J4, P, operators are listed here, as well as the rules

of their actions on basic functions:
1 4 d 1 o
JP= — — sinf; — + — — L, ctg01 + L,
Lsind; d6; 86, \sind, de;
i) 7 0
Ji"—'-':l:—“—f“ X —"!"chtgel,
80,  sind; d¢
a
T =T = —f__
Jz Leg L4 y
dp
rt o i) 1 3 7
[?= —| — —sinf— + —
sinf 96 09  sin%0 d¢?
r o9 ¢
L, = ei"P[i —+ictgd— |,
. 96 dyo
r i) sinf & 7
P, =1 cos—~— — —J ,
or r a9

P:t::*:ipz_Py
] cosf 0 1 6\

etie| + sinf— 4 — —+ 4 .
o r 80  rsindde/

The generalized spherical functions D7y (¢1, 61, 0) are defined as in Ref. (33), but they
are normalized to unity with respect to two angles ¢ and 61. The rules for the action of
J%, Ji upon DYk as well as L,, Py, P, upon Yy are sufficient for the problem con-
sidered:

ﬂDJMK = ](] + I)DJMK,

J X (g1, 61) 2 = [Je(m)X(e1, 61)] 2n)} )

where x (g1, 61) 1s an arbitrary function of ¢; and 6y

Ji(M) =%

Je(M)D’ yx(e1,0,0) = [J(T + 1) — MM £ 1) D7 341 k.
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The physical meaning of J, (M) operators was discussed recently by Hougen (34, 35).
The rules of Py, P, acting on ¥, may easily be obtained from the well-known rela-
tions for ¥ (36).

APPENDIX 2

We use the change of variables which removes the weight factor and results in
a/ar — (3/0r) — (1/r). To obtain the Hy operator for x # 0 we introduce operators

etiv 3 etio
P®, =4 — l:cosﬂ —— sinﬁ] - L,
70 a6 7 sind

which are obtained from the P, operator by averaging with some harmonic oscillator
function over (r — o).
From the P,J_ + P_J, operator we take for Hy the term

PO J_+ PO_J,
and from
P L +PL +LP. +LP. (2.1)

we introduce into Hy those terms which remain after averaging of (2.1) over the (r—r,)
variable, These are the terms

(2/70) (cos 8L* 4+ L2 cosh).
Thus the Hg operator for x # 0 has the form
x? 1
Hy = ( + ) L +

8[1. 17’20 2/127’20

[J2+ 12— QL%+ L,J_+ L_J,)]
2uiR?

X

x 2
- |:—— (cosfL2 + 2 cosﬁ)] +

(POLT_+ PO_J) + V(B).
8/11R0 7o

4u1Ry

APPENDIX 3

We discuss here some other methods of solving the eigenvalue problem for bending-
rotational and total Hamiltonians.
Let Hj be written in the form

Ho = Hrot+ Hv+ Hrv,

with
Hrot = J2,
2u1R%
1 1 1
H, = ( + ) L2 —— 12+ V,(0),
2uR%  2uar’ R
H, =~ (L+J_ +:L_J+)

2u1R%
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For every k we diagonalize H. in the spherical function basis, ¥, and then with the help

of the resulting functions
L, k) = 3 buYu,
7

and the eigenfunctions for J2 we construct the basis for Hy
(1/2%) (DJk(]]L: k> + DJ—kOIL’ —k»; DJOU[ L, 0>

This procedure permits us to obtain results up to high J values.

Another method of finding the eigenvalues of Hamiltonian (5) may also be proposed
by analogy with the Bunker-Stone work. It includes the subdivision of the Hamiltonian
(5) in the following way:

H = Hrot+H,v+Hrv,
1

H',=——Ar+
2[42 2/1,1R20

(L2 — 2I2,) + V(r,6).

Operator H', commutes with L., so that its eigenfunctions may be denoted as | L, k, N).
The operator H', may be diagonalized in the basis of eigenfunctions of the operators
H., and H.. The total Hamiltonian H must then be diagonalized in the basis

(1/25(D7o| L', ky N) &= D7_io| L', —k, N)),
DJOO[L,: 07 N);
|L' k&, N) = 22 """V, Y xRy,
l.n

[Llr —k) ZV) = Z bL,kNlnYFkRﬂ,
L,n

where the R, (r) are chosen to be, for example, the eigenfunctions of a harmonic oscillator
centered at ro. From the computational point of view all previous attempts were only
intended for decreasing the order of the secular equation.

The total operator may also be diagonalized in the basis composed of the products
of the initial basis functions. The matrix obtained would have many zero elements
(especially in the case of # = 0). There exist some methods for diagonalization of such
matrices. The most simple and suitable is Lanczos’s method (28).

The effective bending-rotation Hamiltonian may be constructed directly from the
operator (3). In such a case instead of Hy we would have

He = (1/2mR%) 25 + (1/2u%) L% + V(8).

The basis of bipolar spherical harmonics is appropriate for the diagonalization of this
operator.

{Yll(el(Pl) ® le(02(P2)} = Z CJMllmllzmzYl;mlylgmz»

mimg

Here the C?™} ,1,m, are angular momentum coupling coefficients. The implicit integra-
tion over external variables may be performed in this case by analogy with the Back-
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nell-Handy-Boys procedure (29). This scheme is very similar to the Le Roy-Van
Kranendonk method (22). But to our mind calculations would be more practical with
the Hamiltonian transformed to body-fixed axes.

The finite difference method may as well be applied to finding the eigenvalues and
eigenfunctions of H, and Hy. This method is very useful in solving the one-dimensional
problem. In such a case the analogy of our work with that of Bunker-Stone (4) would
be more complete.

APPENDIX 4

Let us discuss now the influence of the basis set. For J = 0 we have basically the two-
dimensional anharmonic oscillator for low-lying levels. The corresponding levels are
found by Hy diagonalization in the free-rotator basis. The basis used is good for high
levels but it is not appropriate for low-lying ones. So it is clear that a rather extended
basis is needed and it yields a good estimate for a number of states at the same time.
At kg = 5.5 X 1078, kg/B = 500. So more than I, functions are needed to obtain the
number of solutions which is more then the number of levels below the barrier,

lnmx(lmax + 1) > kB/B, B = (1/2#1R20) + (1/2[1,2720),
and
lmax 2 (kﬂ/B) %-

For k¢/B ~ 500 we have lyax ~ 22-23. This is crude estimation for the basis size. The
good approximation for all levels below the barrier may be achieved only with some
larger basis.

The diagonalization of Hy with J = 0 was performed using a basis composed of 30
and 80 functions, respectively. All 11 digits were the same in these two calculations for
levels up to L = 35. The difference in the L = 42 levels is about 0.2 cm™ and a sharp
difference begins only from L = 43. This shows that using 50 functions is sufficient for
the estimation of ~40 levels for J = 0.

Compare now two model calculations for J = 1* with the basis of the form

D' 'Yy + D'y Yy, DlgY .

The basis size is N = 49 (Inax = 25) and N = 79 (lnax = 40). The energy difference
exists even for L = 0 level but it is negligible. For higher levels the differences are:
L=5—-3X10% L=11-5X10"% L=17—-16; L=23—20 cm™. The
L = 23 level is situated at § of the barrier height. So for the same basis size the accuracy
decreases as the J value increases. The following practical rule may be stated. The basis
composed of lnax = (ke/B)t functions are to be used to obtain the levels below the
barrier.
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