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Vibration-Rotation Problem for Triatomic Molecules with 

Two Large-Amplitude Coordinates 

Spherical Model 1 

V. A. ISTOMIX, h’. F. STEPANOV, AND B. I. ZHILIMXII 

Molcc~~lor Spcclroscopy Laboratory, Department of Chemistry, Moscow Slate University 
Moscow, 117 231, USSR 

The vibration-rotation problem of a triatomic molecule composed of a rigid diatomic core 
and an atom which possesses almost free motion around this core is discussed. Such molecules 
as LiCN and KCN are appropriate examples. A model with two large-amplitude coordinates 

is used for calculations. Numerical results are presented using model potentials corresponding 

to the ab initio potential surface for the LiCN molecule. 

I. INTRODUCTION 

The theory of the vibration-rotation <pectra of nonrigid molecules with one large- 
amplitude coordinate is now developed in detail (I-12). Besides this, group-theoretical 

techniques enable us to classify the vibration-rotation states of such nonrigid molecules 

(see review (13)). However, t,here are molecules for which more than one large-ampli- 
tude coordinate must be introduced (8). 

Let, us consider, for example, inorganic salt’s with ionic or partially ionic chemical 

bonds. Such molecules exhibit large-amplitude motion of the metal atom relative to 

the acid residue. Electron diffraction data for TlRe04 (14) demonst’rate the validity of 
a model according to which the mot’ion of Tl is nearly spherical around the ReOa 
tetrahedron. Such molecules as M&Sod, MNO,, MCN, MBOZ, etc. (M = alkali met)al 
atom) possess similar properties. (See, for example, the recent review by Rambidi 
(1.5)). The van der Waals-type molecules X-AZ, X-AB, X-ABC (X, inert gas atom; 

.I?, AR, ABC, valence saturated molecues) provide ot’her examples (12). All these 
molecules have a rigid core and an atom allowing for the large amplitude motion. To 
describe the low-frequency intramolecular motion in such sysbems it seems insufficient 
to use one large-amplitude coordinate. The problem becomes more complicat,ed if the 
low-frequency motion is coupled with t,he core bending motions (16, 17). 

In this paper we consider the simplest case of a molecule composed of an atom and a 
rigid diatomic core. An example of this kind of molecule is LiCN; Clementi et al. (18-19) 

have shown by ab initio calculations that the Li+ ion in LiCN can move almost freely 

around t’he CN- group at the appropriate temperature. 

1 Presented at the Third All-Union Symposium on Molecular Spectroscopy of High and Super-high 
Resolution, Novosibirsk, September 1976. 
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A general approach was developed recently (20, 21) which permits the investigation 
of molecules with any number of nonrigid coordinates. Some theoretical publications 
have been devoted to triatomic nonrigid van der Waals molecules (IL’, 22,23). But the 
explicit introduction of the body-fixed coordinate frame is not used in these works. 

To calculate the vibration-rotation levels of a triatomic system with a diatomic 
rigid core, we suppose first the fulfillment of the adiabatic approximation then separate 
the center of mass of the system and introduce a body-fixed frame, connected only with 
the diatomic fragment. The location of the atom with respect to the diatomic core is 
characterized by t2wo large-amplitude coordinates, r, 6 (Fig. 1). An effective Hamiltonian 
is constructed to describe the motion of the atom around the core and the rotation of 
the molecule as a whole. The variational method is used to calculate the vibration- 
rotation energy levels and wavefunctions. In our treatment we follow the ideas of earlier 
works (3-5, 7, 9), and extend them to a more general scheme. 

II. INTERNAL COORDINATES AND HAMILTONIAN 

The choice of the internal coordinates is presented in Fig. 1. P,, &, P, are the position 
vectors of particles a, b, c in the space-fixed axis system. We deiine the relative coordin- 
ates R and P in such a way that the point 0 is arbitrarily placed on the E vector. When 
atom G is chemically bound to atom a or b it is suitable to put the point 0 into coinci- 
dence with atom a or b, respectively. If atom c, in contrast, may be found in the neighbor- 
hood of atom a as well as b, to put the point 0 between a and b is more appropriate. 
Putting 0 at the center of mass of a and b results in the usual Jacobi coordinates for 
three particles. To specify the internal coordinates we use the body-fixed coordinate 
system with the z axis directed along the diatomic core. Then R, r, and 0 are used as the 
internal coordinates. The core composed of atoms a and b is supposed to be rigid and thus 
R is a small-amplitude coordinate whereas r and 0 are two large-amplitude coordinates. 

Under the adiabatic approximation the Hamiltonian may be written in Cartesian 
coordinates as 

(1) 

a 

FIG. 1. Coordinates for three particles. 
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Introduce the vectors R,.,., 8, 7 (in analogy with (24)) 

Variation of ,B moves the point 0 along the i? vector. (For example, the choice ,Ba = m,; 
@b = mb put the point 0 into the center of mass of the rigid core.) Using coordinates (2) 
the Hamiltonian (1) may be rewritten as 

H = - & AIL .m_ - ;- AX + i (V~vp + V?Vn) + : A? 1 -;A?+ V(P,ii), (3) 

where 
1 1 

L+’ _- 
1 

-_= 
kl ma mb’ 

_‘+-___ 

~2 m, ma + mb’ 

mb - ma Pb - &a 

x= -~ 

%+mb &+flb’ 

M = m, + mb + m,. 

Now we transform the Hamiltonian to the body-fixed coordinate syst’em with the z 
axis directed along the diatomic core. Such a choice of coordinates was used earlier in 
the theory of diatomic molecules (2.5, 26) and in the three-particle problem (24). The 

body-fixed coordinate system is defined in the space-fixed coordinate frame by the Euler 
angles (Y, & y, connected with the spherical coordinates of vectors B = (R, 01, cpl) and 
f = (r, 132, cp.J by relations LY: = cpl, fi = 01, y = 0. 

+ & [J' + L2 - (2~5~s + L+J- + L-J+>1 

- & CL,P- + L-P, + P+L_ + P-L,] 

+ ~cP+J-+P-J+I-~[~~+~~~+~~]+ v(R,Y,o). (4) 
$3 

Here 

L* = L, f iL,, 
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and L,, L,, L, are components of the angular momentum operator for particle associated 
with vector P, P is a momentum operator for the particle associated with vector i;. 
The operators L and P are identified in the body-fixed system x, y, z. 

J is the total orbital angular momentum for the three-particle problem. The defmi- 
tion and the explicit expressions of the J* operators in terms of angular variables are 

represented in Appendix 1. The rules for JTt acting on generalized spherical functions 

are listed there as well. 
The terms including P* and d/&z operators correspond to mass polarization cor- 

rections in t’he theory of diatomic molecules. They vanish under the x = 0 coordinate 

choice. In such a case there are no cross terms involving the products of the differential 

operators with respect to the rigid coordinate R and the angular variables. The Hamil- 
tonian (4) is suitable in this sense for the approximate separation of the rigid (R) 
coordinate. 

To construct the effective nonrigid Hamiltonian with two internal degrees of freedom 
we average the Hamiltonian (4) with the vibrational harmonic function depending on 

R. The resulting Hamiltonian depends on r and 8 as well as on the external variables 

01, cpl, cp 

H= -(;+;)Ai+&(J’+L2) -&(=+L+J-+LJ;) 

- -!-- [P+L_ + P-L+ + L-P+ + L+P_ - 2(P+J_ + P-J+)] + V(r, 0). (5) 
f3i.do 

V(r, 0) is the potential integrated over the R-dependent vibrational function. RO is 
some effective value of R. A more accurate treatment should use the second-order 

perturbation theory in analogy with the work of Hoy and Bunker (5). But here we use 
the simple form (5) and consider the evaluation of eigenvalues and eigenfunctions of 

operator (5). For t’his purpose auxiliary Hamiltonians will be constructed with the help 
of the subdividion of operator (5). Certainly the representation of potential energy in 
spherical coordinates is not suitable for highly elliptical potential surfaces due to the 
bad separation of variables. The preliminary scaling may be useful to obtain coordinates 
more suited for the potential representation and on the ot’her hand to yield a rather 
simple form of kinetic energy, The resulting elliptical model will be discussed in a later 

work. 

III. VARIATIONAL TECHNIQUE 

In order to avoid the two-dimensional numerical integration we use the special form 
of potential expansion which is suitable for the problem considered : 

I/ = c C/&r - rp cos9, (6) 
k,m 

where ro is some averaged value of r. 
Then we employ the variational procedure. We construct the basis by preliminary 

crude separation of variables in the Hamiltonian (5). For the sake of simplicity we put 
x = 0 which means that the point 0 coincides with the center of mass of the rigid core. 



NONRIGID MOLECULES 260 

(The bending Hamiltonian for x # 0 will be discussed in Appendix 2.) On t,he first 
step we introduce two Hamiltonians 11, and He : 

1 1 1 
He = __ 52 + ---++ L” 

2~ IR”O 21.#0 2&o 

(7) 

- --!- [2L”, + L+J_ + L-J+] + V,(O). 
2~3~0 

(8) 

The motion over the r variable is supposed to be close to ro, and V,(r) as well as V,(e) 
are effective potentials obtained in some way from the total potential (6). For example, 

V,(r) = C Ck0(r - r0)k, 
k=O 

r/e@) = c co*, cos”L9. 
(9) 

m=O 

If the radial mot,ion is significantly more rigid than the angular one, the effective 

angular nonrigid Hamiltonian should be constructed from the operator (5) through 
averaging over the r-dependent function or even t,hrough the second-order perturbation 

theory. 
Consider now the calculation of the eigenvalues and eigenfunctions of operators (7) 

and (8). The following functions are appropriate as basis funct)ions for operat’or (i): 

(i) Radial eigenfunctions R,,l of the three-dimensional harmonic oscillator. 

(ii) Eigenfunct’ions of the operator 

id a 

( > 
p~go2 

H ose = - ~ -- 
2p2r2 dr 

9; + 2 (r - r#. 

(W is a variational parameter.) This operator possesses no analytical eigenfunctions. An 

approximate solution may be obtained by increasing the integration range from (0, m) 
to (-a, a), supposing ro is sufficiently far from zero. 

(iii) Radial eigenfunctions of the operator 

H = - (1/2&A? - 2D[(u/r) - $(a2/r2)], 

which have proved to be useful as zero-order functions for the vibrational problem (27). 
Basis (ii) enables us to perform the matrix element calculation in the most simple way. 
The operator (8) is natural to diagonalize in the basis 
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where DJk,, are the Wigner functions, Y&k are spherical harmonics, J is the quantum 
number of the total angular momentum, K = 0, . . . , J. Unfortunately, large values of 
J require too large a basis. In such a case another method of solving the eigenvalue 
problem may be used which is briefly discussed in Appendix 3. 

The multiplication of eigenfunctions of operators (7) and (8) leads to the basis for 

the calculation of the eigenvalues of operator (5). This basis gives the possibility of 
analytical evaluation of all matrix elements except (R,r 1 l/r21 R,), ones, which may be 

evaluated analytically only after the expansion of rd2 near the value ro. 

Some other methods of finding the eigenvalues of Hamiltonian (5) are considered in 

Appendix 3. 

IV. COMPUTER PROGRAM 

In the preceding section we proposed the algorithm which does not require numerical 
integration schemes. Here we briefly describe a computer program based on it. The 

program uses radial harmonic oscillator functions to find the eigenfunctions of H,. No 
more than 60 functions may be used. Operator He is diagonalized in the basis of functions 

(10) and up to 100 functions may be used. The potential V(r, 0) is taken as expansion 
(6) with 0 < k < 4, 0 6 m < 4. Hence Y(r, 0) depends maximally on 2.5 coefficients 

&,. Potentials Y,(r) and V~(e) are constructed from V(r, 8) by formula (9). Besides, 

the effective potential V may be obtained in terms of the second-order perturbation 
theory by using eigenfunctions of H,. Such a procedure is necessary when the cross 
coefficients Ckm in the potential expansion are rather large. 

The total basis may include up to 15 eigenfunctions of H, and 20 eigenfunctions of 
He, with the total number of basis functions not exceeding 120. The program permits 

the calculation of the vibration-rotation energies up to J = 8 (Jz = 0). But results 
for high J values are good only for such favorable cases as the ArO2 molecule where the 

nearly free rotation of the Ar atom around the 02 core takes place. As we noted earlier 
the other algorithms are more suitable for the calculation of states with high J values. 

V. RESULTS AND DISCUSSION 

The program described above was used for vibration-rotation level calculations of 
the LiCN and KCN molecules with model potential of the form 

V(r, e> = K,(r - r$ + Ks(l - case). (11) 

The choice of the model potential is based on the known experimental and theoretical 
results on MCN-type molecules. The potential surface for the LiCN molecule was studied 
in (18, 19). The linear configurations of LiCN and LiNC were investigated more care- 
fully. The LiNC configuration was shown to be more stable (0.3 eV = 2420 en-l 
lower than the LiCN one). Such a low barrier results in hindered rotation of the Li 
around the CN group at temperatures of about 1000 K. This indicates clearly that the 
LiNC molecule may be regarded as linear only for several lowest bending states. 

Ismail d al. (30,31) have studied the ir spectra of LiNC, NaCN, and KCN molecules 
incorporated into the inert gas matrix. The bending frequency of LiNC was found to be 
equal to 119 cm-l (Ne matrix). 
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Recently the microwave spectrum for the KCN molecule was detected for J: 8 + 9; 

9 -+ 10, and 10 -+ 11 transitions at a temperature of about 600 K (32). The authors 

could not interpret the data obtained in terms of a linear KCN molecule, so they 
believed that the motion of K around the CN fragment takes place. 

All these results suggest that the numerical investigation of the triatomic problem 
with the potential (11) would be interesting. We note that the model proposed is rather 
crude to yield quantitative agreement with the known experimental and theoretical 

results because the potential (11) reproduces the barrier height rather than the shape of 
the potential function. Nevertheless we hope that our results are interesting from the 

qualitative point of view. 
Calculations for the LiCN molecule were performed with the following parameter 

values: y. = 4.36 a.u., K, = 5 X 1OP a.u., and ke = 1 X 1k3, 3.5 X 1(F3, 5.5 X lo-” a.u. 

Results are obtained for J = O-4. The C-N distance is equal to 2.19 a.u. (ab initio 

calculations of the potential surface were performed for LiNC nonlinear configurations 

at this internuclear distance). The value of the force constant k, = 5 X 1F2 au. 

corresponds to the frequency of the radial motion, w,. = 692.20 cm-‘. (More accurate 

treatment of Clementi’s data (19) for linear configuration leads to w, = 720-7-M cm-l.) 

The r. value is also taken from the linear configuration LiNC. The bending force con- 

stant KS = 5.5 X 1O-3 a.u. results in the same barrier as the ab initio calculations. 

Energy levels (cm-') of radial-bending-rotation Hamiltonian 

(J=O) for LiNC modela 

VI 
37hW5 

441.944 

503.033 

561.113 

615.881 

666.890 

713.441 

753.952 

787.167 

822.099 

865.851 

916.911 

1037.290 

1070.563 

1105.924 

1134.101 

(N,L) 

030 

091 

092 

0,3 

OS4 

OS5 

096 

0.7 

0.8 

OS9 

0,lO 

0,ll 

0,12 

180 

C,13 

I,1 

V2 

407.033 

528.858 

648.036 

764.471 

878.056 

988.667 

1096.163 

1099.266 

1200.376 

1221.16C 

1301.105 

1340.402 

1398.106 

1456.899 

1491.067 

1570.542 

090 422.806 080 

C,l 576.185 091 

0,2 726.942 092 

093 875.006 0,3 

094 1020.297 094 

0,5 1115.049 110 

096 1162.728 0,5 

110 1268.513 111 

097 1302.200 096 

191 1419.354 192 

0,8 1438.606 097 

1.2 1567.498 193 

0.9 1571.820 0,8 

I,3 1701.702 099 

0,lO 1712.866 194 

I,4 1807.291 2,C 

%lal potentials: Vi = 5.0r10-2(r-ro)2+ki(l-cos8) a&., 

kl=1x10-3, k2=3.5x10-3, k3=5.5x10-3, r,=4.36 a.~., 

N,L, - radial, bending quantum numbers. 



272 ISTOMIN, STEPANOV AND ZHILINSKII 

TABLE II 

Bmrgy levels (cm-') of radial-bending--rotation Hamiltonian for LiNC model*. 

J=O (N&l J = I- (N,L) 

422.806 o,o 500.787 o,o 
576.185 O,l 652.890 OS1 

726.942 0,2 802.339 0,2 

875.036 0,3 949.060 0,3 

1020.297 0,4 1092.969 0,4 

1115.049 ISO 1193.074 ItO 

1162.728 035 1233.975 035 

J = I+ (N,L) 

423.699 w 
500.777 O,l 

577.088 0,2 

652.868 093 

727.858 OS4 

802.304 OS5 

875.935 0.6 

J = 2- (N,L) 

502.594 010 

579.173 081 
654.732 0.2 

730.004 0,3 

8C4.219 0,4 

878.150 OS5 

950.983 0,6 

J = 2+ (N&l 

425.485 0.0 

502.563 0,1 

576.909 0.2 

579.178 OS3 

654.768 OS4 

730.050 OS5 

730.242 0.6 

av(r,B) I 5.Ox162(r-rJ2 + 5.5x10-3(l-cosB) a.u. ; y4.36 a..". i radial 

frequency - 692.2 cm-'. (N,L) - radial, bending quantum numbers. 

In the KCN calculations Ke = 5.0 X low3 and 4.0 X 10e3 a.u. The geometrical param- 
eters for the KCN molecule are: ~0 = 2.57 A, R(CN) = 1.15 A (31). The influence of 
the basis size on the accuracy is discussed in Appendix 4. 

6 Energy levels for some model potentials are listed in Tables I and II. Figure 2 repre- 
sents for the sake of clarity the energy levels of the bending-rotation Hamiltonian He 
for J = 0. The distribution of low levels corresponds to the anharmonic oscillator model. 

The level separation becomes smaller at the top of the barrier. Above the top the 
arrangement of the levels resembles the free rotator one. The same behavior was earlier 

observed for the quasi-linear molecules. The correlation between free rotation and re- 

FIG. 2. Bending states for the LiNC molecule. V(0) = - 3.5 X 10d3 co@ ax. 
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FIG. 3. Frequencies of the L + L + 1 transitions (numbered as LR) in the LiNC molecule for model 

potentials V(0). L, quantum number for Ha Hamiltonian, J = 0. 1 - V(0) = - 5.5 X lo-” COSV a.u.; 

2 - V(e) = - 3.5 X 10-3cos8 u.a.; 3 - V(8) = - 1.0 X 10m3 coti a.u.; 4 - V(e) = 0. 

stricted rotation levels permits correlation of the quantum numbers V, I’ of the t\vo- 

dimensional isotropic harmonic oscillator with the free rotator quantum numbers. 

A similar correlation can be obtained for levels which differ significantly from the linear 
molecule levels. The effect of the high level density at the top of the barrier is shown 
in Fig. 3. The frequencies of the L-+ L + 1 transitions are presented there for three 

different potentials (L denotes the quantum number of Hamiltonian HO). The L de- 
pendence is linear for low levels. The minimum takes place at the top of the barrier 

and above the barrier all curves go to their asymptotic values corresponding to the 
linear change of the frequency for the free rotator. The analogous frequency dependence 
is shown in Fig. 4 for the KCN molecule. 

80 - 

60 - 
I > I *II L1e* 

0 2 4 6 8 {O R t4 I6 f6 20 22 

LR-(L+t)-(L) 

l’rc. 4. k’requcnciea for the L -+ L + 1 transitions in the KCN molecule for model potentials V(0). 

L, quantum number for 11, Hamiltonian, J = 0. 1 - V(0) = - 5.0 X 10-3cos8 a.u.; 2 - V(0) 

= - 4.0 X lo+ cos8 a.u. 
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0 2 4 6 8 10 /2 14 16 

FIG. 5. Average values of cos”8 for the LiNC model Hamiltonian HI (J = 0), V(6) = - 3.5 X lo+ 
cotia.u.l- ~(L~cosB~L)~;2- (LIcosVJL)*;3- I(Llcos%IL)l*;4- (Llcos%IL)? 

Average values of COSY, 1~ = 14, at J = 0 are calculated along with the energy 

characteristics. These values are presented in Fig. 5 for one of the trial potentials as 

functions of the quantum number for the bending Hamiltonian. The change of (cos 0) 
with increasing barrier height is shown in Fig. 6. The value 0 = 0 corresponds to the 

linear configuration LiNC. As the barrier exists for the LiCN linear configuration, 
(cos 0) is close to 1 for low bending levels and decreases with excitation of the bending 

vibration. For the levels at the barrier top the average value of cos B becomes negative. 
This may be explained by the fact that for this energy the turning points are in the 

angle region 0 > ?r/2. The wavefunctions for the levels lying above the barrier closely 
resemble the Ylo ones. So the average value of cos 0 goes to zero. The analogous depen- 

dence of the average value of cos 0 is shown in Fig. 7 for the KCN molecule. 

FIG. 6. The average value of coti for the LiNC model Hamiltonian (J = 0). 1 - V(0) = - 5.5 

X lo-$ cos0 ax.; 2 - V(0) = - 3.5 X 10e3 cos8 a.u.; 3 - V(0) = - 1.0 X 10e3 cos19 ax. 
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FIG. 7. The average value of co& for the KCN model Hamiltonian (J = 0). 1 - V(0) = - 5.0 
X lo+ cos8 ax.; 2 - V(0) = - 4.0 X 10-3cosB ax. 

The average values presented in Figs. 5-7 are calculated for J = 0. But they do not 

practically change under J variation, especially for low vibrational levels. 
The effective rotational constants B, and D, may be introduced regarding LiNC 

as linear molecule. The B, and D, dependence on quantum number v for the bending 

Hamiltonian is of primary interest in view of the preliminary results of the microwave 

spectrum of KCN for which the anomalous D, dependence was obtained (32). 
Figure 8 shows the J(O-+ 1) dependence for the bending Hamiltonian with some 

trial potentials. The ordinary linear molecules demonstrate a linear J(0 -+ 1) depen- 
dence. As it follows from Fig. 8, even the first levels of the LiCN model with the po- 

tential V(0) = - 1.0 X low3 cos 6’ do not lie on a straight line. The barrier for this 
molecule is significantly higher for the ab initio potential. Nevertheless the J(O--t 1) 

transition has a well-defined parabolic dependence for low-lying levels. Using the 

J = 0, 1, 2 energy levels enables us to construct the B, and D, dependences. We sup- 

pose that the relation 
E, = B,J(J + 1) - D,J2(J + 1)” 

is valid for I’ = 0 (I’ is the quantum number of the vibrational angular momentum for 
the two-dimensional harmonic oscillator) and introduce 

E’, = EJ=I,, - EJ=o,.; P, = EJ=~,~ - EJ=o,,. 

Then 
B, = (9E’, - PJ12; D, = (3E’, - E2,)/24. 

The dependences obtained in this way are represented in Fig. 9. The anomalous D, 
dependence is obvious. Unfortunately we cannot obtain the D, and B, dependences 
taking into account the J = 0, 1, 2, 3, . . . levels. The reliability of level positions with 

simultaneously high J and v values is insufficient for such purposes. (We believe an 
accuracy of about 0.001 cm-’ would be needed.) 
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FIG. 8. Dependence of the .7 = 14 transition on quantum number v for the LiNC molecule. 1 - V(0) 
= - 1.0 X 10-3cosB a.u.; 2 - V(0) = - 3.5 X 10-3cos0 a.u.; 3 - V(0) = - 5.5 X 1OF coti a.u. 

Figure 10 shows the frequencies of the L-+ L + 1 transitions for the bending rota- 

tion Hamiltonian for a different choice of internal coordinates (the case with x # 0). 
The corresponding Hamiltonian is presented in Appendix 2. 

Until now we considered the He Hamiltonian. The diagonalization of the H operator 
results in the bending-rotation structure of each radial vibrational level. The bending 
frequencies do not significantly change under the excitation of radial levels (see Table 
II). This is connected with the absence of terms responsible for radial-bending inter- 

E‘w. 9. II, and U, tleL)endence on the quantum number 11 for the LNC molecule. V(8) = - 5.5 X lo-” 

cos8 a.u.; 1 - B,; 2 - D,. 
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I I I 

2 4 6 8 l0 !2 i4 /6 /8 20 

LR=+f)-L 

FIG. IO. Frequencies of the L -+ L + 1 transitions in the LiNC molecule for model potentials l’(8) 

with special choice of coordinates (.x # 0). TO = 3.349 a.u.; 1 - T’(B) = - 5.5 X 10m3 cog a.“.; 

2 - V(e) = - 3.5 X 10-3cosB a.u.; 3 - V(6) = - 1.0 X 10-3cosB a.u.; r is the internuclear dis- 
tance Y-Li. 

action in the potential. Such terms arise when the elliptical character of the Li motion 
is introduced. Here the centrifugal distortion is only taken into account in the total 
Hamiltonian. But it is relatively small due to the high frequency of the radial vibrations. 

One should mention that the frequency vz = 78-98 cm-’ was obtained for the model 
potentials which reproduce the ab initio barrier. These results are not in good agreement 
with the value of Ismail et al. (30), vz = 119 cm-‘. Two sources of errors may be re- 
sponsible for this discrepancy : the neglect of the elliptical character of the Li motion and 
the difficulty in obtaining proper quantitative information about the potential surface 
for the Li motion from the data of Clementi et aE. In particular, the recalculation of the 
LiCN potential surface for nonlinear configurations would be desirable. 

In concluding this section we note that the main idea of our calculations was to clarify 
the qualitative regularities in the vibration-rotation spectra of specific nonrigid 
molecules. 

CO5xLUSIONS 

The results presented here are the first ones obtained with our program for ionic 
molecules. We intend to apply the model to the interpretation of the microwave spectra 
of the KCN molecule. At the same time this technique can be used for the calculation 
of vibration-rotation spectra of van der Waals complexes. The more detailed infomlation 
on this investigation will be published elsewhere. Further theoretical estension of our 
work will concern more complex molecules consisting of a rigid core and one atom 
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performing a large-amplitude motion around this core (for example, a LiBHa molecule), 

however, the specific type of molecule would depend mainly upon the experimental 
data for the gaseous molecules which are now available. 

APPENDIX 1 

The explicit expressions for the .12, J*, PA operators are listed here, as well as the rules 
of their actions on basic functions: 

1 a a 1 a 2 
J2 = - __ - sin& - + -- - iL, ctge, >I + L2,, 

sir& de1 de1 sin& ap, 

J,=i$+ 
i a 

- - + L, ctgh, 
1 sin& apI 

J,=L,= -id 
a/ 

L2 = _ 

[ 
1 a 1 a2 __,ined+-_ 

1 
, 

sink9 ae de sin20 ap2 

L 
a a 

Lrt=eiip f-+iitge- , 
as ap 1 

I 
a sine a 

P,=i c0se------ , 
ar f ae 1 

P* = fiP, - P, 

( 

1 a 
= efia f sine i+:;+;__. 

Y sin0 a9 > 

The generalized spherical functions DJ~~(cpl, 81, 0) are defined as in Ref. (33), but they 
are normalized to unity with respect to two angles cp1 and 01. The rules for the action of 
J2, Jk upon DJ~~ as well as L,, P*, P, upon Ylk are sufficient for the problem con- 
sidered : 

J2DJ.,m = J(J + l)DJm, 

eimc f+P 

J&x h, e,) - 
(2a): 

= CJdm)x(~p~, e,)] - 
(27r)i ’ 

where X(‘PI, 4) is an arbitrary function of (oI and e1 

J&(M) = ,$, i a - - + kf ctgel, 
1 sin0 apI 

J&f)DJ~~&, h, 0) = [J(J + 1) - M(M f l)]“u~~~*~,~. 
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The physical meaning of J,(M) operators was discussed recently by Hougen (34,35). 

The rules of I’*, P, acting on E’l, may easily be obtained from the well-known rela- 

tions for Ylm (36). 

APPENDIX 2 

We use the change of variables which removes the weight factor and results in 

d,‘dr ---t (ajar) - (l/r). T o o bt ain the Ho operator for x # 0 we introduce operators 

&‘!5 

[ 

a &a 
P(s)A = f _ cod - - sin0 ---L,, 

r0 69 1 r. sin0 

which are obtained from the Pk operator by averaging with some harmonic oscillator 

function over (r - ro). 
From the P,J_ + P-J+ operator we take for IIs the tern1 

P@)+J_ + P@)_J+ 
and from 

P+L_ + P-L, + L-P, + L,P_ (2.1) 

we introduce into He those terms which remain after averaging of (2.1) over the (r-rro) 

variable. These are the terms 

(2/r,) (cos eL2 + L2 COSY). 

Thus the He operator for .2: # 0 has the form 

X2 1 
He = --+- 

&1r20 > 

1 
L2 + __ [J” + L2 - (2L2, + L,J_ + L-J,)] 

2p2r20 &d20 

-- (coseL2 + L2 c~~e) 
1 

+ X 
41&o 

(P@), J- + P@‘_J+) + V(0). 

APPENDIX 3 

We discuss here some other methods of solving the eigenvalue problem for bending- 
rotational and total Hamiltonians. 

Let He be written in the form 

with 
He = Hrot + H, + H,,, 

1 
H rot = - J2, 

2wR20 

1 1 
H, = -+- 

&41R20 2,wr20 > 

1 
L2 - - L2* + v,(e), 

wR20 

1 
H,, = - - (L+J_ +:LJ+). 

21.11R20 
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For every k we diagonalize H, in the spherical function basis, Yrk, and then with the help 

of the resulting functions 
j L, k) = c bZ/;YZk, 

1 

and the eigenfunctions for J2 we construct the basis for’Hs 

(1/29(DJkOIL, K) f DJ-/&IL, -K)), Poe I L, 0). 

This procedure permits us to obtain results up to high J values. 
Another method of finding the eigenvalues of Hamiltonian (5) may also be proposed 

by analogy with the Bunker-Stone work. It includes the subdivision of the Hamiltonian 

(5) in the following way: 

H = Hrot + H’, + H,,, 

1 1 
H’, = ---&+_ 

2P2 h.d20 

(L” - 2L2,) + V (r, e>. 

Operator H’, commutes with L,, so that its eigenfunctions may be denoted as 1 L’, k, N). 
The operator H’, may be diagonalized in the basis of eigenfunctions of the operators 

H, and H,. The total Hamiltonian H must then be diagonalized in the basis 

(1/24)(DJ~oI L’, k, N) f DJ-koI L’, -fi, N)), 

DJoo[L’, 0, N), 

IL’, k, A’> = E bL’kNznYz&, 

IL’, -k, A’) = C bLtkNlnYGkRn, 
l.R 

where the R,(r) are chosen to be, for example, the eigenfunctions of a harmonic oscillator 

centered at 10. From the computational point of view all previous attempts were only 
intended for decreasing the order of the secular equation. 

The total operator may also be diagonalized in the basis composed of the products 
of the initial basis functions. The matrix obtained would have many zero elements 
(especially in the case of x = 0). There exist some methods for diagonalization of such 

matrices. The most simple and suitable is Lanczos’s method (28). 
The effective bending-rotation Hamiltonian may be constructed directly from the 

operator (3). In such a case instead of He we would have 

Be = (1/21*1~20)~27i + (1/zP2+&2r + v(e). 

The basis of bipolar spherical harmonics is appropriate for the diagonalization of this 

operator. 

{YZ,(01Pl) @ Yz,(02(P2)} = c C=“zlmlz*m*Yz,m~Yz,,,. 
mlml 

Here the CJ”rlm1r2m2 are angular momentum coupling coefficients. The implicit integra- 
tion over external variables may be performed in this case by analogy with the Back- 
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nelllHandy-Boys procedure (29). This scheme is very similar to the Le Roy Van 

Kranendonk method (22). Rut to our mind calculations wo~dd be more practical with 

the Hamiltonian transformed to body-fixed axes. 

The finite difference method may as well be applied to finding the eigenvalues and 
eigenfunctions of H, and He. This method is very useful in solving the one-dimensional 

problem. In such a case the analogy of our work with that of Bunker-Stone (4) would 

be more complete. 

APPENDIX 4 

Let us discuss now the influence of the basis set. For J = 0 we have basically the two- 

dimensional anharmonic oscillator for low-lying levels. The corresponding levels are 
found by Ho diagonalization in the free-rotator basis. The basis used is good for high 

levels but it is not appropriate for low-lying ones. So it is clear that a rather extended 

basis is needed and it yields a good estimate for a number of states at the same time. 
At ko = 5.5 X lOV, &Y/B = 500. So more than I m5x functions are needed to obtain the 

number of solutions which is more then the number of levels below the barrier, 

Z,,,&In,x + 1) > KeIB, B = (1/2/&z0) + (l/2r2r20), 

and 

1 max 3 (WV. 

For ks/l? - 500 we have l,,,,, - 22-23. This is crude estimation for the basis size. The 
good approximation for all levels below the barrier may be achieved only with some 

larger basis. 
The diagonalization of Hs with J = 0 was performed using a basis composed of 50 

and 80 functions, respectively. All 11 digits were the same in these two calculations for 
levels up to L = 3.5. The difference in the L = 42 levels is about 0.2 cm-’ and a sharp 
difference begins only from L = 43. This shows that using 50 functions is sufficient for 
the estimation of -40 levels for J = 0. 

Compare now two model calculations for J = If with the basis of the form 

movu + D’lOYL-1, D’ooE’m. 

The basis size is N = 49 (Zmax = 25) and ‘V = 79 (Zmax = 40). The energy difference 
exists even for L = 0 level but it is negligible. For higher levels the differences are: 

L = 5 - 3 X 1OP; L = 11 - 5 X 1OP; L = 17 - 1.6; L = 23 - 20 cm-l. The 

L = 23 level is situated at 2 of the barrier height. So for the same basis size the accuracy 
decreases as the J value increases. The following practical rule may be stated. The basis 
composed of I,,, = (ks/B)i functions are to be used to obtain the levels below the 
barrier. 
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