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A general method for the qualitative analysis of vibrational polyads formed by N quasidegenerate modes is proposed. The 
construction of effective Hamiltonians for vibrational polyads and the general scheme of the qualitative analysis are outlined. 
The description of the limiting classic manifold is given and the analysis of the group action on it is performed. The three-mode 
problem is used as the simplest nontrivial example. The possible types of classical bifurcations and corresponding critical phe- 
nomena in the energy spectra of quantum systems appropriate for molecular problem with different symmetry groups are found. 
Brief discussion of different molecular problems tightly connected with the model considered is given along with some 
generalizations. 

1. Introduction 

Excited vibrational states of isolated molecules 
have been widely investigated the last years both by 
experimentators and theorticians (refs. [ l-8 ] and 
references therein ) . In contrast to the lowest rovibra- 
tional states, the high density of excited vibrational 
states appropriate even for small polyatomics re- 
quires the development of a specific theoretical ap 
preach which should be adequate to correctly repro- 
duce the general regularities in the energy level system 
and the corresponding wavefunctions, rather than the 
positions of the individual quantum levels. 

One of the characteristic features of the system of 
excited vibrational states is the existence of vibra- 
tional polyads formed by several degenerate or quasi- 
degenerate modes. The main question which we dis- 
cuss in the present article is the description of the in- 
temal’structure of vibrational polyads and its depen- 
dence on the energy (or quantum number) of the 
polyad. The internal structure of vibrational polyads 
depends on the number of vibrational degrees of 
freedom, their symmetry and intramolecular inter- 
actions. The simplest types of the energy level distri- 
bution within the polyad correspond to the so-called 
normal mode and local mode pictures. There exist 
many papers devoted to the study of these two pos- 
sible limiting cases [ 3- 15 1. 

In a series of recent papers the method of the qual- 
itative analysis of rotational and rovibrational prob- 
lems [ 16-201 was developed and applied to the study 
of the qualitative features of the energy level distri- 
bution within the vibrational polyads [ 8,2 l-23 1. 
Along with the general discussion of the construction 
of the effective Hamiltonians [ 8 ] one simple partic- 
ular case of polyads formed by two (quasi )degenerate 
modes was investigated in detail [ 2 l-231. Unfortu- 
nately, the theoretical analysis of the two-mode case 
[ 2 l-23 ] is based on the close equivalence between 
this particular vibrational problem and the purely ro- 
tational one and it cannot be generalized straightfor- 
wardly to more complicated vibrational problems. 

This paper gives a general method for the qualita- 
tive analysis of vibrational polyads formed by N 
quasidegenerate modes. In section 2 the construction 
of effective Hamiltonians for vibrational polyads and 
a general scheme of the qualitative analysis are out- 
lined. Sections 3 and 4 explain the construction of 
the limiting classic manifold and the analysis of the 
group action on it. We use the three-mode problem 
as the simplest nontrivial example. In section 5 we 
discuss the possible types of classical bifurcations and 
corresponding critical phenomena in the energy 
spectra of quantum systems appropriate for molecu- 
lar problems with different symmetry groups. A brief 
discussion of different molecular problems tightly 
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connected with the model considered is given in sec- 
tion 6 along with some generalizations. 

2. Effective Hamiltonians for vibrational polyads and 
general scheme of the qualitative analysis 

Effective operators for vibrational polyads may be 
easily written in terms of the vibrational creation and 
annihilation operators a,?, Ui satisfying the standard 
commutation relations 

[a,,a,]=[a:,u,+]=O. 

[a,, a,+] =6,j, i, j= 1, . . . . N. (1) 

An effective Hamiltonian possesses the following 
power expansion in terms of Uiy a: : 

.Yf”= 1 c, ,._. nNm ,..., &I :n’...u&nNu;l’...uy ) (2) 

with one additional condition to be imposed, 

form of the Hamiltonian (2), i.e. the matrix ele- 
ments of the operator (2) between wavefunctions 
corresponding to the states from different polyads are 
identically zero. In other words we suppose that the 
total number of vibrational quanta 

En,= Cm,. (3) 

The condition (3 ) results in the block diagonal 

K= 1 u:u, (4) 

is an integral of motion for the operator (2 ). Such a 
supposition is surely an approximation. It is not valid 
for a complete vibrational operator including all vi- 
brational degrees of freedom. At the same time this 
approximation is physically reasonable in many in- 
teresting cases. 

The limits of the applicability of the model consid- 
ered can be described as follows. The vibrational level 
system of a real molecule must possess polyads well 
separated in energy formed by N quasidegenerate vi- 
brations v,, v2, . . . . vN. A crude estimate for the ab- 
sence of the overlap of vibrational polyads is given 
by the inequality 

(v, - ~1 )K< ~1 , (5) 

where K is the quantum number of a polyad (i.e. the 
total number of vibrational quanta) and uN- V, shows 
the detuning of the vibrational resonances. 

The second important condition of the applicabil- 
ity of the model considered is the absence of vibra- 
tional resonances with some other modes. Some- 
times when such resonances (for example 1: 2 Fermi 
resonance) systematically exist in the energy spec- 
trum the model can be generalized to include the de- 
scription of polyads taking into account some n: m 

( n # m ) resonances. 
Thus the initial point for the further qualitative 

analysis is the effective Hamiltonian (2) along with 
the additional requirement (3) showing the exis- 
tence of the integral of motion (4). Accordingly, two 
slightly different problems may be formulated. 

(A) The study of the qualitative structure of a sin- 
gle vibrational polyad characterized by a total num- 
ber K of vibrational quanta. 

(B) The study of the generic qualitative modifica- 
tions in the internal structure of vibrational polyads 
under K variation. 

The general scheme of the qualitative analysis of 
the Hamiltonian (2) is similar to that developed ear- 
lier for the rotational problem [ 16-201. So we just 
briefly summarize it and bring to attention some pe- 
culiarities of the vibration problem. 

The last problem is the question about generic 
changes in the one-parametric family of Hamiltoni- 
ans with the integral of motion K playing the role of 

the parameter. 

The general idea of the qualitative analysis is the 
transformation from the Hamiltonian to its classical 
analog and the application of the well-elaborated 
methods of bifurcation analysis to the study of clas- 
sical problem. The first essential step is the construc- 
tion of the classical limit manifold (i.e. the phase 
space) for the quantum problem considered and the 
determination of the symbol (classical Hamilton 
function) corresponding to the quantum Hamilto- 
nian. The second step is the symmetry analysis of the 
group action on the classical limit manifold. The 
symmetry classification of the phase space points by 
their local symmetry group is the most important 
point for the study of possible types of bifurcations. 
It is just this step that we mainly study in the present 
paper. 
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3. Classical limit manifold 

The general scheme of the construction of the clas- 
sical limit manifold is based on the generalized co- 
herent states method [24-301. This procedure was 
discussed from a mathematical point of view in refs. 
[ 24-261. Some physical application may be found in 
refs. [ 24,27-301. We give here only a formal descrip- 
tion of the correspondence between quantum and 
classical problems formulated especially for the case 
of effective vibrational Hamiltonians. We can take as 
dynamical variables for the quantum problem the vi- 
brational creation and annihilation operators ai’, ai 
supposing that they are introduced into the Hamil- 
tonian only in the form of the product 

+?I1 a, . ..aN +nNanl ?nN I . ..aN , (6) 

satisfying the condition 

n,+...+n,=m,+...+m,. (7) 

The action of any given operator (6) on any given 
wavefunction yields physically identical results if 
these wavefunction differ only by a common com- 
plex phase. This restrictions are to be taken into ac- 
count under the transition to the classical limit. 

To realize the transition to the classical limit one 
must introduce the complex variable zi instead of a 
pair of operators a:, ai, to put the additional re- 
quirement Iz,I *+...+ 1 &I *= 1 and to equate the 
complex vectors which differ by a phase (zi, . . . . zN) 
and (zlei’, . . . . zsi@‘). From a mathematical point of 
view this procedure is the construction of the com- 
plex projective space CPN-’ which is locally a 
(2N- 2)-dimensional real Euclidean space. 

Below we limit ourselves to the example of the 
three-mode vibrational problem and investigate the 
two-dimensional complex projective space. To make 
further calculations we need the explicit form of the 
coordinate system on the complex projective space. 
We use the standard construction which is based on 
the introduction of several local maps. 

Let (z,, z2, z3) be the points of the three-dimen- 
sional complex Euclidean space C’ which satisfy the 
requirement I z, I * + I z2 I * + I z3 I * = 1. The projective 
images of all these points form the CP* space. We take 
as a first map in CP* that one which covers all the 
images of the points with z, # 0. The local coordi- 
nates of the images of (z,, z2, z3), z, # 0 points in CP* 

in this map is given by ( 1, w,, w3) where w2 =z2/z1, 
w3 = z3/z,. The second local map covers all points in 
CP* which are the images of (z,, z2, z3) points with 
z2 # 0. The local coordinates in this map are given by 
the relation 

UI =z*/z*, u3 =z3/z2 (z2 #O) . 

At last the third map may be introduced which cov- 
ers images of the points (z,, z2, z3) with z3 # 0, 

(z,,z2,z3)+(~,,~2, l); 

VI =z,/z3, v2 =z2/z3 (z,#O) . 

Three maps cover all points of the CP* space. The 
trivial generalization to the CP“ complex projective 
space shows that k+ 1 maps may be introduced in 
such a way that they cover the CPk space. The maps 
introduced are overlapping. To reach the one-to-one 
correspondence between the points of the CP* space 
and the projective coordinates introduced above we 
can make the following choice, Let us fix three maps 

M’=(l, w2, w,), M2=(&, 1, u3) 9 

M3=(v,, v2, 1) 

and take all the points from the M’ map, the points 
with coordinates (0, 1, u3) from the M* and the only 
(0, 0,l) from the M3 map. The unification of all these 
points gives the CP* space, 

CP2=(l,w*, w3)@(0, l,u3)@(0,0,1). (8) 

The coordination introduced enables one to calculate 
the group action on the complex projective space 
which is induced by a symmetry properties of the ini- 
tial quantum creation and annihilation operators. 

4. Group action on the classical limit manifold 

We have defined the classical limit manifold for the 
quantum Hamiltonian describing the vibrational po- 
lyads. It is the complex projective space CPN- ’ (N is 
the number of vibrational modes forming the po- 
lyads). The next step is the definition of the group 
action on the classical phase space induced by the 
symmetry of the initial quantum problem. First of all 
it is necessary to find the group image for the prob- 
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lem considered starting from the molecular symme- 
try group and the symmetry types (the irreducible 
representations) of the dynamical variables. The im- 
portant notion of “the group image” is widely used 
in solid state physics and especially in the theory of 
phase transitions [ 3 1,321. The analysis of the group 
images for the effective Hamiltonians for vibrational 
polyads was given in the previous paper [ 81 where 
the complete list of the group images for the three- 
mode problems was given in particular. So we do not 
discuss this problem here and suppose that the group 
image is known for the molecular problem considered. 

To specify the group action on the complex projec- 
tive space it is necessary 

(i ) to define explicitly the action of all group ele- 
ments on the points of the complex projective space 
(classical limit manifold), 

(ii) to find the groups of isotropy for different 
points, 

(iii) to give the decomposition of the carrier space 
into the sets of points with the same isotropy group 
(more strictly speaking the stratification of the orbit 
space must be given ) . 

We start with the most trivial example. The three- 
dimensional vibrational space is characterized by two 
totally symmetric modes and one nonsymmetric 
mode. The group image is C2 [ 8 1. An example of such 
a situation is a three-atomic molecule AB2 with a CZV 
molecular symmetry group and a near degeneracy of 
all three modes. A more realistic example is the quasi- 
degeneracy of valence stretching modes vI, v3 and the 
overtone of the deformation mode 2v2. Under this 
supposition we can consider vibrational polyads of 
the form (v,, 2vZ, v3), v,+v2+v3=const. but the 
symmetry of three modes remains the same, 2A + B, 
with respect to C2 group which is the group image for 
this special case considered. 

We choose the vibrational annihilation and crea- 
tion operators a,, a,, u3, a:, a:, a: transforming 
according to irreducible representation of the C2 
group as 

a,-B, a~,a,-A, 

UT-B, ~:,a:-A. (9) 

Thus the annihilation (creation) operators are trans- 
formed under the group action as 

CZ(u,,ul,u3)=(--a,,u2,u3). (10) 

We must now find the group action on the complex 
projective space CP2 which is the classical limit man- 
ifold for the problem considered. It is a trivial task to 
define the group action on the space of classical com- 
plex variables zi. It is necessary just to put 

E(zl,Z2,z3)=(Z,,Z2,Z3) > 

~2(~,,~2,~3)=(-~,,~2,~3)~ (11) 

Now we use the general procedure for the construc- 
tion of the complex projective space and define the 
group action for different maps. The action of E is 
obvious in any map. To find the action of C2 element 
in the map M’ we can use the explicit expression of 
the coordinates in terms of the variables zi 

cZ(l, w2, ~3)=c2(1,z2/z,,z3/z,) 

=(I, --zz/z,, -z3/z,)=(l, -w2, -w3). (12) 

Similar we have for the CP2 points from other maps 
M2 and M3 

c,(o, 1, u3)=c2(0, 1, z3/z2)= (0, 1, US) > (13) 

CZ(O,O, 1) = (0, 0, 1) . (14) 

We can now easily find the set of points invariant with 
respect to the CZ group, i.e. the set of points with C2 
local symmetry group. All such points are 

(l,O,O)S(O, l,u3)@(0,0,1). (15) 

It should be noted that (0, 1, u3) $ (0, 0, 1) is the 
CP’ submanifold of CP2 and the ( 1, 0,O) point is an 
isolated one. 

A schematic visualization of the decomposition of 
the CP2 space into subspace with different local sym- 
metry groups is shown in fig. 1. It represents the S2 
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Fig. 1. C2 group action on CPz. Circle: isolated point with C2 lo- 
cal symmetry, shaded area: S 2 surface with C2 local symmetry. 
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surface and an isolated point in the CP2 which is lo- 
cally isomorphic to four-dimensional real Euclidean 
space. 

Similar treatment may be reahsed for vibrational 
polyads with any symmetry properties and any num- 
ber of vibrational degrees of freedom. We simply list 
here some results for three-mode cases with the most 
important for molecular symmetry properties. 

In the case of three modes and the D2 group image, 
the CP2 phase space includes three S2 surfaces with 
C2 local symmetry group. Each two of these S2 spheres 
has one common point with the D2 local symmetry 
group. A schematic view of the D2 group action on 
CP2 space is shown in fig. 2. Table 1 gives the coor- 
dinates of different points along with their local sym- 
metry groups. The same results are given in fgs.3-5 
and tables 2-4 for Dg, D4 and 0 group actions on CP2 
space. The correspondence between molecular sym- 
metry group and the irreducible representations of 

Fig. 2. D2 group action on CP*. (0 ) Isolated point with Dz local 
symmetry. 

vibrational modes considered from one side and the 
image of group from the other is given in detail in ref. 
[ 8 1. Here we list in table 5 examples of molecular 
symmetry groups which are reduced to group images 
C2, D2, D3, D4, 0 for three-mode problems. 

Table 1 
Stratification of CP2 under the action of the D2 group 5. Bifurcation analysis 

Fig. 3. Da group action on CP’. ( A, A ) Isolated points with C3 
and D, local symmetry groups. 

Fig. 4. D, group action on CP’. (0, n ) Isolated points with C, 
and D, local symmetry groups. 

Local 
symmetry 
group 

Coordinates 
of points with 
given local symmetry 
group 

Group operations from 
the local symmetry 
group 

D2 (l,O,O) E, 9,9, G 

(0, LO) 

(090, 1) 

c2 (1,~2,0),~2#0,~ E,C$ 

(1,o,w3),~,#o,co 5 (3 

(0,1,ua),u2#O,w E,Cf 

We have given in section 4 the classification of the 
phase space points by their local symmetry. To reach 
the classification of the qualitative changes which can 
take place under the variation of one parameter it is 
necessary to find also the classification of the dis- 
placements from the point with given local symmetry 
group by the irreducible representations of the local 
symmetry group. 

The types of bifurcations of the stationary points 
depend on the local symmetry group and on the cor- 
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Fig. 5.0 group action on CP’. 

responding symmetry types of small displacements 
rather than on the total symmetry groups and the 
symmetry classification of small displacements for the 
total symmetry groups. 

As soon as under the variation of one parameter 
one irreducible representation may only be active, the 
types of the equivariant bifurcations appropriate for 
the problem considered are just the same as that 
studied earlier for purely rotational problems. Such a 
conclusion follows from the fact that only the molec- 
ular point groups are studied and the dependence on 
the only one parameter is considered. This conclu- 
sion shows in essence the absence of symmetry 

breaking phenomena for three-dimensional repre- 
sentation for the problem considered. It may be de- 
duced also from the fact that the classical limit man- 
ifold (which has four real dimensions) admits the 
simplectic structure and therefore does not allow the 
three-dimensional representations for dynamic 
variables. 

6. Molecular applications and generalization 

The main physical supposition for the application 
of the model considered is the existence of isolated 
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Table 2 
Stratification of CP* under the action of the D, group 

Local 
symmetry 
group 

Coordinates 
of points with 
given local symmetry 
group 

Group operations from 
the local symmetry 
group 

D3 (l,l, 1) E, C,, 
CL 
c;, 
cl, 
CT 

( 1, e2in/3, e4ix/3) E, C,, C: 
( 1) e4’“/3, e21r/3) 

(1, -190) 6 c; 

(1,1,w,)w3+1 

(l,O, -1) E, C; 
(17% 1) w,+l 
(O,l, -1) E, cg 
(l,W,W) Wfl 

vibrational polyads. The most evident molecular 
problems verifying the abovementioned supposition 
are the stretching vibrations in AB2, AB3, AB4, . . . type 
molecules with heavy central atom A and light B at- 
oms. The obvious obstacle is the existence of other 
vibrations possessing some kind of resonances with 
modes forming polyads. For example, the polyads 
formed by stretching vibrations of Hz0 molecule are 
usually considered separately from the bending mode. 
At the same time such an approximation is rather 

Table 3 
Stratification of CP’ under the action of the D4 group 

crude because there is a near 2 : 1 resonance between 
bending and stretching modes. In such a case we can 
take into account bending and stretching modes si- 
multaneously and consider larger polyads formed by 
three vibrational modes. The only modification is the 
consideration of two bending quanta as new ones. The 
notation of vibrational states in a polyad is (v,, 2 v2, 
~,)or(v,,2~~+1,v~)withv,+~~+v~=Nbeingthe 
effective total number of vibrational quanta. In such 
a case the polyads with odd and even bending vibra- 
tional quantum number should be considered sepa- 
rately. Another example is the C-H stretching vibra- 
tions in CHD3 molecule [ 151. This case corresponds 
to a near 2 : 1 Fermi resonance between doubly de- 
generate bending and single stretching modes. We 
again can consider separately the polyads formed by 
odd number bending quanta (v,, 2 vb) and by even 
number (us, 2 vb). 

Another kind of generalization is the description of 
the overlapping polyads. To describe the overlapping 
polyads one can introduce a more general effective 
operator for S polyads close to the Kth one. Such an 
effective Hamiltonian has the matrix form 

H=(Hc), i,j=l,..., S, (16) 

with each matrix element having the form 

H$= C C,, ,_.. ,,N,,, ,... mNa ~nl...aN+nNa;l’ . ..a.” , 

In,= Cm,. (17) 

The Hamiltonian ( 16 ) is represented in the clas- 

Local 

symmetry 
group 

Coordinates 
of points with 
given local symmetry 
group 

Group operations from 
the local symmetry 

group 

D4 (l,O,O) 
G (0, 1, i), (0, 1, -i) 
D2 (0, 1901, (0, 0, 1) 

(0, 1, 1 h (0, 1, - 1) 

G (1, wz,O) W*#O,~ 
(l,O,w,) W,#O,oo 

(0, 1, u3) u3#0, fi, IL 1,oo 
(l,WW)W#O,#l 
(l,%-W)W#O,#l 

all group elements 
E, CL CL (W3 
E,CZ,C%,CI 
E,C;,C;,C; 
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Table 4 
Stratification of CP* under the action of the 0 group 

Local 

symmetry 
group 

Coordinates 
of points with 
given local symmetry 
group 

Group operations from 
the local symmetry 
group 

D4 (l,O,O) 
(0, 190) 
(0, 0, 1) 

D3 (1, l,l) 
(1, -1, -1) 
(1, -1, 1) 
(1, 1, -1) 

G 

C3 

D2 

C2 

(l,i,OL (1, -i,O) 
(l,O,i), (l,O, -i) 
(0, 1, i), (0, 1, -i) 

(1, e2in/3, e’x/‘) 

( 1, e5ix/3, e4in/3) 

, eix/3 e*in13) 

; :, e4*r,;, esi~,3) 

( 1, e2ir/3, e4in/3) 

( 1, e4in/3, e2in/3) 

( 1, eir/3, esilc/3) 

( 1, e51x/3, e’“/3) 

(1, l,O), (1, -1,O) 
(l,O, l), Cl,& -1) 
(0, l,l), (0, 1, -1) 

(1, W2,O) w2#0, +i, f 1, co 
(l,O,W3)w*#O,fi,+l,cx, 
(0, 1,243) u,#O, fi, 311, co 
(l,w*,-l)W*#O,fl,co 
(l,l,w,) W,#O, kl,w 
(1, -1, w3) W,#O, kl,cx, 
(l,w,w)w#O,~l,c0 
(l,w, -w) wzo, fl,o3 
(l,w*, 1) W,#O, kl,co 

E, Cf, CT, Ci, CL (C;l)‘, CP, CY' 
E, C;, CT, C;, C$, (C$l)3, Ci3’, CJ4’ 
E, CZ, CT, Cf, C;, (C:)3, Ci”, Ci2’ 

E, Cj”, Cj”, Cj5’, G, (c;)* 
E Cj*’ C$” CJ” C$, (C$)* 
E: C$*‘: Cs3’: Cj6’: C;, (Cj)* 
E, C$‘), CS4’, Cj6’, C:, (C$)* 

E, Cl, G, (W3 
E, CS, CL (CO3 
E, G, G, (G)’ 

E, G, (C‘i)* 

E, Ct, (C8)* 

E, G, Cc;)* 

E, Cb (Ci!)* 

E, Cl, CJ”, CJ*’ 
E, Cy, CJ3’, Cs4’ 
E, CT, C$*‘, Cj6’ 

E, Ci 
E, 9 
E, G 
E, CJ4’ 
E, CJ” 
E, Cj*’ 
E, CJ5’ 
E, Ci6’ 
E, Cj3’ 

sical limit by a matrix depending on the dynamic 
variables Zi and the parameter K showing the.degree 
of vibrational excitation. For each Kit gives S energy 
surfaces which are the eigenvalues of the classical 
matrix. The matrix symbol can show new types of 
qualitative peculiarities of the eigenvalues with re- 
spect to an isolated function. Along with bifurcations 
for every eigenvalue the degeneracy points of differ- 
ent energy surfaces can generally exist. The dimen- 
sion of the set of degeneracy points depends on the 

number of parameters. We must treat as parameters 
the classical phase variables and the quantum num- 
ber K which is supposed to be the integral of motion 
and is considered as parameter. The N-mode prob- 
lem has 2N- 2 phase variables and one parameter K 
- the integral of motion. The abstract analysis of the 
matrix problems shows that the t-parameterdepen- 
dent family of Hermitian matrices possesses the t- 3- 
dimensional set of doubly degenerate eigenvalues. 
This means that for the N=2 mode case (t=3) the 
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Table 5 
Three-dimensional vibrational problems which may be. reduced to given group images 

Abstract group 
isomorph 
to initial 
symmetry group 

Symmetry of 
vibrations in G 

Group 
image 

Symmetry of 
bilinear 
combinations 
in the image 

Local symmetry 
groups in the image 

any 

any 

any 

3r 
r real 

2rw(rg~') 
r, r real 

rwac~ (r+r'+ru+r) 
all real 

CI 9A C, 

G 5A84B GCZ 

D2 3A@2B,@2B282BS C,, CZ, DZ 

T 
TxC2 
C 
C::xG 

C3 C,, C, 

C 
c::xc* 

r,,er,ec 
r,,er,er*, (a=s, U) 

0 A&E (i= 1,2) 
oxcz A,,CBE,(i=1,2;ar=&u) 
D3P Ai@% (i= 1,2) 

D,,xG A&BE, (i= 1,2; cx=g, u) 

DlP BiCBE, (i= 1,2) 

D,,xC, Ai~@3E,(i=l,2;cr=g,u) 

D3 2A,@A2@3E G, C2, C3, D3 

C 
c::xc* 

r,=Br,eq (i=O, 2~) 
rimwwfwgg (i=0,2~;~=~,~) 

G Cl, G, c, 

D4P 

D4,xCz 

TcT9E, 

r=&,A2,B,,B2 
~cBE,(cy=g, u) 

r=A,, AI, BI, B2 

D4 2A,@A&3B,OB2@2E CL, Cz, Cd, Dz, Da 

T F T AQE@2F CL, C2r G, D2 

TX& FcJ~=i~u) 
0 Fi(i=l,2) 0 A,@E@FI@Fz ‘Z Cz, &> C4, D2, D3, D4 

Oh Fi,, (i= 1,2; a=g, u) 

only possibility is the existence at some value of the 
parameter K of an isolated conical intersection point 
of two energy surfaces. For a general Hermitian ma- 
trix depending on t parameters the generic sets of de- 
generacy points are characterized in table 7 by the 
codimension which is the difference between the to- 
tal number of parameters t and the dimension of the 
set of degeneracy points [ 33,341. One can easily see 
that for the three-mode problem (t = 5, four dynamic 
variables and one parameter) only the degeneracies 
of two energy surfaces are possible. 

It was shown in ref. [ 191 that the appearance of 
isolated degeneracy points for the classical symbol 
corresponds in the case of two-phase variable prob- 
lems to the regrouping of the energy levels between 
branches in the energy spectrum. The case of molec- 
ular model problems with a higher number of degrees 
of freedom is much more complicated due to the pos- 
sibility of the formation of lines and surfaces of the 
degeneracy points in the phase space. This problem 
surely must be treated in detail separately. 
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Table 6 
Examples of local symmetry groups occuring under the action of 
some symmetry groups on CP2 

Local 
symmetry 
group 

CZ 

C3 
C4 
D2 
D3 
D4 

Symmetry Group images 
classification possessing given 
of small local symmetry 
displacements group 

4B Cs, D, 
2A@2B Czr Cq, Dz, fL Da, T, G 
2E Cg, Ds, T, G 
2P@E C,, Da, G 
2B,EB2Bz Drr JL T, G 
2E D,, G 
2E Da, G 

Table 7 
Codimensions of the generic sets of degeneracy points of the ei- 
genvalues of parameter dependent Hermitian matrix 

Type of 
degeneracy 

&dimension 

E,=E, 3 
E,=E,=Ek 8 
E,,=...=Elm m*-1 
E,=E,; Ek=E, 6 

Appendix 

The appendix is devoted to an intuitive explana- 
tion of some mathematical constructions which are 
either used in the main text or connected with the 
simplest applications of the results obtained for con- 
crete molecular examples. 

I shall discuss briefly the topological structure of 
the complex projective space which is the phase space 
for the problem considered. The relation between 
topological characteristics of the space and the sys- 
tem of stationary points of smooth functions on it will 
be formulated as well (the so-called Morse 
inequalities). 

Some notions associated with the group action will 
be summarized and specified for the complex projec- 
tive space. At last some simple conclusions about sta- 
tionary points of functions defined on complex pro- 
jective space and invariant with respect to a given 
symmetry group will be given. 

One of the important characteristics of the global 

topological properties of the complex projective 
space, CP”, are the Betti numbers. Betti number is an 
old mathematical terminology going back to the 19th 
century. Rang of the homology group is more appro- 
priate in modern mathematical language. 

Betti numbers may be found in some mathemati- 
cal manuals on modern geometry. For CP” space one 
has: 

6, =b3 =..,=bz,_, ~0. (A.1) 

An intuitive interpretation of the Betti numbers 
may be given as follows. 

Let us consider the connectivity of the space con- 
sidered. If any two points of the space can be con- 
nected by a smooth curve it means that all the points 
are equivalent in some sense. This is the situation for 
the complex projective space. In such a case b,,= 1. In 
contrast, the space of unimodular real matrices, for 
example, is characterized by b,, = 2 because any ma- 
trix with determinant equal to + 1 cannot be smoothly 
deformed into a matrix with determinant equal to 
- 1. 

Let us now consider different one-dimensional 
closed curves defined on CP”. b, =O means that any 
closed one-dimensional curve may be smoothly de- 
formed into a point. The same situation takes place 
for CP’ space which is a bidimensional sphere S *. It 
is evident that any closed curve on the bidimensional 
sphere may be deformed into a point. If one takes the 
bidimensional surface of the torus as an example, it 
is clear that there are some closed curves on it which 
may be deformed into a point but at the same time 
there are two nonequivalent types of closed curves 
which cannot be deformed into a point (two large 
circles on the torus). So for the bidimensional sur- 
face of the torus b, = 2 whereas for CP’ (S 2, and more 
generally for CP” 6, = 0. 

To explain the meaning of b2 one must consider 
bidimensional closed surfaces and find all non- 
equivalent surfaces which cannot be reduced to an 
object of lower dimension. A further extrapolation is 
possible but it is sufficient to give here the relation 
between Betti numbers for CP”: 

bk=b,-k, (A.21 

where s is the real dimension of the manifold. (The 
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The importance of Betti numbers is due to their 
relation to types and numbers of stationary points of 
Morse functions defined on the manifold considered. 
Some information concerning stationary points of 
Morse functions will be given below. 

Let us consider a real smooth function f on the 
manifold M. The point xo~ M is a stationary point of 
fif grad f( x0) = 0. The Hessian matrix 

real dimension of the complex projective space CP” In particular, one has the simplified version of ine- 
is equal to 2n. ) qualities (AS): 

UM) <c/J_fl . (A.6) 

It follows immediately from (A.4) and (AS) that 
one has the following set of inequalities for Morse 
functions defined on the bidimensional sphere S* 
(bo=l,bl=O,b*=l). 

co-c, +c* =2, 

coal, c*>l, c,>c#J-1. 
(A.3) 

is defined for a stationary point x0. The stationary 
point x0 is nondegenerate if the matrix d’f is nonde- 
generate. All nondegenerate stationary points may be 
classified according to the number of positive and 
negative eigenvalues of the Hessian matrix. 

The index of the stationary point x0 is the number 
of negative eigenvalues of the Hessian matrix. For 
example, the functionf(x, y) depending on two vari- 
ables possesses nondegenerate stationary points of the 
following types: 

minima - stationary points of index 0, 
saddle points - stationary points of index 1, 
maxima - stationary points of index 2. 
A function which possesses only nondegenerate 

stationary points is named a Morse function. 
Let us now relate the number and types of station- 

ary points of Morse functions defined on a given 
manifold with the Betti numbers of the manifold. 

Let c&) be the number of stationary points of in- 
dex kfor the functionfand &(M) be the Betti num- 
bers for a manifold M. The following set of relations 
holds: 

b,-b,+b,-...+(-l)“b, 

=c&-)--c,cf)+...+(-l)‘c,cf), (A.4) 

b,(M) <co0 , 

b,(M)-hW)<coU)--c,Cf) > 

. . . 

b,(M)-b,(M)+...+(-l)‘&(M) 

~cocf)-c,cf)+...+(-l)kc/Jf)) 

kcs. (A.5) 

The simplest solution co= 1, c2= 1, cl =O shows that 
the simplest Morse function defined on the sphere S* 
possesses one minimum and one maximum and no 
saddle points. 

For a function defined on CP* (bo= b2= b4= 1, 
b, = b3 = 0) the equality takes the form 

Co-C, +C~-CJ+C~=~, (A.7) 

and a set of inequalities may be represented in differ- 
ent forms, for example: 

coal, c*>l, c,>,l, 

c,aco-1, c,ac,-1) 

c,-c,+c*&2, c*-cj+c432. (A.g) 

It follows from (A.8) that the Morse function with 
the minimal number of stationary points possesses 
one point of index 0, one point of index 2, and one 
point of index 4 (co=c2=c4= 1, ci=+=O). 

To apply the Morse relations to functions which 
satisfy some symmetry requirements it is necessary 
to take into account the action of the symmetry group 
on the manifold because some stationary points may 
be due to a specific group action. 

Let us consider the action of the group G on the 
manifold M. The action is given if the transforma- 
tion of any point XEM under any element REG is 
known. For each point xoe M one can define the local 
symmetry group H, (an isotropy group) which in- 
cludes all symmetry transformations leaving point x0 
invariant. An isotropy group H, for any given point 
x0 is a subgroup of the symmetry group G. The ele- 
ment R E G, R 4 H transforms x0 into some other point. 
All such points form an orbit. The orbit ofxo includes 
all the points that can be obtained from x0 by the ac- 
tion of all the elements in the total symmetry group 
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on it. It is possible to introduce the equivalence rela- 
tion on the orbit space. The orbits are equivalent if 
they are characterized by the same isotropy group. 
The union of the orbits of the same type is called a 
stratum. The dimensions of the strata may generally 
vary from zero till the dimension of the manifold. The 
stratum of maximal possible dimension is called a ge- 
neric one. 

The function defined on the manifold necessarily 
possesses stationary points for all zero-dimensional 
strata. In some cases the simplest Morse function has 
stationary points only for zero-dimensional strata. In 
some other cases even the simplest Morse function 
possesses stationary points on one-, two-dimen- 
sional, or even generic strata. One may use Morse in- 
equalities to answer the question: what kind of sta- 
tionary points is appropriate and what strata are the 
stationary points placed on for the simplest Morse 
functions? Let us discuss some examples. 

The action of the Dz group on CP* (see fig. 2 ) leads 
to three points with D2 local symmetry group. For 
these points the orbit consists of only one point be- 
cause the isotropy group coincides with the total 
symmetry group. If the point x0 has C2 group as its 
isotropy group the corresponding orbit includes two 
points. There are three C2 subgroups of the D2 group 
(C$, Cp, Cf ) and the set of points possessing each 
C; group as an isotropy group forms a two-dimen- 
sional sphere in CP* space. Therefore there are three 
two-dimensional spheres formed by points with Ci 
isotropy groups (two-dimensional strata). 

All other points which do not belong to D2 or C2 
isotropy groups (C, trivial isotropy group) form or- 
bits including four points each. The space of these or- 
bits is four-dimensional and it is a generic stratum. 

The D2 action on CP2 results in zero-dimensional 
strata including three orbits (each includes one point) 
with D2 isotropy group. Therefore the simplest Morse 
function invariant with respect to D2 group possesses 
three stationary points which are placed on zero-di- 
mensional strata. One stationary point has index 0, 
one has index 2, and one has index 4. The simplest 
D2 invariant Morse function on CP* has the same 
system of stationary points as the generic nonsym- 
metrized Morse functions. 

Let us consider the D4 invariant Morse function 
defined on the CP* space. The analysis of the D4 group 
action on CP* space (see table 3 and fig. 4) shows the 

existence of zero-, two-, and four-dimensional strata. 
Zero-dimensional strata include one stratum formed 
by one D4 invariant orbit. This orbit includes one 
point because the isotropy group coincides with the 
total symmetry group. Another zero-dimensional 
stratum is formed by D2 invariant orbits. Each orbit 
includes two equivalent points because D2 is a 
subgroup of index 2 of the D, group. The C, invar- 
iant points form on orbit which forms itself a zero- 
dimensional stratum. 

Let us now suppose that the simplest Morse func- 
tion defined on CP* and invariant with respect to Dq 
group possesses the stationary points on the zero-di- 
mensional strata only. To verify such a conjecture it 
is necessary to show that all Morse relations can be 
satisfied. One may start with the equality (A.7 ) and 
take into account the supposition that the number of 
stationary points is equal to the number of points in 
orbits forming zero-dimensional strata 

co +c, +c, +cs +c, =7 . 

From (A.7) and (A.9) it follows 

(A.91 

c,+c,=2, co+cz+cq=5. (A.lO) 

From (A. 10) and (A.8) it is easy to verify that the 
minimal number of stationary points (seven points 
which include three pairs of equivalent points) may 
be distributed between stationary points with differ- 
ent index in two ways 

co=l, c1=0, c*=cj=c‘$=2; 

cg=c,=c2=2, c3=0, c,=l. 

It is reasonable to suppose that the energy func- 
tions for the lowest polyads are the simplest Morse 
functions. The order of a polynomial required for a 
reasonable description of the lowest polyads is gen- 
erally not too high to permit the formation of station- 
ary points on the strata of high dimension and on the 
generic stratum in particular. Qualitative modifica- 
tions of the energy surface or the energy level system 
for the corresponding quantum problem are associ- 
ated with the formation of new stationary points un- 
der variation of the physical parameter. The appear- 
ance of new stationary points manifests itself by 
passing the determinant of the Hessian matrix 
through zero (i.e. by the formation of degenerate sta- 
tionary points). All these critical phenomena depend 
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only on the local isotropy group appropriate for an 
effective Hamiltonian for the three-dimensional vi- 
brational problem. 
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