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A simple approach permitting to explain the qualitative changes (rearrangements) of the vibrational polyads with excitation is 

developed and applied to the two-mode case. This approach is based on the analysis of the classical Hamilton function corre- 

sponding to the effective Hamiltonian for a vibrational polyad. The rearrangements of the vibrational polyads are related to 

certain bifurcations in the corresponding classical problem. A concept of localized vibrational states generalizing and unifying 

those of normal and local mode states is proposed. The influence of the symmetry properties of the problem on the rearrangements 
is studied. A complete group theoretical analysis is given and all the possible types of rearrangements in the two-mode case are 

listed. 

1. Introduction 

The experimental and theoretical studies of highly 
excited vibrational states of polyatomic molecules 
have given evidence to the existence of specific vibra- 
tional states - local modes ( LMs). An extensive bib- 
liography on this subject can be found in refs. [ I-41. 
From the classical viewpoint, LMs are vibrations with 
a highly asymmetrical distribution of the energy be- 
tween different bond oscillators. LMs are very useful 
for describing the stretching spectra of molecules 
containing C-H bonds, such as H20, NH3, CH4, and 
many others. Each of these molecules possesses a 
group of (quasi)degenerate vibrations whose fre- 
quencies differ greatly from those of the other molec- 
ular vibrations. Such groups of (quasi)degenerate 
vibrations give rise to vibrational polyads (VPs) in 
the spectra of the corresponding molecules. 

According to the usual normal mode (NM ) model 
these VPs must consist of an equidistant sequence of 
energy levels. There are many examples where this is 
the case. But there are also many examples where the 
structure of the VPs deviates from the predicted one 
by the NM model and where it is better described by 
the LM. 

A very interesting phenomenon occurs when the 
structure of the VPs changes qualitatively as the en- 

ergy increases, e.g., passing from NM to LM type. 
Such rearrangements of the VPs indicate a drastic 
change in the intramolecular vibrational dynamics. 

The existence of LMs raises many questions. We 
shall discuss some of them for a system of two cou- 
pled nonlinear (quasi )degenerate oscillators. The first 
question is whether it is possible to rationalize NMs 
and LMs in a unique fashion [ 5-101. To answer this 
question we shall develop here a very simple ap- 
proach based on the application of nonlinear me- 
chanics and catastrophe theory analysis to the classical 
Hamilton function, H,,, corresponding to the effec- 
tive vibrational Hamiltonian, H,,(N), which de- 
scribes the structure of the Nth VP; We shall see that 
both, NMs and LMs, are characterized by the same 
kind of localization of the vibrations in the phase 
space: classical trajectories corresponding to both of 
them are localized in the vicinity of the isolated sta- 

ble stationary points of H,,. 
This observation will permit us to combine the 

concepts of NMs and LMs in the frame of a more 
general concept of a localized vibrational state (LVS). 
From the classical viewpoint LVSs are vibrational 
states related to the trajectories localized in the vicin- 
ity of the isolated stable stationary points of the cor- 
responding function H,,. 

In section 2 we shall give a brief outline of our for- 
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malism. In section 3 the physical model studied in 
this paper is presented. In section 4 an H,,(N) is 
constructed for this model and in section 5 the qual- 
itative theory of its spectrum is given. In section 6 
this theory is applied to some simple examples. We 
shall see that besides the usual NMs and LMs, our 
formalism predicts other types of the LVSs. 

The possibility of rearrangements of the VPs with 
excitation poses another interesting group of ques- 
tions: how can we rationalize these rearrangements? 
What are the typical rearrangements for the system 
studied, and to what extent are they determined by 
the symmetry of the problem? We shall show that 
rearrangements of VPs are related to bifurcations in 
the corresponding classical problem. For the case of 
two vibrations the problem of classification of the 
possible VP rearrangements is mathematically 
equivalent to that for the purely rotational problem. 
So we shall apply in section 7 the known results about 
equivariant bifurcations in a rotational problem [ 1 l- 
131 to obtain a complete description of all possible 
VP rearrangements for any molecular symmetry. An 
important feature of our qualitative treatment is the 
study of general phenomena depending on the sym- 
metry properties of the problem considered rather 
than on the concrete form of the H&N). 

2. Outline of the method [14,15j 

In this paper we shall discuss the spectrum of two 
(quasi)degenerate vibrations in a polyatomic mole- 
cule under the following assumptions: 

(i ) The molecule possesses symmetry described by 
the point group G. 

(ii) The vibrational operators a,, a, correspond- 
ing to the two vibrations in question form the basis 
for some reducible or irreducible representation I of 
the group G. 

(iii) The frequencies of the two vibrations differ 
significantly from the frequencies of the other molec- 
ular vibrations. 

(iv) The interaction between states belonging to 
different VPs is small compared with the interaction 
between states within the same VP. 

Due to assumptions (iii) and (iv), the spectrum 
of our two-mode system at low energies consists of 
weakly coupled VPs. The Nth VP is built from N lev- 

els 1 n,nz) with the same total number of vibrational 
quanta: a1 + n2 = N- 1. These assumptions permit US 

to study the structure of the VPs with the help of the 
effective Hamiltonians acting only within VPs. The 
assumption (iv) is crucial for the further analysis. Its 
exact mathematical formulation is not trivial at all. 
Here we shall note only that the assumption (iv) is 
much less restrictive than the assumption that the 
neighbour VPs do not overlap. For large enough 
energies assumption (iv) certainly fails. 

The method of qualitative analysis of polyadic vi- 
brational spectra implies three main steps. The first 
one is the construction of the effective Hamiltonian, 
H,,(N), describing the structure of the Nth VP. This 
can be done in different ways. In section 3 we shall 
use one of them based on the contact transformation 
method which leads to H,,r( N) in the form of a power 
series in vibrational operators. 

The next step is the transformation of I-l,rr( N) thus 
obtained to the form of the effective rotational Ham- 
iltonian which is more suitable for the qualitative 
analysis. This transformation is easily performed by 
introducing the Schwinger pseudomomentum oper- 
ators [ 161. The main reason to do this is the exis- 
tence of a well established qualitative theory of the 
effective rotational operators [ 1 I- 13 1. 

The last step consists in the construction of a clas- 
sical Hamilton function, H,,, corresponding to the H,.fr 
obtained at the previous step, and in the analysis of 
the behaviour of the system of its stationary points 
with growth of the energy. As we shall demonstrate 
later, such analysis is a very useful and powerful tool 
to elucidate the main qualitative features of the VPs. 

3. Model system 

Our model system consists of two identical cou- 
pled oscillators described by a Hamiltonian of the 
form 

H/ho=0.5(P:+Qi’+P~+Q~)+s(Q, +Qz) 

+ AP,PZ+BQ,Q2+C(Q;+Q;) 

+ DQ,Q~(QI+Q~)+E(Q;‘+Q~, 

+ FQ,Q2(Qf+Qi,+CQ:Qt. (1) 

Here Qh and P,: are dimensionless coordinates and 



V. B. Pavlov- Verevkin, B.I. Zhilinskii /Rearrangements of vibrational polyadic spectra 431 

momenta related t0 the ordinary ones, qk and pk, by 

qk = (fi/mw)‘12Qk, 

pk=(fimm)“*Pk, k=1,2, (2) 

where m and o are the oscillator mass and funda- 
mental frequency. The parameters A-F, S, U are also 
dimensionless with C-F, S, U being much less than 1 
to satisfy assumptions (iii) and (iv). 

Such a Hamiltonian can be obtained, e.g., from the 
usual LM Hamiltonian of Child and Lawton [ 31 by 
approximating the Morse potentials in the latter by 
their quartic expansions and by adding the anhar- 
manic potential couplings. Truncation of the Morse 
potentials does not change the qualitative features of 
the problem at hand, whereas the inclusion of addi- 
tional anharmonic potential couplings can lead to new 
phenomena not described by the standard LM 
Hamiltonian. 

The Hamiltonian ( 1) can be viewed as an empiri- 
cal one or it can be deduced in some way from the 
full vibrational Hamiltonian. The simplest possibil- 
ity to accomplish this is to average the full vibra- 
tional Hamiltonian with respect to all unrelevant 
degrees of freedom. If necessary, it is possible in a 
standard fashion to improve the Hamiltonian thus 
obtained within perturbation theory or contact trans- 
formation approaches. 

4. Effective Hamiltonian 

A usual way to study VPs is to describe the struc- 
ture of a given VP by its own effective Hamiltonian, 
H&N). The recipe for obtaining such an HeE( N) is 
well established. At first we shall rewrite the expres- 
sion ( 1) with the help of the vibrational annihilation 
and creation operators defined by 

QA = (6 +ak)/$ 3 

Pk=i(ak+ -ak)/$, k= 1,2. (3) 

H,, for a VP must satisfy the so-called diagonal con- 
dition, that is, it must contain only those terms which 
prevent interaction between states belonging to dif- 
ferent VPs. To transform the Hamiltonian ( 1) to such 
a diagonal form we shall use canonical transforma- 
tion techniques, taking into account only the first non- 
zero contributions to Heff from the different terms in 

( 1). Thus only the first-order contributions from 
quartic and quadric terms and the second-order ones 
from linear and cubic terms shall be taken into ac- 
count. This approximation is not crucial for the fur- 
ther discussion and is chosen to avoid the unnecessary 
technical complications. 

Our next step is to transform Heff, thus obtained, 
to the form of the effective rotational operator using 
the Schwinger representation for the pseudomomen- 
turn operators 

J,=(a:a,+a:a,)/2, J,=(a:a,-aZa,)/2i, 

JZ=(a:a, -a$a2)/2, J=(a:a, +a:a2)/2. 

(4) 

We can always do this because of the diagonality con- 
dition imposed on IJeW. Note here that operator J is a 
constant within the VPs and is related to N by 
2J+ 1 =N. 

The above procedure gives us H,, in the form of 
the effective rotational operator 

HeFflfio= Ho +sJ, + tJ: + uJ: , (5) 

where 

s=s, +s~(J+$), s, =A+B+4DS, 

s2=3F-yD2-lOCD, t=U-4D2+2CD, 

u=(6E-U-15C2-3D2+14CD)/2, (6) 

and Ho contains all irrelevant terms which are con- 
stant within VPs. A natural generalization of the 
Hamiltonian (5) in this two-mode case can be ob- 
tained by using a more general function of SU( 2 ) 
group generators. It should be noted that similar al- 
gebraic approaches using generators of different con- 
tinuous groups to construct Hef,-for VPs became very 
popular last years [ 7- 10,17- 19 1. 

The method described above permits the direct 
calculation of the parameters of the H,, from the 
known molecular force field. Another possible way to 
use Hen in the form (5) is to use it as a purely phe- 
nomenological effective Hamiltonian, and to obtain 
its parameters by fitting experimental data [ 7,8]. 

5. Qualitative description of the spectrum 

To proceed further we shall build the classical 
Hamilton function, H,,, corresponding to the H,w To 
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do this it is sufficient to replace the quantum opera- 
tors in ( 5) by their quasiclassical counterparts ac- 
cording to 

ary points (c) and (d) with increase of L is more 
complicated. It is shown in table 2. 

J,.=Lcospsine, J,=Lcos8, 

L=J+ l/2. (7) 

The length, L, of the classical pseudomomentum vec- 
tor is related to N by N= 2L. 

We are interested in the isolated stationary points 
of the function H,,. This interest is motivated by the 
fact that in classical dynamics every stable stationary 
point (maximum or minimum) of the Hamilton 
function is surrounded by trajectories localized in the 
phase space in the vicinity of this stationary point. 
Under certain conditions, quantum states corre- 
sponding to such localized trajectories exist. Further, 
we shall refer to these quantum states as to localized 
vibrational states to emphasize their relation to the 
trajectories localized around the stationary stable 
points of H,,. 

With increase of excitation (which corresponds to 
increase of L) the number and the nature of the sta- 
tionary points of H,, can change as L goes over some 
special values. This process, called bifurcation, leads 
to a qualitative change of the VPs structure and is 
further referred to as the rearrangement of the VPs. 
To illustrate this statement in section 6 we shall con- 
sider several simple examples. 

6. Examples 

Omitting the insignificant term H,, we can write 
the expression for H,, in the form 

H,, = (s, +szL) L cos 0, sin e 

+ tL2c0s2~ sin2f3+ uL2 c0s"e. (8) 

In this paper, we shall study only the typical func- 
tions H,,. This means that no additional a priori re- 
strictions are imposed on the parameters of H,,, 
besides those dictated by the symmetry of the prob- 
lem. All stationary points and corresponding values 
of H,, (8) are listed in table 1. We see that H,, always 
has the nondegenerate stationary points (a) and (b ) 
localized on the x-axis. The behaviour of the station- 

(A) The simplest possible example is the system 
of two harmonic oscillators coupled by harmonic po- 
tential and kinetic terms. This system is equivalent 
to the system of two uncoupled harmonic oscillators 
with slightly different frequencies. The VPs contain 
the equidistant sequences of levels and their struc- 
ture does not change with the growth of energy. In 
this case, the only nonzero parameter in ( 5 ) is s,. This 
implies additional restrictions on the parameters of 
H,,; that is why this case is not directly covered by 
the analysis of section 5. The analysis along the lines 
of section 5 is trivial and leads to the conclusion that 
in this case H,, has no other stationary points besides 
(a) and (b). These stationary points exist for all val- 
ues of L, one of them being maximum and the other 
being minimum of H,,. It immediately follows that 
the bottom and the top of the VPs in this case are 
built from regular sequences of nondegenerate levels, 
and this structure does not change with increase of L, 

in accordance with the exact quantum results. 
(B ) Now, we shall generalize the previous case by 

Table 1 

Stationary points. P, andcorrespondingvalues ofH,,(P) (8). Here: rl = (3, +sZL.)/[2L(u-t)]. rz = - (J, +s,L)j2tL 

P 

(a) 

(b) 

(cl.*) 

(d,,z) 

Coordinates of P 

a, 

0 

K 

rr11-sgn(rl)l/2 

t arccos / r2 1 

0 

n/2 

n/2 

rt arcsin 1 r, 1 

w 

If,,(P) 

&=s,L+(s*+t)L* 

E,=-s,L+(f-.Q)L~ 

EC, =E,, =uL’ 
+ (s, +szL)‘/4(u-t) 

E,J =& = - (s, +s,L)‘/4r 

Conditions of 

existence 

always 

always 

Ir,/ < I 

jr21 < 1 
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Cc) 

sign of 

SlS2 

sign of 

Is21 -2lu-tl 
domain 

(d) 

sign of 

SlS2 
sign of 

IhI -2lCl 
domain 

+ 
+ 
- 
- 

+ 
- 

+ 

absent + + absent 
LZLi + _ LBL, 
L: <LSLi - + L: GLQL, 
L2L: - - L>L: 

taking into account the anharmonicity of the oscilla- 
tors. It can be easily done by treating Hen with non- 
zero parameters A, B, S, C, and E. This case is also 
degenerate due to the restrictions s2 = t= 0. Analysis 
along the lines of section 5 shows that in such a sys- 
tem there always exists one bifurcation point at 
L* = 1 s,/2u I. Before this point, for L < L*, there are 
two nondegenerate stable stationary points (a) and 
(b) and the structure of the VPs is the same as in the 
case (A): level spacings at the top and at the bottom 
of the VPs follow the NM model. At L= L* the bifur- 
cation occurs: one of the stable stationary points (a) 
or (b) depending on the parameters of the problem, 
splits into two degenerate stable stationary points (c) 
of the same type as the parent stationary point, and 
one unstable stationary point. The appearance of two 
degenerate stable stationary points gives rise to the 
tendency of’forming the regular sequence of quasi- 
degenerate pairs of levels corresponding to the LVSs. 
The part of the VP formed from such pairs will be 
better described by the LM model, whereas level 
spacings at the other side of VP will follow the NM 

model. 
What is the physical nature of the LVSs in this case? 

If the level spacings of the interacting oscillators de- 
crease with the growth of energy (the usual situa- 
tion), then the quasidegenerate pairs are formed at 
the bottom of the VP and are built from the zero-or- 
der vibrational states with a highly asymmetric dis- 
tribution of the energy between the oscillators, that is 
to usual LMs. Thus, the formalism developed in the 
previous sections provides us with a very simple and 
clear classical picture of the formation of the LMs 
from the NMs with excitation. We see also that the 
formation of the LMs with excitation is a typical be- 
haviour of the system in question. 

In concrete molecules, too large or too small values 
of L* can prevent the experimental observation of the 
rearrangements discussed above. In such cases, one 
will observe only one type of VPs: NM type if L* is 
too large, and LM type if L* is too small. In general, 
our analysis clearly shows that different parts of the 
same VP can be better described within different 
models. 

(C) Now we are going to discuss the most general 
case when all parameters in ( 1) are nonzero. The in- 
clusion of the quartic potential terms leads to two new 
effects: a new type of the LVSs corresponding to the 
stationary points (d) can arise in the system, and 
there may appear the LVSs with a finite domain of 
existence. For the moment it is not clear whether there 
is any fundamental difference between the LVSs cor- 
responding to the stationary points (c) and (d) or 
not. The relation between LVSs of these two types and 
their relation with the ordinary LMs needs further 

study. 
(D) Finally, we shall apply our analysis to model 

Hamiltonians describing two degenerate vibrations in 
several simple molecules using parameters given in 
[ 8 1. Parameters w, s,, s2, t, u of our model Hamilto- 
nian (5 ) and those, oo, (Ye, /I, E, 6’) of the model 
Hamiltonian (2.37) from ref. [ 81 are related by 

o=wg ) s, = P/ho,, ) s2 =#io(J ) t=4fY/rzw, ) 

u= (cr2+26’)/Aoo. (9) 

The results of the model Hamiltonian analysis are 
listed in table 3. 

While applying these results, it is necessary to take 
into account several points. First of all, one should 
be careful enough not to use the model Hen beyond 
their domain of applicability. Secondly, when the bi- 
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Table 3 
Bifurcation analysis of Hen for some small molecules. Parameters 

for the model Hamiltonian (5) are taken from ref. [ 81 

Molecule Domains of existence for the 

stationary points 

(c) 

Lao.4 

La6.5 

Lao.6 

Lao.4 

La3.2 

(d) 

5.9GLC36.5 

1.2 13.7 

L> 10.8 

absent 

La22.8 

furcation value of L is large it is necessary to check 
whether the approximation of weakly interacting VPs 
is still valid. It should be mentioned also that the pre- 
dictions of our approach are more accurate for large 
values of L. For small L our predictions have only 
qualitative character. Note in addition that for small 
L the rearrangements of VPs are very smooth func- 
tions of L. With this in mind we see that our ap- 
proach locates the beginning of the VP 
rearrangements in good agreement with the results of 
the hindered rotator model [ 5,6 1. 

From table 3 it follows that for real molecules the 
first bifurcation points often correspond to very small 
(Hz0 and C&H,) or to very large (CzDz and SOz) 
values of L. In these cases, as already said, the struc- 
ture of the VPs does not change with excitation in the 
experimentally studied domain of energies. More in- 
teresting are the cases when the bifurcation point lies 
within an experimentally studied domain of ener- 
gies. In such cases it is possible to observe the transi- 
tion from one type of the VPs to another. The 
spectrum of the stretching vibrations of the O3 mol- 
ecule may serve as one of such examples. In this case 
smooth formation of the LM polyads from the NM 
ones is clearly seen beginning from the second VP. 
The model spectrum of the C-D vibrations in CzD2 
[ 8 ] is much more appropriate for demonstration of 
the VP rearrangements. In this case the bifurcation 
point lies high enough to ensure the existence of a 
large number of the typical NM VPs before bifurca- 
tion occurs and comparatively abrupt character of the 
transition to the LM VPs. Unfortunately, the bifur- 
cation point in C7D2 lies in a domain not yet acces- 
sible to experiments. 

We see that in all the molecules studied here, for- 

mation of the LMs is connected with the appearance 
of the stable stationary points (c). The stationary 
points (d) also exist for some molecules but they are 
too high in energy to have any physical significance. 

7. Symmetry analysis 

In the previous sections we have shown that when 
the vibrational energy exceeds some critical values the 
rearrangements of the VPs can occur. The method for 
locating such critical values of energy was developed 
and applied to some simple cases. In this section we 
shall treat the problem of the rearrangements from 
another point of view. Here we shall answer the two 
main questions. (i ) What kind of rearrangements can 
occur in the two-mode vibrational problem? (ii) How 
does the symmetry of the problem manifest itself in 
these rearrangements? 

According to our second assumption the vibra- 
tional operators, a, and al, used to construct HefThave 
definite symmetry properties. If the two modes in 
question are NMs, then the vibrational operators will 
transform according to two one-dimensional or one 
two-dimensional irreducible representations of the 
molecular symmetry group G. If they are LMs the sit- 
uation is a little bit different: a single LM does not 
possess the pure symmetry, but two of them always 
form a basis for some reducible or irreducible repre- 
sentation of the group G. This difference is not sig- 
nificant for further discussion. From the symmetry 
properties of the vibrational operators, it immedi- 
ately follows that operators. J,,, also span some rep- 
resentation I’ of the group G. 

The essential notion for the further discussion is 
the notion of the symmetry group G* of the He, The 
group G* depends not only on the molecular group 
G but also on the symmetry properties of the vibra- 
tional operators and is just the image of the group G 
in representation I’ generated by the operators, J,. 
For a more detailed discussion of the concept of the 
group image, see refs. [ 20-231. 

We have determined and listed in table 4 all possi- 
ble groups G* which can arise in the two mode vibra- 
tional problem. To do this, we have studied all 
different abstract groups to which the molecular point 
groups can be isomorphic. The isomorphism be- 
tween abstract and point groups can be found, e.g., in 
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Table 4 
Group images for the two-dimensional vibrational problem. Here: 
LCD is the largest common divisor; all the representations des- 
ignated by I- are one-dimensional; q=min( 2m, n-2m); 
k=LCD(n,2m);j=LCD(n,q);cr=u,g 

Molecular 
group G 

Symmetry 
of a,, a2 
in G 

Symmetry 
of J, operators 
in G 

Image G* as 
an abstract 
group 

any finite 

any finite 

Cl 
?I>3 

CSG 
n=2p,pd2 

D” 
na3 

DSG 
n=2p,p>2 

DQ 
pa1 

D&G 
pa1 

T 

T@C> 

0 

063x2 

D, 

D,@CZ 

I-or 
r real 

r0r, 
r,r, real 
r+r, 

r,,0r*, 
l,<min/2 

rma8 rt,, 
1 <mxn/2 

E, 
mfnl4 

E 
mm: n/4 

E, 

E, Az,0B,,BBz, 

3A, 

A,@32rz 
r,=rBr, 

r,sr,or; 

r,Or,Ora 

A,0E, 

A,,0E, 

Az0B,0B2 

A0E 

A,0Es 

A,0E 

Az.0E, 

Az0Ezm 

Azg0Lng 

G 

G 

C nfk 

C n/k 

D ni, 

D n/1 

D2 

DZ 

C3 

C3 

D3 

D3 

D, 

DCS 

ref. [ 241. We see that in general the symmetry of He, 

does not coincide with G. Two vibrations in mole- 

cules with different symmetry may be described by 
H,is having the same symmetry, and vice versa, the 
pairs of vibrations in the molecules with the same 
symmetry, or even different pairs of vibrations in the 
same molecule, may need for their description the ef- 
fective Hamiltonians with different symmetry 
properties. 

In the system described by the He, of a given sym- 
metry G*, different types of bifurcations can take 
place. The type of bifurcation depends on the local 
symmetry group, GE, of the point P in the phase space 
where this bifurcation occurs. Gt is defined as the 

group containing all elements of the group G* which 
do not move the point P. 

In table 5 we have listed all possible local groups 
GE which can arise in the two mode vibrational prob- 
lem. Also, in the same table we have pointed out the 
numbers K(G+L) which are equal to the numbers of 
points in the orbit of the point P in the group G*. 
They determine the number of different equivalent 
ways of localization of vibrations in the phase space 
and, hence, the (quasi)degeneracy of the vibrational 
levels in the quantum case. The infinite values of 
K( GZ) in table 5 do not mean the infinite degeneracy 
of levels. They simply show that the corresponding 
stationary points are not isolated. 

And at last in table 6 we have listed all different 
bifurcations possible in the two-mode vibrational 
problem. 

To illustrate the use of this table, we shall discuss 
possible bifurcations for the local symmetry group CZ. 
In this case bifurcation occurs at the point P of the 
phase space located on the axis C2. It leads to a change 
of the stability of this point which is followed by ap- 
pearance or disappearance of two stationary points 
in general position (local group C, ). The stability of 
these stationary points given by the Hessian sign is 
opposite to that of the stationary point on the CZ axis. 

In this case there are two essentially different types 
of bifurcations. Bifurcations of the first type are lo- 
cal. For these bifurcations, the separatrix which di- 
vides the trajectories into localized and global ones, 
is itself localized in the neighbourhood of the station- 
ary point in question. A separatrix for the bifurca- 
tions of the second type has a global character. The 

bifurcations of the second type occur in the full phase 
space and are called global. For a more detailed dis- 

Table 5 
Local groups, Ct. and corresponding (quasi)degeneracies, 
K(G:), for all group images G* possible in the two-mode vibra- 
tional problem 

G* G K(G:) G* Gt K(G*,) 

C, G 1 Dtl G 2n 
G C, 2 C2 n 

C2 1 C” 2 

C” C, n DCC C, 00 
C” 1 G 00 

J% G 4 cc0 2 
G 2 
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Table 6 

Possible bifurcations in the two-mode vibrational problem. Here: 

M - maximum, m - minimum, s - saddle point. In parentheses, 
the local group of the stationary point is given. All stationary 

points without parentheses have C, as the local group 

G; 

C, 

Bifurcation 

M+s.=O 

m+soO 

Cz M(C>)=s(CZ)+ZM 
m(Cz)=s(C2)+2m 

s(C,)=M(C,)+Zs 

s(CZ)om(Cz)+2s 

C, m(C3)+3sGM(C,)+3s 

C, m(C4)+4soM(C,)+4s 

M(C,)=m(C,)+4M+4s 
m(C,)sM(C,)+4m+4s 

C,, M(C,,)sm(C,)+nM+ns 

n>5 m(C,,)oM(C,,)+nm+ns 

C,,“’ M(C,)sm(C,)+aM+oos 

m(C,)sM(C,)+oom+cos 

‘) Index cc before the symbol of the SP signifies that this SP is 

not an isolated one. 

cussion of this subject see refs. [ 1 l-131 where the 
complete analysis of the equivariant bifurcations for 
one-parameter family of the Hamiltonians in two-di- 
mensional phase space is realized. 

What kind of conclusions can we draw about the 
structure of the VPs using the formalism of this sec- 
tion? Suppose, e.g., that a local bifurcation 

m(C) 0 s(C2)+2m (10) 

occurs in our system for L= L*. In this case, for 
L < L*, the VPs have a bounded from below regular 
sequence of levels with a K(C)-fold (quasi) degen- 
eracy. For L > L* this sequence gradually disappears 
and, instead, there appears a new regular sequence of 
levels (also bounded from below) with K(C,)-fold 
(quasi)degeneracy. From table 5 it follows that for 
all groups G* K( C,) =2K(Cz). Thus, this bifurca- 
tion doubles the number of different equivalent ways 
of localization of the vibrations in the phase space. 

8. Conclusions 

We have studied here the structure and rearrange- 
ments with excitation of the two-mode vibrational 

polyads. A simple approach based on the construc- 
tion and analysis of the classical Hamilton function 
corresponding to the effective Hamiltonian for VPs 
is proposed for this purpose. This approach permits 
the unified description of the usual NMs and LMs: 
both of them can be rationalized as examples of the 
localized vibrational states. From the classical view- 
point these localized vibrational states are related to 
the trajectories in the phase space which are localized 
near isolated stationary points of the corresponding 
Hamilton function. New types of localized vibra- 
tional states different from NMs and LMs are pre- 
dicted in the two-dimensional vibrational problem. 

Within our approach the rearrangements ofthe VPs 
with excitation are attributed to certain bifurcations 
in the corresponding classical problem. The possible 
types of rearrangements are determined by the sym- 
metry properties of the problem in question, that is 
by the molecular symmetry group and by symmetry 
properties of the vibrational operators, rather than by 
the concrete form of the model Hamiltonian. The in- 
fluence of the symmetry on the rearrangements of the 
VPs is studied and all different types of bifurcations 
possible in the two-mode vibrational problem are 
found. 
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