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The concepts of group images and integrity bases are used together to obtain the most general forms of the effective Hamilton- 
ians for vibrational polyads, H,, arising in the two- and three-dimensional vibrational problems. All the possible images for all 
point groups are found for these two cases. The generating function method is generalized to include the so called diagonality 
condition satisfied by Hen, and is applied to facilitate the search of the integrity bases needed to construct the most general form 
of H,, The generating functions and the corresponding integrity bases are found for all two-dimensional and some three-dimen- 
sional vibrational problems. 

1. Introduction 

Excited vibrational states of small polyatomic mol- 
ecules have been studied intensively during the last 
years both by experimentalists and by theoreticians. 
The interest to this problem is due to the practical 
applications (separation of isotopes by laser multi- 
photon dissociation, chemical analysis of molecules 
in the laboratory and in space, etc.) and to the fun- 
damental investigations of the qualitative features of 
the energy level systems in molecules (transition to 
quantum chaos, critical behaviour of isolated finite- 
particle systems, etc. ) . 

One of the characteristic features of polyatomic 
molecules is that they very often possess a group of 
(quasi)degenerate vibrational modes. In this paper 
we shall treat the case when the fundamental fre- 
quencies of such (quasi)degenerate modes consid- 
erably differ from those of the other vibrational 
modes, and when the effects due to Fermi resonances 
between (quasi)degenerate modes in question and 
the other molecular vibrations are negligible. The vi- 
brational spectra of molecules satisfying these two 
conditions contain well separated groups of 
(quasi)degenerate levels, called vibrational polyads 
( VPs), corresponding to different excitations of the 
studied modes. 

There are many well known examples of molecular 

systems exhibiting such VPs (refs. [ l-9 1, and refer- 
ences therein). Two stretching modes of the H,O 
molecule have close frequencies; they may be consid- 
ered together and independently from the bending 
mode. In spite of the near 1: 2 Fermi resonance be- 
tween bending and stretching frequencies the Hz0 
molecule serves as a most typical example to study 
the VPs formed by two quasidegenerate vibrations 
and to demonstrate the applicability of the local mode 
model. Molecules with several equivalent valence 
bonds (NH3, CH4, SF6, C6H6, etc.) possess more 
complicated VPs formed by three, four, six, etc. 
(quasi)degenerate vibrations. The VPs also can be 
formed by a single degenerate vibration ( v3 of NHJ, 
v4 of CH4, v3 of SF6, etc. ) splitted by an anharmonic 
interaction. One of the most interesting examples is 
surely the v3(FLu) overtones of SF,-type molecules 
responsible for the multiphoton exictation processes 

14,101. 
Various theoretical approaches have been used to 

study the VPs [ l-81. In all of them the VPs are de- 
scribed with the help of an effective Hamiltonian, Kff, 
acting only within one VP. Usually, to construct H,, 
one introduces some smallness parameter and then 
uses a particular perturbative treatment. Such a pro- 
cedure leads to Hew in the form of a series expansion 
in the smallness parameter truncated at some fixed 
order. 
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The alternative approach to the construction of ZZ,, 
is based on the use of the integrity bases (IBs) (refs. 
[ 1 1 - 19 1, and references therein ) . The IBs are widely 
used in nuclear, particle, and solid state physics. This 
approach is especially suited to the study of nonlin- 
ear effects and to the application of nonperturbative 
methods of analysis. We present here the application 
of the IBs to the construction of ZZ,, 

Section 2 is devoted to the description of the gen- 
eral scheme. The group theoretical aspects are dis- 
cussed in section 3, where the important notion of 
the image of the group in a given representation 
[ 17,20-221 is explained and all images possible in 
any vibrational problem with two and three degrees 
of freedom are given. Several different approaches to 
the construction of the complete list of linearly inde- 
pendent operators of a given power are discussed in 
section 4. Using some simple examples, we introduce 
in this section the powerful technique of the generat- 
ing functions [ 11,14,15,19,21,23-321, which has 
been known in mathematical invariant theory for 
about a century but is not yet widely accepted by mo- 
lecular physicists. In section 5 we give the generating 
functions needed to construct Hen for VPs arising in 
the vibrational problems with two and three degrees 
of freedom for almost all point groups. The impor- 
tant new contribution here is the generalization of the 
notion of the generating function in order to take into 
account the additional conditions imposed on Heff. 

Section 6 presents the IBs for all problems with two 
degrees of freedom and for three-dimensional vibra- 
tional problems in the case of three nondegenerate 
vibrations of any symmetry and three-fold degener- 
ate ones for 0 and Td symmetry groups. 

2. General principles of the construction of He, 

We suppose that the molecule in question pos- 
sesses II (quasi)degenerate vibrations, whose differ- 
ent excitations form VPs weakly coupled to other 
vibrational states of the molecule. To study the dis- 
tribution of the energy levels within a VP, we shall 
construct the most general power expansion for He, 

Let a,, . . . . a,, and a :, . . . . a,’ be the usual annihila- 
tion and creation operators for the corresponding vi- 
brational degrees of freedom. Her has nonzero matrix 
elements between vibrational states belonging to the 

same VP only. Thus, the most general power expan- 
sion for Heff has the form 

Z&K= 1 Ck ,_._ knrn ,... m,(a;f)k’...(a,+)kn 

xa;^‘...aF. (1) 

Only terms with the same total power of creation and 
annnihilation operators are included in eq. ( 1 ), 

C t$= 1 mj. 
(2) 

Further we shall refer to condition (2) as to a diago- 
nality condition. 

In many cases the molecular system possesses a 
symmetry group G and the 2n vibrational operators 
may be characterized by a representation I of this 
group. Symmetry requirements put additional re- 
strictions on the effective Hamiltonian terms. The 
terms which are invariant with respect to the sym- 
metry group G are the only ones admissible in the 
expansion ( 1). 

The phenomenological approach to the construc- 
tin of He, consists in taking into account all the terms 
satisfying the diagonality condition (2), the symme- 
try requirements, and the condition of Hermiticity. 

Usually, He, is built by a step-by-step construction 
of the needed power expansion. This procedure 
quickly becomes very cumbersome as the power in- 
creases. Here we shall use a more general scheme 
based on the use of the IBs. According to general 
statements of the invariant theory [ 15,16,23-271 
slightly modified for our purposes, given the group 
G, one may always find a set of K+ L homogeneous 
invariant polynomial operators I,, . . . . ZK, ZK+l, . . . . 
ZK+L, having the following properties. The first Kin- 

variants, named the denominator ones, are algebrai- 
cally independent. The other L invariants, named the 
auxiliary or numerator ones, are algebraically depen- 
dent on the first K invariants and are chosen in such 
a way that the most general operator, He, invariant 
under the operations of the group G can be written in 
the form 

Z.&R= C C,,._,,{Zi’ . ..Z.;t‘? 
m, . . . ..lnK 

+ 5 C Ci,,...,,{Z,+jZ~‘...zKmK}, (3) 
j=l m~...m,q 

where { . ..} denotes symmetrization with respect to a 
noncommuting invariant operator. It should be 
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stressed here that the auxiliary invariants enter the method and its applications to physical problems 

expression (3) only in a linear fashion. The set of (refs. [ 1 l-19,23-33], and references therein). We 

K+L invariants satisfying the above conditions is therefore restrict here ourselves with the bibliog- 

called the integrity basis. raphy only. 

The general structure of the IB (the number of the 
numerator and denominator invariants and their 
powers with respect to the elementary vibrational op- 
erators) can be deduced from the so called generat- 
ing function (GF) for invariants. The GF, g(A), 
frequently called the Molien function [ 231, is de- 
fined as a function possessing the following impor- 

tant property: the coefficient cQ in the power 
expansion of this function, 

3. Symmetry classification 

To proceed further, we have to remember an im- 
portant group theoretical concept, introduced by 
Michel [ 17,18,20,21] - the concept of the group 
image. 

is equal to the number of linearly independent invar- 
iant operators having the power Q with respect to the 
elementary vibrational operators. 

The GF can always be written in the canonical form 

1 +A”+ +I= 
g(n) = ( 1 _A”‘)...(1 -A-) . (5) 

The canonical form of the GF admits a very useful 
algebraic interpretation. Each denominator term, 
( 1 --A”), corresponds to one of the algebraically in- 
dependent invariant operators of degree oj with re- 
spect to an elementary vibrational operator. Each 
numerator term, A”, corresponds to an auxiliary in- 
variant of the power rs. 

From the group theoretical viewpoint, the initial 
information for the problem considered is the molec- 
ular symmetry group G and a set of irreducible rep- 
resentations T,@...OT,=T corresponding to the 
elementary annihilation operators which can always 
be chosen to be irreducible tensors with respect to the 
group G. Nevertheless, it is the group image, G*, in 
the representation IQI* rather than the group G it- 
self that determines the symmetry properties of the 
H,, The representation I@,T* arises from the fact 
that, for the problem considered, H,, has to satisfy 
the diagonality condition ( 2 ) . 

Some care must be taken when applying such inter- 
pretation, because the canonical form of the GF is 
not determined in a unique way. For example, we can 
multiply (or divide, when it is possible) both the de- 
nominator and numerator of the canonical form ( 5 ) 
by the term ( 1 +P) and thus obtain another canon- 
ical form for the same GF. In other words, there al- 
ways exists a canonical form of the GF for which the 
above interpretation is correct, but sometimes it is 
not clear which of the different canonical forms pos- 
sesses this property. The only way to verify the proper 
choice of the canonical form is to build the corre- 
sponding IB. It should be noted that the canonical 
form obtained by multiplying from the one which 
gives the correct IB also leads to the IB which is, how- 
ever, not the minimal one. 

Introduction of the group images significantly re- 
duces the number of different symmetry cases to 
study. Table 1 shows all different images, G*, which 
arise in the two-dimensional vibrational problem. 
This problem is more easily treated when one uses 
the special bilinear combinations of the vibrational 
operators J, J, (cr =x, y, z), or J, Js, J+, given by 

J, =(J_)+=a:a,, J3 = (a:& -a:u,)/2, 

J= (ata, +u:u,)/2, J,= (J, +J_)/2, 

J,=(J+ -J_)/2i, Jz=J3. (6) 

This is the well known Schwinger representation for 
.the angular momentum operators [ 341. Since J is al- 
ways a totally symmetric operator with respect to the 
symmetry group G, we list in table 1 the symmetry of 
the operators, J,, only. 

There are many mathematical books and reviews 
on the invariant theory, and especially on the GF 

Table 2 gives the possible images, G*, for the three- 
dimensional vibrational problem. 

The image depends on the group G considered as 
an abstract group rather than on its realization as a 
transformation group. Thus, in tables 1 and 2 we have 
listed different abstract groups only. Different reali- 
zations of the abstract groups as transformation 
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Table 1 
Group images for the two-dimensional vibrational problem. Here: LCD is the largest common divisor; all the representations designated 
byrareone-dimensional; q=min(2m, n-2m); k=LCD(n, 2m); j=LCD(n, q); cx=u, g 

Molecular Symmetry of Symmetry of J, Image G* as 
group G a,, a, in G operators in G an abstract group 

any finite I-@l- 34 Cl 
r real 

any finite rw, A,@2I-z CZ 
r, r, real, rfr, r,=mr, 

C" r,m-z ro6rdw:,, C n/k 
na3 Oim<n/Z 

CSG r,,,oGa r,,cer,,,orr,, C n/k 
n=2p,p>2 O<m<n/2 

D” L &@E, D n/J 
n83 m#n/4 

JA@G E moL AGE, D NJ 
n=2p,p>2 mfnl4 

D4D ED Az@B,@Bz D, 
Pbl 
D&G E pa A&+B,,@B,, D* 
pa1 
T E AQE C, 
T@Cz E, A@, C3 
0 E A,@E D3 
00x2 EL? A&E, D3 

groups of the three-dimensional Euclidean space are 
given in table 3 [ 35 1. It should be noted that in many 
cases studied here the representations of the bilinear 
operators {a: aj} in the image are uniquely defined 
by the image itself. So, we shall frequently speak about 
different images, paying no attention to the represen- 
tation of the bilinear operators unless it is needed 
specially. 

4. Construction of the complete set of polynomial 
invariant operators 

Here we shall describe two possible ways of con- 
structing of the complete set of independent invar- 
iant operators satisfying the diagonality condition 
from elementary creation and annihilation operators. 

(A) We may first build the IBs for invariants and 
all types of covariants using only annihilation opera- 
tors, a’, transforming according to the corresponding 
irreducible or reducible representation r of the group 
G. Without any loss of generality, we may always 
choose r to be real. Given the IBs, we can easily con- 
struct all independent invariants and covariants of the 

power Q with respect to the annihilation operators. 
We shall denote the set of the independent operators 

having the power Q and symmetry type I-, by 
RIJF )...) “UflP,@, . Now, all independent invariant 
operators having power Sz with respect both to anni- 
hilation and creation operators and thus satisfying the 
diagonality condition are given by 

k, j= 1, . . . . m,(B). (7) 

The total number of the independent invariant op- 
erators of power 28 is equal to C, [m, (52) ] *. 

(B ) The second possible way is based on the use of 
the bilinear combinations [ (ak+ )ra@u~] I- as the ini- 
tial ones [ 361. In this case, one should take into ac- 
count the existence of the algebraic dependences 
among these operators. These dependences are known 
for the general case of n vibrational degrees of free- 
dom [ 37 1. They are rather complicated for n z 3. The 
situation is greatly simplified for two vibrations. In 
this case, we can use the pseudomomentum opera- 
tors (6) as the initial bilinear combinations. It is clear 
that here there are only three algebraically indepen- 
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Table 2 
Group images for the three-dimensional vibrational problem. Here: LCD is the largest common divisor; all the representations desig- 
nated by rare one-dimensional; q=min(2m, n-2m); I=LCD(n, m); k=LCD(n, m, 4); j=LCD(n, &p-m); QI, P=u, g; a#/$ i= 1, 

Molecular Symmetry of ak Symmetry of bilinear Image G* as 
group G operators in G combinations a,’ a, in G an abstract group 

any finite 

any finite 

any finite 

T 
T@Cz 
0 
O@C, 
I 
IBC2 
T 
T@Cz 
T@Cz 
0 
O@Cz 
o@x, 
Cl 
na3 
C”@C2 
n=2p,pg2 

C”@CZ 

n=2p,pg2 

G 
n=2p,p82 

cJx* 
n=2p,p,2 

C,@G 
n=2p,pb2 

Ql 
n>3 

D2p 
pa2 

D, 
pa1 

QSG 
n=2p,p,2 

D,,@C, 

Pbl 

3r 
r real 
2r,Qr, 
I-,, rz real, rlfr2 
r,Qr2Qr, 

r,, r2, r, real, 
rlfr2fr,fr, 
F 

F, 
F, 
F ,a 
F, 
F 
AGE 

AoQE, 
Acz0E, 
A,QE 

A,aQE, 
AmQE, 
r,Qr,,QR 
O<m<nl2 

r,wn,ec, 
Q<m<n/2 

rtiw,,w-kfl 
O<m<n/2 

wuw:, 
Qxminl2 

r,w.,GRa 
O<m<n/2 

r,w-,,,Br:fl 
O<m<n/2 

A;@&, 
mfnl4 

J%@L 
m+p/2 
TQE, 
1-=A,,B, 

A!,OE,", 
mfnf4 
AmQEm, 
mfnl4 

B,,@L-, 
m#nl4 

JL@L, 
m+n/4 

T,@E, 
r=A,,B, 

r,0E,, 
r=A,,B, 

9A 

5A64rj 
r,=r,m-, 
3AQ2r4Q2r5Q2r6 
r,=r,cm,,r,=r,m-,, 
r6=r2m3 
AQEQ2F 
A,QE,QZF, 
A,QEQF,QF2 

A,,QE,QFI,QF~, 
AOF,BH 

A,QF,,QH, 
3A03E 
3A,Q3E, 
3A,Q2E,QE, 
2A,0A2Q3E 
2A,,QA2,Q3E8 
2A,,QAz,QE,02E, 
3r002r,Q2rwQr,,Qrt, 

2A,QA2Q2E,QB,QB2 

D2 

T 
T 
0 
0 
I 
I 

G 
G 
C,@G(C,) 
D3 
Dj 
D&'G(D6) 
C n/l 

C nil 

C,,@C2, n/l even, 
C 2nllr nil odd 
C n/1 

C n/J 

C,J3G, nli even, 
C 2nl,. nl_i odd 
D n/k 

D 2PlJ 

D, 

D,,&XZ, nlkeven, 

Dznlli, nlk odd 
D n/J 

%,@C2, nlj even, 
D 2nl,, nljodd 
D4 



Table 3 

Relation between abstract groups and transformation groups of 

the three-dimensional Euclidean space [ 35 ] 

Abstract group 

Cll 

C”@CZ 

D, 

DBCz 
u, 
U@CZ 

04 
o,@C, 

u5 
uscxz 

Point group 

C,, Sn12, CnlZh (n/2 odd) 
C,, (n even) 

D,, C,,, Dn/2d, Dn,*h (n/2 odd) 
D,, (n even) 
T 

Ttl 

Td, 0 

Oh 
I 

L 

tensors adopted to the group chain 
SU( 3) 3 SO (3) 2 0. We use the standard notation 
for the irreducible tensors VQCKmr), where $2 is the 
power of the tensor with respect to the elementary 
tensors ak and a$ ; K is its rank, i.e. the irreducible 
representation of the SO (3 ) group; r is the irreduci- 
ble representation of the 0 group, and m is the inter- 
nal multiplicity index. Table 5 gives the IBs for 
invariants and all types of covariants built from the 
creation (or annihilation) operators. We can use them 
now to construct the complete set of independent op- 
erators of any degree satisfying the diagonality con- 
dition. For example we list below the operators of the 
three lowest degrees. 

dent operators, J,, the operator J being algebraically 
dependent on them 

Bilinear operators: 

J’=J;+J;+J;. (8) Biquadratic operators: 

The relation (8), named syzygy in the invariant 
theory, enables one to write the general invariant op- 
erator in this case in the form 

f’o(J,)+JP, (Ja), (9) 

where PO and P, are general polynomials in algebrai- 
cally independent operators J,. 

[[V 2(0,A1)] + [ ~,W,AI)]]AI, 

[[V 
W,E)] + [ vW,E)] ]A[, 

[ [ vW,Fz)] + [ vW.W] ]A’_ 

Bicubic operators: 

Let us now consider some examples of the two pro- 
cedures mentioned above. 

(A) To illustrate the first of them we shall con- 
struct the set of independent operators invariant with 
respect to the point group 0 and satisfying the diag- 
onality condition starting from the vibrational oper- 
ators uF2. The needed GFs, g(Tfi Ti; A), are given in 
table 4. The meaning of these functions is analogous 
to that of the GF for invariants: the coefficient before 
AR in the series expansion of the function g(Tf, I-i; 1) 
shows how many linearly independent covariants of 
power Q and symmetry type r,can be constructed 
from the operators transforming according to the ir- 
reducible representation Ti of the group G. We shall 
choose basic invariants and covariants as irreducible 

[[V 3(3,A!)] +[~,-~(%AI)]]AI, 

[IV 
3(3,F1)] +[ v3(3sFO]]A1, 

[[V 
3(3,F?)] + [ v3(3.W] ]AI, 

[iv 
3(3.F2)] + [ v3(1,W]]A1, 

[[V 
3(I.F?)] + [ v3(3,Fz)]]A1, 

[[V 
3(l,Fz)] +[v3(1xW]]A1. 

(B ) To illustrate our second procedure we shall 
consider the two-dimensional vibrational problem. As 
we have mentioned earlier in this case, one may omit 
the J invariant and construct the IB for the three-di- 
mensional initial representation formed by operators 
J,. The complete solution of this problem may be 
achieved by the traditional formulae of the invariant 

Table 4 

Generatingfunctionsg(T, T,=F,;1) forgroupO(T,). Here: Z=( I-,?*)( l-L3)( l-1“) 
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rr A, A2 E F, F2 

g l/Z 16/Z (12+14)/z (2’+14+15)/2 (A+Ix+13)lz 
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Table 5 
Integrity bases for invariants and covariants constructed from the 

irreducible tensors of the Fz symmetry type for the group 0 ( Td) 

A, A2 E F, F> 

tion in two auxiliary variables J and 
expanded in a power series of the form 

&A,, TOT*; 2, PI = $, h~nz~~~~~*. 

theory. The GFs and IBs thus obtained are listed in 
table 6. 

5. Generating functions satisfying the diagonal@ 
condition 

Here we shall generalize the GF method to obtain 

the GFs for a number of linearly independent invar- 
iant and covariant operators of a given degree and 
satisfying the diagonality condition [ 33 1. 

Denote the representation spanned by all annihi- 
lation operators by r. Then the representation 
spanned by the creation operators is I-*. In physically 
reasonable problems usually T=P. Following the 
standard recipes of invariant theory the GF for in- 
variants constructed both from the creation and an- 
nihilation operators can be calculated as 

= g dx, r; 1) g(x, r*; PI. (10) 

Here, the sum is carried over all irreducible represen- 
tations of X of G. The GF ( 10) is the rational func- 

~1. It can be 

(11) 

To take into account the diagonality condition one 
has to extract from the expansion ( 11) all terms with 

Q, =Q;22, 

gdi=(A, , mr*; np) = ; bnn(~jp. (12) 

We see that the GF for invariants satisfying the di- 

agonality condition, diagonal GF, depends only on 
one auxiliary variable, I,u. To stress this fact and to 
simplify the forthcoming formulae we shall use for 
this variable a special designation: np=t. The GF 
( 12 ) may be transformed into a rational function of 
canonical form admitting the usual algebraic inter- 
pretation. As was already explained in section 2, care 
should be taken in using such interpretation for con- 
structing the IB. We give below the GFs for several 
typical vibrational problems. 

5.1. Totally symmetric vibrational operators 

The image, G*, of any group in its totally symmet- 
ric representation is C,. The same image arises for 
the symmetry group of Hefl in the case of n degrees of 
freedom transforming according to the same irredu- 
cible one-dimensional real representation. 

In this case there exists only a GF for invariants 
which, for creation or annihilation operators, has the 
form 

g(A,nA;I)=(l-A)-“. (13) 

Table 6 
Generating functions and basic invariants for the two-dimensional vibrational problem. Operators, J, (cy=x, y, z). are taken as the 

initial ones. Here: LCD is the largest common divisor; Z,= l/ ( 1 - 1 k); { } is symmetrizer; (Y # B# y 

G* Symmetry of 

J, operators 
Generating 

function 
Basic invariants 

denominator numerator 

Cl 
C, 

DZ 
Ck 
kg3 

Dk 
k,3 

3A 

A@2B 

B,@Bz@B3 

1-@I-,e3K 
LCD(m,k)=l 

A,@& 
LCD(m,k)=l 

Z: J,, JD, J, 
(l+t*)z,z: J:, Jn> J2 ;J&i 
(l+P)Z: J:, J;, J2 { JwJA 
(l+t*+...+t2*-2)ZjZ: J,, J: +Jk, J2 J4 . J=‘-= 9 , 1 

i(J: -J?) 
(1 +t*+‘)z:z, J’, J:, i{J,(J$ -Jk )} 

J: +Jk 
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The GF for invariants constructed from both cre- 
ation and annihilation operators without taking into 
account the diagonality condition is given by 

g(A,nA@nA;L,p)=[(l-A)(l-p)]-“. (14) 

Transformation of ( 14) into the diagonal form 
gives the following result 

gdiag(A, nA@nA; 0 

1 
k=i-’ (&--;;Q2r*. (15) 

= (l-<)‘“-’ k=O 

Particular realizations of ( 15 ) for low n values are 

gdlag(A, 2A82A; <) = (l+{)/( 1 -r)3, (16a) 

gdiag(A,3A03A;<)=(1+4<+<2)/(1-r)5, (16b) 

gd=*(A, 4A@4A; <) 

5.3. GFs for three-dimensional vibrational problem 

5.2. Two-dimensional vibrational problem 

The direct application of the procedure described 
at the beginning of this section enables us to calculate 
the diagonal GFs and for three-dimensional vibra- 
tional problems. In tables 8, 9, and 10 we give some 
diagonal GFs for invariants and covariants. The 
method of obtaining the diagonal GFs for covariants 
is the same as that for the invariants. 

The procedure similar to that presented above may 
be easily realized for any two-dimensional vibra- 
tional problem. All diagonal GFs possible in this case 
and the corresponding IBs are listed in table 7. We 
note that the GFs thus obtained may be easily de- 
duced from the corresponding CFs given in table 6 
by multiplying them by ( 1 + 0. This is due to the fact, 
mentioned already in section 4, that any invariant 
operator satisfying the diagonality condition in the 
two-mode case may always be written in the form (9). 
The multiplication by the ( 1 + 0 factor corresponds 
to the introduction of new numerator invariants, J 

The diagonal GFs for invariants and covariants 
satisfy the relation 

$ txlsdi”“(K mT; 0 

=gdiag(A, [I-IA@ [I-IA; <), (17) 

where [X] is the dimension of the irreducible repre- 
sentation X and the sum is carried over all irreduci- 
ble representations of the image, G*. Formula ( 17) 
is the generalization of the known expression 

F [X]g(X,r;I)=@-ljL)--n (18) 

Table 7 
Generating functions and basic invariants for the twodimensional vibrational problem. The a,, a*, a:, az’ operators are taken as the 
initial ones. The diagonality condition is assumed. Here: LCD is the largest common divisor; <=Q; Zk= I/ ( 1 - lk); { } is symmetrizer 

and JZ,,, (m=K+l, . . . . K+ L), where invariants, Z,,,, 
are the old numerator invariants, in addition to those 
listed in table 6. It should be stressed that the GFs 
thus obtained may not have the simplest possible 
form. It is clear that if an IB listed in table 6 includes 
J2 as a denominator invariant, then one may simply 
use Jas a denominator invariant instead of introduc- 
ing the additional numerator invariants. The equiv- 
alent statement is that one may divide in this case 
both the numerator and denominator of the GF by 

(1-C). 

G* Symmetry of 
&a, 

Generating 
function 

Basic invariants 

denominator numerator 

Cl 
G 
D2 
Ck 
ka3 

Dk 
k>3 

4A 
2A632B 
A@B,@B+J3B, 
2rOer,nBITm 
LCD(m, k)= 1 
A,@A,@E, 
LCD(m,k)=l 

(l+t;)Z: Jcx> JP> J, J 

(1 +P)z:z, J:,J,,J {J&) 
(1+5’)Z,z: J:, J;, J { JJA 
(1+5+...+p’)z,z: J,, J”+ + J! , J 5’ . . J2k-’ > > 9 

i(J: -J? ) 
(1 +p+‘)z,z,z, J, J:, i{J=(J: - J’L )) 

J: +Jk 
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Table 8 
Generating functions for invariants and covariants of the rrtype 
for the problem with three nondegenerate vibrations under di- 
agonality condition. Here: c=@; i= 1,2, 3; Z= (1 -c)3( I-(‘)* 

G* 

C, 
C2 

D2 

rr 
A 
A 
B 
A 

B, 

Generating function 

(l+4t;+t;2)l(1-W 
(1 +2<+6c2+2t3+r4)/Z 
(4T+4T*+4(3)/z 
(1 +4c2+<“)/z 
(2<+2r2+25’)/z 

for the GFs without any additional requirements. 
We note also that the number of numerator covari- 

ants of the type I is equal to the number of the nu- 
merator invariants (including 1) multiplied by [r ] . 

6. Integrity bases 

The GFs listed in tables 8, 9, and 10 simplify the 
search of the corresponding IBs. Nevertheless, this 
problem remains individual for the most part of the 
images, especially if one wants to find the minimal 
number of basic invariants. We give in this section 
the IBs for vibrational problems with three nondege- 
nerate vibrations (images Cl, Cz, D2) and for those 

whose image is 0 group (triply degenerate vibrations 
of 0, T,+, and Oh groups). The results are presented 
in tables 11 and 12. We do not know a systematic 
procedure for deriving the IBs. Moreover, the IB may 
be presented in a variety of forms [ 13 1. The correct- 
ness of the IBs listed in tables 11 and 12 was verified 
by checking whether they really give all the linearly 
independent terms of a given degree, or not. The 
check was based on a straightforward calculation of 
the rank of the matrix transforming the operators of 
a given degree obtained by the IB method into that 
obtained by the method (A) described in section 4. 

7. Conclusions 

We have studied the general structure of the effec- 
tive Hamiltonians for vibrational polyads. The use of 
the group image concept enables us to reduce consid- 
erably the number of different cases to study. The in- 
variant theory (in particular the generating function 
method) has been used to find the general algebraic 
structure of the IBs for the problems considered. The 
explicit construction of the IBs for several important 
cases has been given. The results obtained permit us 
in fact to make the first step in the general study of 
qualitative features of the dynamics of molecular vi- 

Table 9 
Generating functions for invariants and covariants of the Tr type for the problem with triply degenerate vibrations under diagonality 
condition. Here: T=Ar; i, j= 1, 2; i#j. In parentheses under the group symbol, the irreducible representation for annihilation operators 
is given 

G* 

T 

(F) 

0 

(F,) 

I 

(F,) 

r f 
A 

E, 
F 

AI 
AZ 
E 

F, 
F2 

A 
F, 
F, 
G 
H 
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Table 10 
Generating functions for invariants for a three-dimensional vibrational problem (one nondegenerate and one doubly degenerate vibra- 
tion) under the diagonality condition. Here: &&UC; Z= (1 -@*( 1 -T2)*( 1 -r); r, is symmetry of the bilinear combinations a.7 a, in 
G* 

G* Generating function 

G 
n83, nodd 
C” 
n>4, neven 

D” 
n>3,nodd 
D” 
na4, neven 

brators including several degrees of freedom. Our re- 
cent work [ 38-431 has shown the existence of several 
types of qualitative effects in the dynamical behav- 
iour of finite particle systems. In fact, the systems 
studied were reduced to the case of a phase space 
spanned by two variables. Generalization to prob- 

lems with more variables requires a suitable general 
form of the effective Hamiltonian. This is just the 
problem solved here for the vibrational polyads with 
several degrees of freedom. 

Table 11 

Integrity bases for three-dimensional vibrational problem with three nondegenerate vibrations. Variables I, (pi) correspond to the an- 
nihilation (creation) vibrational operators 

G” Basic invariants 

denominator numerator 

C2 
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Table 12 

Integrity basis for Fz vibrations of O(T,) symmetry group under 

diagonality condition. The invariants listed here correspond to 

the generating functions in table 9 

Denominator invariants Numerator invariants 
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