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Abstract 

Crude estimations of the densities of states of different symmetry types are made on the basis of the ratio of fundamental 
frequencies. The theoretical calculation is based on the generating function approach developed recently for this kind of 
problem. The behavior of the regular and oscillatory parts of the density of states in the limit of high vibrational excitations 
is compared with the simplest estimate based on the proportionality between density of states of a given symmetry type and 
the dimension of corresponding irreducible representations. SF 6 and UF 6 molecules are studied as examples. 

1. Introduct ion  

The density of vibrational states is a characteristic 
important for the description of chemical reactions 
and many intramolecular processes related to the 
energy redistribution [1-14]. For highly symmetric 
molecules the decomposition of the total density into 
partial densities of different symmetry species is 
needed for both concrete applications (due to various 
symmetry selection rules) and abstract theoretical 
analysis [15]. In particular, partial densities give 
important information about the fraction of the avail- 
able phase space associated with each symmetry type 
of the vibrational motion. 

Effective numerical algorithms were proposed 
long ago [8-13] for density-of-state calculations. Re- 
cently, considerable efforts were devoted to con- 
structing simple models allowing the reproduction of 
vibrational densities for the whole range of energies 
under (and even above) the dissociation limit [1-3]. 

Alternatively, an algebraic approach has been pro- 
posed [16] which enables one to find explicit analyti- 
cal formulae for partial numbers of states of a given 
symmetry type. This approach is based on the old 
group-combinatorial idea [17], the generating func- 
tion method, which has recently found various appli- 
cations in physics, in general, and in molecular 
physics, in particular [16,18-21]. 

This Letter presents an application of the generat- 
ing function approach developed recently by 
Sadovskii and Zhilinskii [16] to the estimation of the 
vibrational densities of states of AB 6 type octahedral 
molecules. Details of the method are given in Ref. 
[16]. Here we analyze the dependence of partial 
vibrational densities (for each symmetry species) on 
the ratio of fundamental frequencies and the decom- 
position of the total density into regular and oscilla- 
tory parts as described in Ref. [16]. Thus, we only 
discuss briefly the assumptions and algorithm and 
present the results of the direct theoretical model. 
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Straightforward generalization of our calculations to 
any molecule with symmetry group O h is possible 
without any modification in the group theoretical 
part of the present work. 

2. Assumpt ions  

We consider the vibrational structure of the ground 
electronic state, supposing that this electronic state 
can be regarded as isolated, and neglect the rota- 
tional structure. 

To predict the densities (differential or integral) of 
vibrational states it is necessary to use some model 
for the potential. The absolute values of the total 
vibrational density (counting all vibrational states 
irrespective of their symmetry) depends strongly on 
the anharmonicity and dissociation energy. At the 
same time it was found earlier by direct numerical 
calculations and formulated as a general conjecture 
by Quack [5-8] that the partial numbers (densities) 
of vibrational states of different symmetry types are 
proportional among themselves. The ratio of the 
numbers of states of any two symmetry types n r , / n r 2  
approaches in the limit of  high excitation the ratio of 
squares of dimensions of corresponding representa- 
tions [F I ]2/[F212. Nevertheless, for some molecules 
at reasonable energies this limit may not be achieved. 
In Ref. [16] an explicit algebraic formula was ob- 
tained for the partial number of states of a given 
symmetry type in the harmonic approximation. It 
was equally shown for the example of H~" that the 
convergence to the asymptotic limit for the integral 
number of states of given symmetry type can be 
rather slow. The anharmonicity correction, which 
strongly modifies the absolute densities of each sym- 
metry type, does not influence considerably the ratio 
of densities of states of  different symmetry types. 
This is why it is interesting to perform calculations 

of the relative densities of states of different symme- 
try types for a molecule with high symmetry even in 
the simplest harmonic approximation, i.e. neglecting 
the anharmonicity. In this way, the sensitivity of the 
partial numbers of states of different symmetry to the 
ratio of fundamental frequencies can be studied di- 
rectly. Molecules with high symmetry group are 
especially interesting because in this case the group 
itself has many different irreducible representations. 
At the same time only some of these irreducible 
representations are present as symmetry types of 
fundamental vibrations. Some symmetry species arise 
for the first time only at the second or third overtone, 
or a combination band. To demonstrate the behavior 
of the vibrational densities of states of a high sym- 
metry molecule we have chosen the AB 6 molecule 
with symmetry O h . The only initial molecular data 
for such a calculation are the symmetry types of the 
fundamental vibrations and the ratio of their funda- 
mental frequencies. We are not interested in the fine 
structure of the densities of states. Therefore, a crude 
rational approximation of the ratio of frequencies is 
sufficient for our purposes. 

3. AB 6 type molecules  

Among the octahedrai AB 6 type molecules rea- 
sonably well characterized by vibrational frequencies 
we have chosen the group of hexafluorides. For X F  6 

molecules with a heavy central atom there is an 
obvious tendency to show the splitting of fundamen- 
tal frequencies in two groups of "stretching" and 
"bending"  vibrations. This suggests simple models 
with degenerate stretching and bending frequencies. 
We remark that the ratio between the stretching and 
bending modes may vary from 2.5 to 3.5 depending 
on the molecule. This ratio is significantly higher 
than the ratio between stretching and bending vibra- 

Table 1 
Vibrational frequencies of XF 6 molecules (O h symmetry) 

Molecule v I v 2 v 3 v 4 v 5 v 6 ray 
A Ig Eg Flu F,u F2g F2u 

SF 6 770 640 940 614 522 344 620.7 
UF 6 666 535 626 189 200 144 347.5 



P. Sold6n, B.I. Zhilinskii / Chemical Physics Letters 258 (1996) 25-29 27 

0,5 

SF6 I 

SeF6 I 

TeF6 I 

wF6 II 

uF, Ill 
[AIF 6 ] 3- 

1 1.5 

II i, 
I 

l, 

Ill ,I 
I I 

Fig. 1. Distribution of normalized fundamental frequencies ~'i/vav 
for XF 6 molecules, ray is the average frequency def'med in 
Eq. (I). 

tions in light tetrahedral molecules which is normally 
accepted to be around 2 (this example was treated in 
Ref. [ 161). 

The AB 6 molecule which has O h equilibrium 
structure possesses six vibrational modes listed in 
Table 1 along with their symmetry labels and numer- 
ical values of frequencies for the SF 6 and UF 6 
molecules as examples. 

It is clear that the simultaneous scaling of all 
vibrational frequencies makes no effect on the partial 
densities while variation of the ratio of fundamental 
frequencies does. To compare the fundamental fre- 
quencies of different molecules from the point of 
view of the frequency ratio we normalize all fre- 
quencies by calculating the average fundamental fre- 
quency 

~av = [ Pi + 2 v 2  + 3 ( P 3  + ~'4 + P5 + v 6 ) ] / 1 5  ( 1 )  

and by setting it to 1. The resulting normalized 
frequencies vi/Vav for various X F  6 molecules are 

shown in Fig. 1. (Numerical values are taken from 
Ref. [22]). This figure is useful for choosing approxi- 
mate models of the ratio of fundamental frequencies 
listed in Table 2. 

We performed an analysis of three different mod- 
els. (i) The model with the ratio 7 : 6 : 9 : 6 : 5 : 3 
corresponding to the SF 6 molecule. (ii) The model 
with the ratio 7 : 7 : 7 : 2 : 2 : 2 appropriate for UF 6 and 
similar molecules. (iii) The theoretical model with 
the ratio 1 : 1 : 1 • 1 : 1 : 1 which does not really corre- 
spond to any particular molecule but is interesting as 
a reference model. When we compare the conver- 
gence of the density as a function of energy we use 
the average energy of fundamental states as the unit 
of energy. This average frequency is 88/15  = 6, 4, 
and 1 for models (i), (ii) and (iii) cited above. 

4. Algorithm 

Initial formulae for the density of state calculation 
(using the generating function approach) are given 
by generating functions for invariants and covariants 
constructed for every irreducible representation. (For 
the O h group all these functions can be found in 
Refs. [18-20].) 

The next step is the construction of multi-parame- 
ter generating functions counting all (symmetric) 
tensors of certain symmetry type constructed from 
the initial reducible representation span by vibra- 
tional symmetry coordinates. One parameter always 
corresponds to one vibrational mode [18-20]. 

Finally, taking into account the resonance condi- 
tions between different vibrational modes the six- 

Table 2 
Simple models for the ratio of the fundamental frequencies of XF 6 molecules (O h symmetry) 

[ v i ] [ v2 ] [ v 3 ] [ v4 ] [ v5 ] [ v6 ] The most relevant 
A lg Eg Flu Flu F2¢ F2u XF 6 molecules 

3 3 3 1 1 1 X = Re, Pt 
7 7 7 2 2 2 X =  U, Np, Pu 
5 5 5 2 2 2 X =Te ,  W 
3 2 3 2 2 2 X = AI 
5 5 6 3 3 2 X = Se 
7 6 9 6 5 3 X = S  
4 3 5 3 3 2 X = S  
7 6 8 5 4 3 X = S  
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parameter generating functions are transformed into 
one-parameter generating functions which give num- 
bers of  states of  different symmetry types formed by 
excitations of  any vibration [16]. 

Realization of  the analytical calculations for 
molecules with high symmetry group and large num- 
ber of  vibrational degrees of  freedom is done using 
Maple [23]. 

5. Results and discussion 

Let us start with the simplest model correspond- 
ing to the complete degeneracy of  all frequencies 
(1 : 1 : 1 : 1 : 1 : 1). For each representation F the regu- 
lar part of  the partial number to r of  the vibrational 
states of  type F is given by the asymptotic expansion 

1 1 45045 675675 
- - w  r = - -  + -Y- - -  + (2) 
[ F ]  2 4 8 -  ~ 32E  6 . . . .  

where [F]  means the dimension of  the representation 
F and the upper sign refers to F = A~g, A2g, Eg, 
Flu, F2u. We assume that E = 1 corresponds to the 
energy of  a fundamental excitation. Higher order 
terms in Eq. (2) differ for different F. 

A similar expression for the "UF6"  model 
( 7 : 7 : 7 : 2 : 2 : 2 )  is 

1 1 7 45045 
- - t o  r = - -  + - -  + (3) 
[ F ]  2 48 - 64 64E 2 . . . .  

Higher order terms are omitted from the expansion 
(3) because they now depend on the type of repre- 
sentation. 

Finally, for the "SF6"  model ( 7 : 6 : 9 : 6 : 5 : 3 )  
only the constant term of the asymptotic expansion is 
the same for all representations. Thus we give two 
different formulae, one for one- and two-dimensional 
representations: 

1 1 155 91216125 
(o r = - -  _ +  + (4) 

[ F ]  / 48 885 32E  5 "'" 

and another for triply degenerate representations: 

1 1 155 30405375 
(o r = - -  + - -  + (5) 

[I"] 2 48 885 3 2 E  5 . . . .  
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Fig. 2. Partial integral densities of vibrational states of different 
symmetry types for three harmonic models of the force field for 
the octahedral AB 6 molecule. The ratio of fimdamental frequen- 
cies ul : 1"2 : 1/3 : 1'4 : /15 : 1"6 is (A)  1 : 1 : 1 : 1 : 1 : 1; (B)  
7:7:7:2:2:2; (C) 7:6:9:6:5:3. The energy is given in units of 
average frequency for each model. 

Comparison of  the formula given above shows that 
the the regular part of  the partial densities goes to the 
asymptotic limit as at E -5. The coefficient at E -5 
becomes smaller with the increasing dispersion of  
fundamental frequencies. 

At the same time the oscillatory part becomes 
more pronounced for models with a resonance rela- 
tion expressed by higher natural numbers. This is 
clearly seen in Figs. 2a-2c ,  which show the com- 
plete density as a function of  normalized energy. 
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6. Conclusions References 

We have calculated partial numbers of vibrational 
states of different symmetry as a function of energy 
for the octahedral molecules XF 6. The main conclu- 
sion of this Letter is the fact that the regular part of 
the partial vibrational density of state converges 
rapidly to its asymptotic value defined completely by 
the dimensions of corresponding irreducible repre- 
sentations. The asymptotic values are almost achieved 
at energies of the order of (5-8)bray. 

The modification of the distribution of fundamen- 
tal frequencies influences mainly the oscillatory part 
of the density (which is important at low excitations) 
rather than the convergence properties of the regular 
part at high excitations. From the point of view of 
analytical calculations explicit formulae for the regu- 
lar part are rather simple and can be written explic- 
itly for any model ratio of fundamental frequencies. 
At the same time the description of the oscillatory 
part is much more complicated and its extrapolation 
to higher rational approximations is not straightfor- 
ward. This question should be analyzed in more 
detail on simpler examples. 
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