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Rolauonal energy levels of nearly spherical mo]ccules in 2n isolated v?branonal state are studied. It is shown that, in the Timit
of high rotational quantum number J, the rotational states may be interpreied as those of. a stable rotation around axes
properly oriented in the molecular frame. The orientation of the axes depends on J. Simple analytical solutions are given for
the prob]cm considered in the asymptotic and harmonic approxunanons. The results obtained possess a clear quahtauve :
interpretation of the phenomena ‘considered and, at the same time, agree quanutauvely with the results of numenml
diagonalization. The analogy between the effects of rearrangement of the rotational levels und..r the variation of J ‘and the

" critical phenomena in macroscopic systems is discussed. The intensities of rovibrational transitions between totally symmetric
vibrational states are calculated A new selection rule is introduced which is due 10 2 small overlap of the roational functions
_corresponding to the rotation around differently oriented axes. .

1. Introduction

Considerable progress recently made in. experi-
mental spectroscopic methods gives birth to very
detailed information concerning rovibrational en-
ergy levels and electromagnenc transitions be-
tween- them. The experimental rovibrational data
are usually treated in terms of an effective ham-
iltonian including many adjustable parameters. The

alternative approach is to give a reasonable quali- -

* tative interpretation by using simple models with a
small number of parameters. The cluster theory of
the rotational structure of molecular spectra is a
good example of such. an approach [1-5]. A quali-

tative explanation of the rotational level clustering .

was given by Dorney and Watson {1].“They treated

.states forming each cluster in the classical limit as

1 -To’ whom oorr&spondcncc shou]d bc addrwsed

those of a stable rotation around equivalent axes.’
In this approach different types of clusters corre-
spond to different sets of equivalent stable axes of
rotation.: The formulation of the corresponding
quantum problem and its solution for some im-
portant particular cases was given by Harter and
Patterson [2-4]. In ref. [4] the:useful concept of
the rotational energy surfaces for asymmetric and
spherical top molecules is introduced and graphi-
cally illustrated. One of the authors of the present
paper developed a general approach to the de-
scription of the rotational cluster structure for the
quantum problem using the meduclble tensor op-
erator techmque [S]. This approach permits us to
find .:and give a quantitative description for clus-

“ters mcludmg states with a nearly maximal pro_]ec- '
“tion | M| of the angular momentum on the stable
- axes of molecular rotation. :

-.Rotation—vibration mteracnons result in. the-
vanahon of the: effecnve merna tensor for a par-
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ticular rotational multiplet (a group of levels with
the same J) under vibrational and rotational exci-
tations. The modifications of the inertia tensor
may include: (i) the variation of the orientation of
the stationary axes with respect to the molecular
frame; (ii) appearance of some new axes or disap-
pearance of some of the existing ones; (iii) the
interchange of the stability of some staiionary

es. .

In the present work we study the influence of
the abovementioned effects on the rotational en-
ergy levels and rovibrational spectra of nearly
spherical tops *.

The shift of the stationary molecular rotation
axes with increasing J value generally causes regu-
lar modifications in the cluster structure of the
rotational multiplet. At a fixed critical value J, of
the rotational quantum number (and the corre-
sponding orientation of the stationary axis) an
abrupt rearrangement may occur in that part of
the rotational multiplet which corresponds to the
precession of the angular momentum vector J
around this particular axis. We name such a phe-
nomenon a transition by analogy to phase transi-
tions in macroscopic systems *=_ If the orientation
of the stable axis of rotation changes abruptly in
passing through the cntical point J;, the first
derivative of the rotational energy d E/dJ (i.e. the
rotation frequency) has a discontinuity at J,. Such
a transition in the rotational band of asymmetric
nuclei was studied by one of the authors in ref. |8].
This paper deals with transitions with a smooth
variation of the axis orientation. It will be shown
in section 3.3 that the first derivative dE/dJ is
continuous at J; for such transitions but the sec-
ond one, d2E/dJ>, has a jump discontinuity at

k-

Similar problems have been investigated earlier from a
somewhat different point of view. Axes shifting under varia-
ticn of the effective hamiltonian parameters reflecting the
vibrational excitation was studied in ref. [6]. In ref. [7] the
rotational structure of the electronic transition was studied
in the case of electronic states with different orientation of
the principal axes of the inertia tensor.

** Bifurcation is an analog of these phenomena in classical
mechanics. The whole family of classical trajectories of the
system in the phase space is qualitatively modifed in passing
through the bifurcation point (see section 3.3).

Jo- The molecular symmetry is very important for
these transitions. The notion of the local symmetry
group for a given molecular axis being introduced,
the transitions considered correspond to a broken

- local symmetry of the rotation axis-(for example,

C, or C,). Therefore, the number of stable rotation
axes at J, increases, for example thce (see sec-
tion 3.3).

The shift of the stable rotation axes results ina
considerable variation of the intensities of the
rovibrational transitions at high J. A new ap-
proximate selection rule arises (for J > 1) which is
due to a small overlap of the rotational wavefunc-
tions corresponding to the stztes with a definite
nearly maximal projection of the angular momen-
tum on differently oriented axes of stable rotation
(see section 3.4).

The methods used earlier for the description of
the cluster structure [2—5] were based on rather a
simple diagonal approximation for the rotational
hamiltonian afier the appropriate choice of the
quantization axis for the angular momentum. The
boson expansion method [9] is more suitable for
studying the critical phenomena in an isolated
molecule under rotational excitation. This method
is based on the Holstein—Primakoff represcntation
[10} for the angular momentum operators. This
representation is widely used in the theory of the
collective motion of atomic nuclei. The harmonic
boson approximation is applicable to the descrip-
tion of small oscillations near the equilibrium for a
given dynamic system. For the problem considered
the harmonic approximation is valid for the pre-
cession of the angular momentum J around the
stable rotation axis. Therefore, the -boson ap-
proximation enables one to find the stable axes
and the critical transition point J,. Moreover, the
harmonic approximation yields rather an accurate
description of the rovibrational transition prob-
abilities by straightforward analytical calculations.

2. Rotational haxmltoman for slightly asphenca]
molecules and methods for its treatment

To realize the general ideas mennoned in sec-
tion 1 we comnsider the rotational structure of a
non-degenerate -vibrational state of a.tetrahedral



) mclecule XY4. assummg that its tetrahedral sym-
metry is slighily broken by an 1sot_op1c substitution

of one or two Y atoms. Two isotopic modifica-

tions, XY$Y, and XY*Y3, of this molecule are
discussed below.

"We assume that the following sxmple haxmlto-
nian is sufficient for the description of the rota- -

tional structure of the isolated v1brauonal state:
—_ 44, 1
H=H_,+H,+1R A0 . (21)

The first term H,, corresponds to the rotational
energy BJ(J + 1) of the ngid spherical top. The
second one, H,,,, corresponds to deviations from
the rigid spherical top due to the isotopic substitu-

tion. The third term takes into account the centri-

fugal distortion effects in the spherical molecule.
This term is proportional to the tensor operator
R3340 of the fourth rank with respeci to the
SO(3) group, which is invariant with respect to the
molecular cubic symmetry group. The contribu-
tions from the fourth-rank tensor operators of
lower symmetry are small due to the small aspher-
icity of the molecule.

The standard orientation of the molecular frame
is suitable for the XY>Y, isotopic modification
(the x, y, z axes coincide with the axes S; of the
undistorted tetrahedral XY, molecule). The rota-
tional hamiltonian for the rigid asymmetrical top
has the form

H,+H,, =[(4+C)/2]J?
+[(4—c)2(s2 + 2 - 02),

(22)
=02+ +J2,
where
3 m—m* (m—m*)|"?
A= 1672 _1 T 4m 2mM ] . (23)
2 T m—m"‘]_I
= ~|1— .
16mr>l =~ 2m
_ 3 [, 3n—mm (m-my]™
~.16mr3 ] adm 2mM

are the rotational constants depending on the
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masses m and. m* of the Y and Y* a'oms on thei
total mass- M. of the molecule, and on the distance
r between the X and Y or X and Y* atoms. The
asphericity" parameter (4 — C)/(A+ C) and the -
asymmetry parameter k=B -4 — C)/(A=C) -
are proportional to the-small value (m— m *)/m.
Therefore, the term [k(A4 — C)/2]J2 in eq. (2.2):
may be omitted as it is of second order in (m—"
m *)/m. The tensor operator R¥**4v for the above
chosen orientaticn of the molecular f"ame has the. .
form - o ’

RH&AD = 4,/10/3 (:r + T,

PP 14/5 T o)

(24)
there the rotational tensor operators are *
T...=(1/9)J%,
T,0=(1/2/70 )(35.1;‘ —300%2 +3J*
+25J2— 6J3), : (2:5)

Ji="x = i‘)_rv'

For XY*Y, we choose the orientation of the
molecular frame so that the z axis lies along the C;
one. This results in the following rotational ham-
iltonian: :
H=AJ>+(C—A)J2+ tR¥* 40, (2.6)
with the rotational constants
A=B=3/16mr?,
. *

Cc— 3 1+ 3(m—m*) .
16mr? 8m

The asphericity parameter is again préporﬁonal to
(m — m*)/m. For this coordinate system

RY4-AD = (16@/9)(7:;_3 —T,_;+71/10T,,),
- @7

3(m—m*)? ]_]’

16m(m+m™)

Ti.s=F(1/2/2)72(2 L+3).

The hamiltonian (2.6) is invariant with respect to -
the molecular symmetry group Cj,..
A concrete example of the molecule considered

= J_ is a raising opcraior and J, i5 a lowcnng one Iin thc
molecular fraree.
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above i1s.CCl,. Its rotational ccnstant B= 5.7.X
1072 cm™~!. The. contribution of the aspherical
terms for C3’Cl,?3Cl, to the rotational energy is
two orders smaller since (4 — C)/2=28.1x10"*
cm™!. A crude estimation of the constant 7 in eq.
(2.1) for the ground vibrational state is=10-°

cm™1. Therefore, the deviations -from the. rigid.
asymmetrical top are not important up to J = 100.-

At the same time the constant ¢ has to be consid-
erably larger for the vibrational state v; due to
2v, =v,. If one assumes r=10"% cm™?!, the
centrifugal distortion effects become of the same
order as those of the asphericity at J =20. For
such moments the effects of the centrifugal distor-
tion due to the sixth-rank operator R®5 " and
other high-order operators are still small. Thus, the
ground vibrational state of C3'Ci,33Cl, has the
rotational structure typical of the asymmetrical
top but the rotational structure of the excited »,
vibrational state must vary with J from the cluster
structure characteristic of the asymmetric top to
that determined mainly by the operator R4 A1),
Another molecule Os*®*0,!°0, may be more suita-
ble from the point of view of experimental investi-
gations but there are no highly degenerate clusters
of the rotational levels of this molecule because the
nuclei 'O and 'O have a zero nuclear spin.

Let us consider the structure of the rotational
multiplets of the XY>Y, molecule in more detail.
The operator H, in (2.1) is not essential and the
hamiltonian may be written in the following tensor
form

H=[(4-C)/(Tr2+ T _2—
+40/10/3 (T, + T, _
T ..=(1/2)J2,
o= (/V6)(302 ~J?).

The hamiltoniar (2.8) is invariant with respect to
the group D,. For 4= C it becomes invariant

V6 Ty0)
+14/5T,,), (2.8)

with respect to a much higher cubic symmetry

group.
2.1. Harmonic approximation

We use the boson representation proposed by
Marshalek [11] for the angular momentum oper-
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ators in the molecular frame to stﬁdy t‘he"st'ructin"é
of the rotational multlplet. The operators Lo
JL=J— b*b ' o
J ~Jt=br (2T — b*b)’f’ R
=(1/2)a* a, T T (29
act in the space of wavefuncnons
(@)™ o
[T —pryp2 "
with a fixed projéction M’ 6n one of the ax&s of
the laboratory frame. The boson operators a™-and
a (changing the quantum number J), 5% and b
(changmg the projection M on the molecular

frame), ¢* and ¢ (changing the qLantum number
M) satisfy the following commutation relations

[a, a*1=[b, b*]1=]c, c*]=1,
[a, b]=[a, 6*]=[a, c]=[a, c*]

| JMM) = (2.10)

=[b, c]=[b, c*]=0. (2.11)
Further we shall use the operators
J.=J—b"b,
J,=J*=b"(27 —b*b)"?, (2.12)

acting in the space of wavefunctions @,,,, corre-

sponding to the states of one rotational multiplet.
Applying the boson expansion method to the

hamiltonian (2.8) we shall confine ourselves to the

harmonic approximation using the following rela-

tions

J2=J2—(2J—1)b"*b,

JE=J'—(J—-1)(2J2—-27—-1)b*b, -

Jo=J = 27) ",

J_,_.]_.m z.’"’(z.’)]ﬂb+,

T2= (72" =[27(27 - 1)]'7b*b",

J2Im=gm[20(27 - 1)) P b*. (2.13)

These formulae can be obtained by the procedure
described in ref. [9}. The general form of the
hamiltonian in the harmonic approximation is

H=E,+(P+iQ)b*b*+(P—iQ)bb+ Sb*b,
' (2.14)
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where the coefficients E,, P, Q, s depend on the
_parameters of the hamiltonian (2.8) and on the .
quantum number J. The harmonic approximation :.
adequately describes the states' with - the nearly .

maximal angular momentum projection M on the

rotation axis. In the harmonic approximation M is
a “good” quantum number and it may be used to.

classify levels for a given rotational multiplet which
correspond to -the precession of J around the
stable rotation axis. The energy of these levels,

E,=E,—(1/2)S
‘*‘(S/ISI)(Sz— 4P2_4Q2)1/2

x(J— |M|+1/2), (2.15)

may be found by the diagonalization of eq. (2.14)
(see appendix). The condition S>> 4(P*+ Q%) is
necessary for the states with the energy (2.15) to
be stable and the corresponding axis to be that of
the stable rotation. The critical value J;, (for which
S2 = 4(P? + Q?)) is the transition point from the
states E,,, to those corresponding to the preces-
sion of J around some other stable rotation axis.
The harmonic approximation is not applicable near
the critical points J,. Therefore, it may be used to
analyse the stability of any stationary axis but it
cannot be used to determine the orientation of
other stationary axes. Classical mechanics or an
asymptotic approach must be employed for this
purpose.

In classical mechamcs we write the hamiitonian
(2.8) in terms of J_, J,, J. vsing eq. (2.5) and find
the stationary solutions from the equations

J.={H, J}=0, J,={H, J}=0,
J={H,J}=0,

(2.16)

where { ...} denoies the classical Poisson bracket.
- The solution of eqs. (2.16) defines the orientation
of the stationary rotation axes. The analysis made
in the harmonic approximation (see section 3.1)
shows that two types of the axes are unstable for
any JJ, one is stable for any J and the stability of
the other axes depends on the J value

2.2 A.symptottc approach (see rej: [5/) )

©The classxcal equaﬂons (2-16) define the orien-

“tation of the stationary rotation axes in a zero-order

approxxmanon in the small parameter J 1 Let us

" use the same paraxneter in the 'quantum problem. -
-For- this- puipose we transform the - hamiltonian -

(2.8) by rotating the molecular frame through the ~
Euler angles ¢, 8, . The corresponding transfor-_ﬁ
mauons of the /th-rank tensor operators is

R(Q, 0$ V)sz 1(9’,‘ 0’ Y) .
I ‘ . ) i
= Y DY (—9.—8.—¢)T,. (217)
mt=—1 - - .
where
R(@, 8, ¢) = exp(ivJ.) exp(ifl,) exp(ipl.)
(2.18)

is the rotation operator, D, is the Wigner func-
tion *. The transformed hamiltonian takes the
form:

H=R(9,80, x'J)HR"(tp, 8. v)
=[(4—- )4 z [D" (—p.—6.— )

L DO (—p—8—b)
—V6 D&y (— (p,—a—av)]T,m
+41/10/3 E [D&(—9.—0,— %)

m=—4
+y/14/5 DY (— .~
=Y H.(9.0,¥).

8.— )T,
(2.19)

For the sake of simplicity the transformed ham-
iltonian is written in terms of the operators H,,
containing linear combinations of the operators
T, ,, and T, . The orientation of new quantiza-
tion axes (the stationary rotation ones). may be
found from the equation

(T, T-1|H_ (9. 8, ). T

=(J, A, (9, 0. 9)|7. T-1)=0. (220)

= Qur definition of the rotation of the molecular frame differs
from that of Edmonds, but that of the Wigner function
- coincides with the latter (see ref. [12]).
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“Table1

Stationary rotation axes for the XY‘Y2 moleculs and the correspondmg energy E_, of the state. wnh |M| e
Axis Axis orientation -  Permissible - Stability 4E_,/(A—C)J(2,I—1)‘"-’ et
: S values of region B i I
parameter & . S
(o3 p=0=y=0 0g<d<oo 0xgé<l '—1+8/5
' §>2 . -
23 e=0=a/2,¢v=0 . 0gd<oo 5§>1 ) A8/5
5 qa=\,';=0.6= /2 08w 0<d<oo "1+ 8/5 .
oled @==x/2,4=0,cos20=1/8 8§=1 1<5<3 =1/4~1,/45-8/20
(onid e=¢=0, cos28 2/8 - 82 - s ~1/8—8/20 ~
Cc= 8==z/2,¢=0,cos2¢=—1/8 8§=1 - 1/2—1/486 - 8/20
Cs cos2@=1/(1—28/3), 8>3 8>3 —1/8—28/15

cos28=1/3+1/8, v =

Its solution defining seven types of stationary rota-
tion axes is given in table 1. The orientation of
each axis varies with J and depends on the param-
eter

8=16/10/3 L =(7-D@J-3). (2:21)
which is due to the tensor structure of the hamilto-
nian (2.8) .

The average value of H, from eq. (2.19) is used
as the zero-order approximation for the energy of
the rotational levels with the given J

Ef)=(IM|H,(o, 6, $) |IM).

Here M is the angular momentum projection on
one of the stable rotation axes whose orientation is
defined by the angles ¢, 8, 4.

Formula (2.22) is applicable to states corre-
sponding to the precession of the J vector around
the stable rotation axis. It yields a fairly good
approximation for levels with such | M| that (J —
| M |) < J since the condition (2.20) remains valid
for these levels with an accuracy up to J—'. This
group of levels forms a well-defined cluster struc-

* The condition of zero coefficients before b+ and b in the
transformed hamiltonian (2.19) in the harmonic approxima-
tion may be used to find the orientation of. the stationary
axes. It is easy to show that this condition coincides with
that of eq. (2.20).

ture inside the rotational multiplet. Table 1 pre-
sents the energies E, of the states with the maxi-
mal projection | M | =J for all the stationary axes.
The approximation (2.22) is not apphcable t0 un-
stable axes.

Although the asymptotic approximation is very
simple it enables one to obtain reasonable numeri-
cal esiimations for some energy levels as well as to
describe the-cluster structure of the whole rota-
tional multiplet. Let us consider the rotational
multiplet with J=20 for the XYJ}Y, molecule
(6 =3.423) as an example. Table 2. shows exact
(numerical diagonalization of eq. (2.8)) and. ap-
proximate energy levels of this multiplet. The clus-
ter structure of the multiplet obtained by the
asymptotic approximation (2.22) is rather com-
plicated. It includes four-fold degenerate clusters
(C’*, M) and three types of two-fold degenerate
clusters (C3, M), (C3, M), (C5, M). The clusters
(C3, M) are well defined for the projection |A ]
=20, 19, 12-8. At | M| =20, 19 the energies of
these clusters decrease and at | M| =12-8 they
increase as | M| decreases. Actually the clusters
(C’%, 20) and (C’%, 19) are formed by sphttmg the
eight-fold degenerate cluster (C;, 20) since the J
value is close to the critical. J; one (see section
3.3). The energy level patterns in the transmon
regions (see section 3.2) do not correspond.to an
unambiguous cluster structure. Thus the clusters
(G5, 14) and (G35, 13) may be equally classified as
the splitted cluster (C-<, 18). and the B, level from
the cluster (C3, 16) together with the single Bl
level may be treated as the (C3, 7) cluster.
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Tablc 2

_ Relative energies of the lcvels of the 7 =20 rotauonal mu]uplcl

of the XY3Y, molecule. (4—C)/2 =103 .-1=0.3333
10~ cm~L The absolute cnergy of the uppermost level of
rotational multiplet equal to 0657556 cm™? is taken to be
unity "

Type of Sym-

cluster mety.  exact - - asymp- harmonic
value’ totic approxi-
" approxi- mation -
mation
€520 A 100000 :
B, 1100000 0.9991 0.9999
(.19 B, 0.71062
5 0 1062 0.7071 0.7095
(C£18) A 0.47424
5, oa7483 0.4666 0.4190
(C3.20) 0.41170
A o 0.4060 0.4105
(C1.17) B, 0.29107
: 095992 02717 0.1286
(Ci.19) B, 023024
B 092487 0.2030 0.2166
(C3.16) A . 0.16430 B
B 014586 0.1170 0.1618
- B, 0.11143 - _
(C3, 8) A 0.07070 _
B, 0.05416 0.1235
(.9 B —0.00606 _
B, ~0.01502 0.0375
(C5.10) B, —0.08698
A —oosgay 0047 -
(C5,11) B, 016387  _ ~
B, —0.16502 0.1353
(C5.20) B, —018374 _
A ~o1837a 0.1871 0.1851
(Ci.12) B, —023696  _ .o _
A —023699
(C5.19) B, —027738 ~
¥ T oarral 03011 02951
(C:,13) B, 031875 ~
B, ~0.31881 02879 -
(€19 A —033877  _ .
B, —o33s8 03¢
(C™,19) A —0.41073
, © B, -041073
‘B, ~0.41381 0.3548
. B, . —0.41381 . -
(€#.20) A —o4me1 . [TO48B.
B, —0.47261 v
B, —0.47285 0da1a - -
B, - —0.47285

3. Rearrangement of rotalmnai structure of lSOtOplc 5

- modifications- of molecule XY4 under excxtatxon of ‘,"

sta‘es thh hxgh J

"Let us 'consider'the rotational‘st;dcﬁqre of ‘an
isolated vibrational state of the XYZY, molecule.- .
The rotational - -multiplets with - J>>1 -are of

- primary interest to us. The multlplet structure is to

change (as. follows from the hamiltonian:(2.8)), -

- prowded parameters satisfy the condition (A4 — C)

= tJ? (i.e. § = 1). The approximate exprcsswns for
the. energy E, of the levels with the maximal

_projection on the statxonary ‘axes obtained in sec-

tion 2 enable one to describe the. quahtauve
changes of the multiplet structure. Fig. 1 shows the
E, dependence on the parameter 8§ (eq. (2.21)). Let
us use the harmonic approximation to détermine
more precisely the positions of clusters with nearly
maximal porjections and to define the stablhty of
the specific axes.

| 4E, A-CNR2T-1)

(&)

Fig. 1. Relative posn..ons of the extreme clustcrs (solid hns)
and the transition regions (dotted lines) in the system of
rotational levels of the XY2Y, molecule. Indices in parenthm

" denote the axis of rotation.
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Table 3 T i
Hamiltonian (2.8) in the harmomc approximation

Precession around C; axis

P=(1/8A—-C)W2JQRJ-DI'?, ©@0=0, S=Q1/2XA—CX2J—-1X3/2-8)

©, =[(8;— EX5 — 8)1‘_/?. 8..= = (1/2)(31[21/(21— D72}

0<8<l:
E, ,=Q/2X2T -1 A4A—-C)[~ (J+5)(5 8)/10+7/4+w(.l

2<8<on:’

IM}+1/2)]

E = Q/2)2F —IYA—-CH—(J+5X5— 8)/10+7/4— o .(J — | M| +1/2)]

Precession around C§, §>1

P=Q/4(A—CJIQRJ D)2, ©0=0, S=—QAQ/2(A—C)sQRJ—-1)

w0, =(87-83)'2, &=[2J/2J-1]'7?

Eppg=Q/2NA = CH2T =1 8(J +35)/10— w0 (S — | M| +1/2)]

Precession around C3

= ~(I/8K 4 - CORJRT -2, 0=0, S=—(A4—CY2T—1)3/2+8)

@, =[{(8+ 8, X8+ &)1
Eppy=(1/2XA — CX2F — DT +5X5+ 8)/10— T f4— e (J —

Precession around C**,1 <8 <3

1M +1/2)]

P=—(A4A—-CY1/168X356> =356 —-2)2J2J 1)), ©0=0
S=(A—CY1/85X8%+38 —2)27—1)

©,. = (1/48)[(8% +38 ~2)2 — 52(352 —35 —2)2)'2

E; = (1L/2XA — CH2J —1)[—(J +5X1 /40882 +108 +5)
+7(8+1)/88 + o, (J— | M| +1/2)]

Precession around C; axes, 8§ >3

P=(1/4}A— CX1—cos2¢—2/8)2J2J —1D}'?
© = (1/9)A — C)cos 8 sin 2¢@[2J(2J — 1)}
S=(A4—CX2J—1X8/3—1/8)

we, = (2/38)[(8% —3)* —383(8> +3))/?

E =Q/2XA—CY2J 1) —(J +5X8/15+1/28)
+7/28 + we (J— | M| +1/2)]

3.1. Cluster structure of multiplet in harmonic
approximation

The harmonic approximation is valid for the
precession of the angular momentum vector J
around the stable rotation axis. In contrast to the
asymptotic approximation the harmonic one for
the hamiltonian (2.19) takes into account I?o and
H +> in the linear approximation over the (J —
| M |) value. The harmonic approximation yieclds
accurate energies for some clusters with a nearly
maximal {M|. The energy levels forming each
cluster are strictly degenerate in the zero-order
harmonic approximation. Nevertheless, a reasona-
ble estimate of the splitting of -levels inside a

cluster may be obtained using a properly symme-
trized wavefunction of the harmonic approxima-
tion (see section 3.4, egs. (3.15)).

The results of the application of the harmonic
approximation to the hamiltonian (2.8) are given
in table 3. ,

The harmonic approximation yields more accu-
rate results than the asymptotic one for those
states which correspond to the precession of J
with a nearly maximal projection. Otherwise, the
asymptotic approximation is better for the clusters
with | M| significantly different from J (see the
comparison between ‘the exact and approximate
calculations in table 2 and fig. 2). Both methods .
use the smallness of the matrix elements. of the |
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Fig 2. The dependence of the lower energy levels on § for the J = 20 rotational multiplet of the XY2Y, molecule in the vicinity of the

critical point A. The energy E; of the lowest energy level is taken 1o be unity.

: The exact numerical solution for the

hamiltonian (2.8). — — —: The asymptotic approximation of eq. {2.22). ...: The harmonic approximation (see table 3). —~-—: The
energy corresponding to the unstable rotation axis C*~ (see table 1). The doublet splitting is not shown.

hamiltonian (2 19) with- [AM | > 3. The asymp-
totic approximation additionally assumes that the
matrix elements with AM = 42 are small. There is
no such limitation in the harmonic approximation
but the diagonal matrix elements of the hamilto-
nian (2.19) are taken into account only in the
linear over (J — | M }) approximation. Further im-
provement may be achieved by using three-term
recurrence relations [13]. This approach enables
one to take into consideration diagonal and non-
diagonal (with AM = 4 2) matrix elements of the

hamiltonian (2.19). The harmonic approximation

is valid in a wide range of the parameter 8. Never-
theless, it is inapplicable in the transition regions,
i.e. close to the critical points A and B (fig. 1) and
those where the CJ and C; axes become stable
(6 =1, 2). Therefore, the regions of the stable
precession around the C2 O<dé<1- 1/8]), C“

(A+1/4J<8<3+1/12J) and C, (>3 +
1/3J) axes are separated on 8§ by an interval of
order J~'. Indeed, all the energy levels of the
given rotational muliiplet vary continuously with
J. The width of the transition region on the § line,
where the harmonic approximation is a fortiori
inapplicable, was shown to be of order J~2/3 [14].
The harmonic approximation works much worse
for the clusters (C*°, M) and {C;, M) than for
(C3-*-7, M) since zhe equivalent axes bring about
a strcnger intra-cluster sphmng.

3.2 Mod:f' cation of multiplet cluster structure under
excztatzon of states with high J

The analysis of the multiplet cluster'struéture
performed in sections 2.2 and 3.1 as well as results

- of the numerical calculations show that the rota-



348 LM. Pavlichenkou, B.I. Zhilinskii / Molecular rotation

tional multiplets with small J (small §) possess the
rotational structure typical of an asymmetric top.
This top is characterized by two stable rotation
axes for maximal and minimal moments of inertia
and by an unstable one for intermediate moments
of inertia. The increase of the quantum number J
results in new stable rotation axes and in the
change of the stability of the old ones. Only the CJ
axis corresponding to the minimal moment of
inertia remains unchanged. The states with the
maximal projection |M|=J on the stable rota-
tion axis (the solid lines in fig. 1) form the extreme
clusters. The clusters with smaller | M| are posi-
tioned below (for the axes C3, 6> 2; C3, C3) or
above (for the axes C3, 0<d<1; C*, C,) the
extreme one. The energy levels close to the energy
of states with the projection |M | =J on the un-
stable axis (the dotted line in fig. 1) form the
transition region between the clusters of different
types. The dotted line is a border for the clusters
of a given type since the orientation of the unsta-
ble axis corresponds to the saddle point of the
rotational energy surface. The dotted line corre-
sponding to the unstable axis C** in fig. 1 is a
border separating the (C;, M) and (C**, M)
clusters. The dotted line corresponding to the C5(1
< 8 < 2) and C*° unstable axes separates the (C’~,
M) and (C3, M) clusters. Finally, the dotted line
corresponding to the CJ(0 <8 <1) and C*¥ axes
separates the (C3J, M) clusters from the (C3, M)
ONnes.

As shown earlier, six types of stable rotation
axes (see table 1) may exist in the XYY, molecule
for different J (or &). Thus, the six types of
clusters are present in the rotational multiplets of
this molecule. Six regicons in the (E, 8) coordinates
are shown in fig. 1 corresponding to the existence
of different types of clusters:

(1) Two-fold degenerate clusters (C3, A/).

(2) Two-fold degenerate clusters (C3, M).

(3) Two-fold degenerate clusters (C5, M).

(4) Two-fold degenerate clusters (C3, AM).

(5) Four-fold degenerate clusters (C*=, M).

(6) Eight-fold degenerate clusters {C;, M).

The C; axis and the corresponding clusters are
listed twice because there are two unlinked stabil-
ity intervals over 8 which correspond to regions 3
and 4 in fig. 1. Regions 3 and 4 partly overlap

each other and both types of clusters are present in
the overlapping part of these regions. There are
also two types of (C3, M) and (C3, M) clusters
present in the overlapping part of regions 1 and 2
due to the stability of both the non-equivalent CJ
and C¥ axes for the corresponding & values.

Sometimes, the states with | M| <J are better
described by the precession approximation than
those with the maximal projection on the same
axis due to the local instability of that very axis. A
general tendency arises for the XY;'Y, molecules:
there appear higher-degenerate clusters with the
increase of the quantum number J.

3.3. Critical points

We now consider in detail the critical region
(close to the points A and B) on the curve repre-
senting the dependence of the extreme cluster en-
ergy on the parameter 8 (see fig. 1). Our aim is to
expiain the abovementioned regular tendency in
the change of the cluster structure of the multiplet.
The precession frequency vanishes at the critical
point. This means that the precession changes
qualitatively upon passing through this point. In-
deed, we have seen earlier (section 3.1) that to the
left of the point A the J vector precesses around
the C3 axis whereas to the right of the point A it
may precess around any of the two equivalent C**
axes. The true motion of the J vector is, naturally,
the superposition of these precessions. Symme-
trized wavefunctions have to be used, correspond-
ingly, in the quantum problem. The same char-
acter of the J vector motion is observed to be left
of the point B. To the right of it each of the two
C** axes transforms into an axis of the C; type.
Finally, we have four axes around which the J
vector may precess independently and its true
motion is their appropriate superposition. Thus,
the number of stable axes doubles at the points A
and B and the degeneracy of the respective clusters
doubles as well. ’ i —

Now consider the transition region in the classi-
cal limit in more detail. We use the hamiltonian
(2.8) and write the rotational energy dependence
on the angles 8 and ¢ as ' -

E(8, 9) = (1/2)(A — C)J%{8, 9), (3.1)
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75(0 qa) sin’6 cos’p — cos‘0+(6/2)
x [cos“a + sm“a(cos ‘P + sin (p) 3/5]

g and ¢ define the ‘orientation- of the angular
“momentum vector J in the molecular frame, i.c.
the orientation of the axis of molecular rotation.
The minimum of the function €(§, ¢) corresponds
to the orientation of the stable rotation axis.
To study the critical region close to the point A,
we expand ¢(8, @) in a series over § near 8§ =0 up
to terms proportional to 44 :

€(8, 9)=¢€o(J)+{(1 —J2/J2 + cos’p) 6>
+[7/8 — (1/3)cos’p
+(1/8)cos’p] 67, (G2)
where
Ey(J)=(1/2)(4 - C)J%,(J)
=(1/2)(4—C)I(J2/502-1)  (33)

is the energy of the molecular rotation around the
C; axis. J2=V3(A—C)/32/10¢ is the critical
value of the angular momentum at the point A.
For J <J,, 8 =0 is the minimum of the function
(3-2) and the expression (3.3) gives the energy of
the lowest-energy ievel of the multiplet with an
accuracy of order J~ . For J > J,, 8§ =0 becomes
a saddle point and the minima correspond to two
orientations of the rotation axes (8, ©w/2) and (6,,
3m/2), with 8, = [(J2/J2 —1)/2]*/?, and

E(J)=Ey(J)—(1/8)(4 — cy (I —1)".
(3.9)

It follows from eqgs. (3.3) and (3.4) that the first
derivative d E/dJ is continuous whereas the sec-
ond one d2E/dJ? has a discontinuity at J =JA
with a jump equal to (4 — C).

The change in character of the rotational mo-
tion may be visualized by the classical trajectories
€(8, )= € at both sides of the critical point A.
Fig. 3 shows the classical trajectories of the top of
the J vector around the north poic of a sphere of
radius J. The existence of the symmetry axes CJ
and CJ implies that absolutely the same trajecto-
riés are positioned close to the south pole of the
sphere. In the case of J <J, these trajectories

~— —— T~ ——

I>3,

Fig. 3. Classical trajectories in the vicinity of the critical point”
Al

form a set of curves closed around =0 and
stretched in the ‘direction of the y axis. The
stretching of these curves increases as J ap-
proaches J,. For J > J, the pattemn of the classical
trajectories abruptly changes. Three sets of closed
curves are formed instead of one. Two of them are
local sets centered at (6,, w/2) and (6,, 37/2) (the
points ¢ and ¢’ in fig. 3). The third set is a global
one embracing these points as well as the north
pole. The three sets are separated from each other
by a separatrix, i.e. a trajectory with energy e = ¢,
passing through the saddle point. The separatrix
separates the local trajectories from global ones.

We now expand (8, @) in the critical region
close to the point B. We use the expansion near
one of the four equivalent axes orientations speci-
fied by the angles (8, = (1/2)arccos(1/8), ¢p=
wx/2). Assuming » and ¢ to be the deviations from
8, and @, we have

e(v,9)=¢,(J)+(8/3)r*
+Q1/2)(1—-712/73)¢3 -
—(2V2 /3)pe? + (1/3) 4", - (35)
where
Eo(J)=(1/2)(A— C)T%(T)
=—1/6)(4—C)2(1 + 614/514) (3. 6)
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is the energy of the rotation around the consndered
axis, JZ =v27(A4 —C)/32/10¢ is the critical an-
gular momentum at the point B. For J>Jg the
minimum (0, 0) ‘of the function (3.5) corresponds
to the orientation of the C** axis and to the energy
(3.6). For J > J; this minimum is transformed into
the saddle point and the two equivalent axes be-
come stable ones whose orientation is defined by
the angles 8 =(1/2)arccos(1/8)+ vy, p=7/2+
¢, (the points d and 4’ in fig. 4) where ¢y=
(J2/I2— 12, vo=(1/4/2)¢}, and

E(1)=Eo(J)—(1/8)(A— C) (12173 1)
' (3.7)

The comparison between the energies (3.6) and
"(3.7) defined for both sides of the critical point
shows that the first derivative d E/dJ is continu-
ous but the second one, d2E/dJ>, has a discon-
tinuity with a jump equal to (A4 — C).

The classical trajectories for the transition re-
gion close to the point B are shown in fig. 4. The

hol g
v | Y

Fig. 4. Classical trajectories in the vicinity of the critical point
B. 2

character of the motion of -J-near the- critical
points A and B is similar. The main difference is’
that for point B there are two sets of trajectories
mirror-symmetrical with respect to the zx plane.’

A complete description of the transition region
for the quantum problem may be made employing
the method proposed in ref. [14], in which a simi-
lar transition was investigated for a model many-
particle system. The main features of the quantum
description of the transitions mentioned above are
the following. The independent precession of the
vector J around the equivalent axes is impossible
in quantum mechanics due to tunelling through
the potential barrier separating the two equi-
librium positions c and ¢’ (fig. 3) or d and d’ {fig.
4). This tunnelling leads to the splitting of clusters
formed by states with the same projection M on
the equivalent axes. This splitting is maximal in
the transition region where the barrier is narrow
while the turning points a and a’ are close to each
other and decreases as J increases. To the left of
the transition point the splitted levels smoothly
transform into states with different projections on
some other rotation axis (see fig. 2).

3.4. Intensities of rovibrational transitions

Up to now we have considered only the re-
arrangement of the energy levels of the rotational
multiplet due to the axis shifting. We now study
the effect of axis shifting on the intensities of
electromagnetic rovibrational transitions between
non-degenerate vibrational states. Rovibrational
transitions in the v, band of tetrahedral molecules
are forbidden in the dipole approximation. But
they may be studied by Raman scattering or by
more complicated many-quantum processes. For
example, recently the CARS technique has been
widely employed to obtain high-resolution spectra
of the Q-branches of the v, bands for a number of
tetrahedral molecules [15].

The intensity of the Raman scattermo is defined
bv the matrix element

(v, IM'n|&lo’, IM'n '> o (3.8)

from the polanzauon & between the levels of two
rotational multiplets characterized by the quantum
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numbers vJM “and v'JM'n' (where M’ is the -

“angular” momentum prolectmn on.the laboratory
fixed frame, v, v’ are the vibrational  quantum

- numbers). The polarization & depends on  the - .

vibrational coordinates only. Effective rotational
hamiltonians have to be usually used in applica-
tions which may be obtained by a partial di-
agonalization of the complete molecular rovibra-
tional hamiltonian. These effective hamiltonians
are different for different vibrational states. The
corresponding transformation results in the trans-
formed operator

[~}

= 3 Catp, (39)
Q=0

where &, depends on the angular momentum op-
erators J; with the total degree equal to 252.

A characteristic quantity in transition to effec-
tive hamiltonians is the Born-Oppenheimer
parameter k = (m_/m)'/* where m, is the electron
mass. The coefficients C, in eq. (3.9) may be
presented as Cq o k%2,

Transitions between the levels of the rotational
multiplets belonging to different vibrational states
of the XYY, molecule may occur either without
or with some change in orientation of the preces-
sion axis. In the first case the operator &, makes
the main contribution to the sum (3.9) and all
other terms may be omitted. Generally, all terms
of eq. (3.9) are important for transitions with a

Table 4

] 10.

~ change in oorientation of the precess:on axis. Now';‘_

let us consider the first term in eq. (3.9).-The
corresponding matrix element (3:8) -is -factorized -
and the transition intensity becomes proportional
8,(n, 'y = [{IM'n| M )2, (3.10)
The factor @,(n, n’) describes the overlap of the
rotational wavefunctions (2.10) with the gquantum

"numbers n and n° corresponding to different

orientations of the precession axis.

We use the function @,, in the harmonic 4p—
proximation to calculate the overlap integral &,.
For the sake of simplicity we consider only states
with the maximal projection M =J on the preces-
sion axis. According to (3.10) we introduce the
factor

o505, 5 =| [ 27 (5, ) 85", )|
(3.11)

where the function $§;(8, g) for the ground vibra-
tional state corresponds to the precession of J
around the axis i (i=C3, C3) and the function
D{F)(8’, q) for the vibrational state v; corresponds
to the precession around one of the six stable
rotation axes listed in table 1. The functions be-
longing to the upper and lower muliiplets have
different values of the parameter § in accordance
with section 2.

Eigenfunction of different states of the multiplet corresponding to the vector J precession around stable axes. The angles 8, ¢ are

listed in table 1

Axis Stability Eigenfunction @{{’(q) f(s)
G 0<s<lé>z (/0 ed—fa/D) (8- 8,3/ - 80172
cs 5>1 /=) %expl— fg>/2+i=)" g /2) (8 -8/ + 50
ci 0<s<oo (f/=)expl— (g + =7 7/2)/2) (6 +8,)/(3 + &)1
- 52 +35—2-5,(367~35-2) |'”
cr 1<8<2 =)1/4 2+ien’ .
Ur=) P f/2+i ) [83+3s—_+s,(3s=—3s—2)]
2 35352t
C; 8>3 @s-3)|(s> -3 38352 +3)]

/=) Cexpl—(f +igg+ 071 2)2 2 —igl] ™

(256 -3)(82—3)—-35;(67—25+3)

(1/2)55,[3(5% —9)]'7

= This fuhption hasa nbn-zcrorvalue'qf g(8)= v

(28 ~3)(82—3)—356,(82~25+3)
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~-Table 4 gives the functions @,, describing. the
precession of  J: around- each -of the six stable
rotation axes. These functions are obtained by

transforming the function (A.11) by the molecnlar’

frame rotation described in section 2.2. The ex-
plicit form of the rotational functions enables one
to easily calculate any of the 12 overlap integrals.
Given below are the formulae for some of them.
The overlap integrals for which the precession axes
are mutually orthogonal have the form

OF=(s, 87)

£(8) )\
- 32857+ 3557
=2 £(8)£.(8) J)

4 1()+f() )

X exp(

es=-*(8, 8

ey~(s, )

_{1({£8) "2+ £ Y
2{£.(5) IZ0)
o] -T2 +f,(a)f..(a')1]
4 L) +£,(3)
These and ali other overlap integrals with different
precession axes decrease as exp(—aJ), a=1, with
increasing J. For the overlap integrals the coeffi-
cient a may be reduced to zero for the cluster
(C*=, J) or {C;, J) in the vicinity of the critical
point A or B. For example, the overiap integral

@(:._\':)(8 8:)

£.(8) 1( £V
[ (f (8)) +2(f:(8)) ]
J [arccos(l/&’)}z)
4 £.(8)+£-(8)

(312)

Xexp( - (3.13)

_ increases for 8’ =1 (the critical point A). The

overlap integrals of the wavefunctions of the same
type of rotational clusters belonging to different
vibrational states are not exponentially small since
their precession axes coincide. For. i=4k expres-
sion (3.11) is reduced to

e5-"(8, 57)

(f(a) ) + 1(—-—f"(8') )VZ - (3.14)
£:(8) 2\ f£(3) o

We compare the overlap integrals calculated
from eq. (3.10) with the exact numerical functions
of the hamiltonian (2.8) (the parameters (A4 —
C)/2=10"*cm™); r=0 in the lower multiplet
and 7=0.55>10"% cm~! (8 =1.23) in the upper
multiplet) with the corresponding integrals calcu-
lated with the rotational functions taken in the
harmonic approximation. For this purpose we
construct a wavefunction of a definite type of
symmetry in the harmonic approximation.

The required function for the two-fold degener-
ate clusters (C3, J) and (C3, J) has the form

o2 (g)=(2+028)"'"

X (DD +od2,), (3.15)

i=x, z.

where § is the non-orthogonality integral and
o= +1 depending on the svmmetry of the func-
tion. The overlap integrals for the states of A-type
symmetry calculated using the approximate func-
tions for J = 10 are:

©4;7(0,1.23) =0.95 x 1077,
O4z-*)(0, 1.23) = 0.9966.

The exact *lues of the corresponding overlap
integrals ©,(s, n’) are:

0,0(1,6)=3.0x10"7,
6,0(6, 6) = 0.9975.

We now consider the next terms in the transi-
tion operator (3.9). The matrix element of the
operator &, for states corresponding to different
precessxon axes is also exponentially small. Since
C x4, the contribution of the second term of the

-sum (3. 9) to the transition intensity may be ne-
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glected- As @ ‘increases, . the exponentlal factor

grows gradually wh=reas the :pre-exponential de-
“ creases proportional to x*2. The maximal contri-
.bution should be made by those terms (3.9) for
which @ is comparable with the effective -dif-
ference between: the projections of the angular
momentum of the initial and final states on the =
axis of the molecular frame. If the orientation of
the precession axes for these two states differs by
an angle 8 and each state has a maximal projec-
tion on the quantization axis, 22=AM =J(1 —
cos §)=J. From this it immediately. follows that
k92 xexp[—J In(1/k)]);, if Jx1/x. Thus the
contribution of the terms of eq. (3.9) with =1
does not change the estimate of the transition
intensity calculated by taking into account only
the operator &,. This implies that a new approxi-
mate selection rule is valid for rovibrational transi-
tions with a sufficiently high J value. This selec-
tion rule is due to the different orientation of the
rotation axes in the molecular frame.

4. Conclusion

The detailed investigation of the rotational
states given in the present paper enables us to treat
a general scheme for the analysis of critical phe-
nomena in isolated quantum systems with a small
number of degrees of freedom rather than simply
to find rotational energy levels for one concrete
example of nearly spherical tops. The hamiltonian
(2.6) for the XY;Y* molecule may be treated in the
same way as that of eq. (2.8). The results are
qualitatively different due to the symmetry dif-
ference for egs. (2.6) and (2.8). The hamiltonian
(2.6) possesses. for example, two-fold and six-fold
degenerate clusters in the rotational multiplet
rather than four-fold and eight-fold ones as the
operator (2.8) does. The six-fold degenerate clus-
ters correspond to the orientation of the stable
rotation axes in the molecular symmetry planes
(the C;, molecular symmetry group). The hamilto-
nian (2.6) has critical points of a new type. At the
same time the critical phenomena themselves are
characteristic not only of both types of aspherical
tops (XY,YS and XY,;Y*), but also of a wide class

of other molecules.

" The possnblhty of a unified tr@atment of the
abovementioned problems and much wider
rovibronic problems is due 1o the fact that "the’
critical phencmena are completely def'med by the

- type of singularity responsible for its appearance. -

The critical phenomena play an important part in -
various fields of science and technology investigat-.
ing any considerably non-linear systems. As yet
the critical behaviour has not been treated sys-
temaucally for isolated molecules. =

The experimental investigation of the effects
mentioned in this paper may be realized for CCl,
or OsO, with asymmetrical isotopic subsntunon of
Cl1 or O. Recent experimental studies of high-reso-
lution spectra of C**Cl, [16] allows one to hope
that other isotopic modifications of this molecule
would be stuched in near future.

Appendix. Diagonalization of the hamiltonian in
the harmonic approximation :

Let us make a linear canonical transformation
of the hamiltonian (2.14) with new boson oper-
ators 87 and B

b=uf+ v,

B* and B satisfy the standard commutauon rela-
tions

[B*,B]l=1, [B.Bl=[B*.B*1=0. (A2)

We demand the coefficients before B¥8% and BB
in the transformed hamiltonian to be zero. These
two conditions, together with the relations (A.2),
may be written in the form of a system of the
algebraic equations :

br=u*B*+o*8. (A1)

2P(jul?+ |v]1?) + S(uv + u*v*) =0,
2i10(Ju]?+ jv]?) + S(uv — u*v*) =0,
jul>—o]?=1, (A3)

defining the coefficients of the transformation
(A1)
We take the coefficients # and v in the form

=e'chy, v=eshy. : (A9)
Substitution of eq. (A.4) into eq. (A.3) vyields
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the following solutions -

T 7
+1)] eie,

12
_ ISl 1( S| _1) o
S 2 (52—4P2_4Q2)1/2 .
tg(a+B)=0/P, (A5)

which enable one to represent the hamiltonian in
the boson approximation in the form of eq. (2.15).

We now express the wavefunction @,,, for the
hamiltonian (2.15) for the lowest state with the
projection M = J through the vacuum function |0)
for the boson operators b* and b. The function
@,, satisfies the equation

BD,, ={u*b—uvb*)d,,=0. (A.6)

It can easily be verified that the normalized solu-
tion of eq. (A.6) has the form

@, = (1u]) ™ exp( 50 b*b*) 10>. (A7)

The function (A.7) allows one to easily calculate
the matrix elements of the operators contaiming
the boson operators b™ and b for the states corre-
sponding to the precession around a given axis.

The coordinate representation proves to be use-
ful for calculating overlap integrals of wavefunc-
tions corresponding to the vector J precession
around differently oriented axes. For this purpose
we introduce a dimensionless coordinate g by the
relation

b*=(1/¥2)(g—d/dg),
b=(1/v2)(g+d/dq). (AB)

We put (A.8) into the equation H®P,,, = EP,,,
with the hamiltonian (2.14) and transform the
so-obtained equation by the substitution

2,0 (9) = ¥(exp( —igZ54?) (4.9

Y 1( S|
2\(s2-4P2—40%)"

to the form
_ S§—2P d?¥  S>—-4P>-40?
2 4dq? 2(S—-2P)
=(E—E;+S/2)V.

¥

(A.10)

Eq (A.10) can descr-be small precessxons near
equmbnum g=0,if (S + 2P) and (S —2P) have
the same sign and .S2 — 4P2> 402 In the coordi-
nate representation the wavefuncuon (A7) of the
M =J state has the followmg form

®,,(q) = (f/m)"* expl — (1/2)(f+ig) ]
' {A11)

where

(s2-4pP2-40*)'" o

f= S—2P > 8T 2P

(A12)

Thus, the linear canonical transformation (A.1) is
reduced to a change of mass, force constant and
phase of the wavefunction of the oscillatory mo-
tion. ' ’
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