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Relational energy levels of nearly spherical molecules in an isolated viirational state are studied. It ii shown that, in the limit 
of high rotational quantum number J. the rotational states may be interpreied as those of- a stably: rot&on around -axes 
properly oriented in the molecular frame The orientation of the axes depends on J_ Simple aaalytical solutions are given for 
the problem considered in the asymptotic and harmonic approximations. Thk. results ob+xed possess a clear qualitative 
interpretation oi the phenomena considered and. at the saine time, agree quantitatively with the results of &me&l 
di;igonalizxion. The analogy between the effects of r earrangement of the rotational lev& under the variation of J and the 
critical phenomena in mkroscopic sy&ms is discussed The intensities of rovibrational transitions between tot&y symmetric 
vibrational states are calculated_ A new sekction de is inuoduced which is due 10 a small ovedap of the relational functions 
corresponding to the rotation around differently oricntcd axes_ 

1. Introduction those of a stable rotation around equivalent axes. 
In this approach different types of clusters corre- 

Considerable progress recently made in experi- spond to different sets of equivalent stable. axes of 
mental spectroscopic methods gives birth to very rotation_ The formulation of the corresponding 
detailed information concerning rovibrational en- quantum problem and its solution for some im- 
ergy levels and electromagnetic transitions be- portant particular cases was given by Harter and 

tween- them. The experimental -rovibrational data Patterson [Z-4]. In ref. [4] the-useful concept of 
are usually treated in terms of an effective ham- the rotational energy surfarks for asymmetric r&d 
iltonian including many adjustable parameters_ The spherical top molecules is introduced and graphi- 
alternative approach is to give a reasonable quali- tally illustrated_ One of the authors of the present 
tative interpretation by using simple models with a paper developed a general approach to the de- 
small number of parameters_ The cluster theor$ of scription of the rotational cluster structure for the 
the rotational structure of molecular spectra is a quantum problem using the irreducible tensor op- 
good example of such an approach [l-5]_ A qua& erator technique [S]. This approach permits us to 
tative explanation of the rotational level clustering find and give a quantitative description for elus- 
was given by Domey &nd Watson [l]:-They treated ters including states with a.nearly maximal projec- 
states forming each cluster in the classical limit as .- tion 1 M 1 of the. angular momentum on the stable 

: axes of~molecular rotatioi ,.I 
~. _ :- --Rotation-vibra&n mterkioris result in:. the- 

1 To whom corrcspkde&‘sho~d beaddressed. variation of the-kff&tive Gtertia tensor.for a par- 
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titular rotational multiplet (a group of levels with 
the same J) under vibrational and rotational exci- 
tations. The modifications of the inertia tensor 
may include: ii) the variation of the orientation of 
the stationary axes with respect to the molecular 
frame; (ii) appearance of some new axes or disap- 
pearance of some of the existing ones; (iii) the 
interchange of the stability of some stationary 
axes. 

In the present work we study the influence of 
the abovementioned effects on the rotational en- 
ergy levels and rovibrational spectra of nearly 
spherical tops *_ 

The shift of the stationary molecular rotation 
axes with increasing J value generally causes regu- 
lar modifications in the cluster structure of the 
rotational multiplet. At a fixed critical value Jo of 
the rotational quantum number (and the corre- 
sponding orientation of the stationary axis) an 
abrupt rearrangement may occur in that part of 
the rotational multiplet which corresponds to the 
precession of the angular momentilm vector J 
around this particular axis. We name such a phe- 
nomenon a transition by analogy to phase transi- 
tions in macroscopic systems **_ If the orientation 
of the stable axis of rotation changes abruptly in 
passing through the critical point Jo, the first 
derivative of the rotational energy d E/d J (i.e. the 
rotation frequency) has a discontinuity at Jo. Such 
a transition in the rotational band of asymmetric 
nuclei was studied by one of the authors in ref. [8]_ 
This paper deals with transitions with a smooth 
variation of the axis orientation. It will be shown 
in section 3.3 that the fist derivative dE/dJ is 
continuous at Jo for such transitions but the sec- 
ond one, d’E/dJ’, has a jump discontinuity at 

* Similar problems have been investigated earlier from a 
somewhat different point of view. Axes shifting under varia- 
tion of the effective hamiltonian parameters reflecting the 
vibrational excitation was studied in ref. [6J_ In ref. [-/1 the 
rotational structure of the electronic transition was studied 
in the case of electronic states with different orientation of 
the principal axes of the inertia tensor. 

““Bifurcation is an analog of these phenomena in classical 
mechanics_ The whole family of classical trajectories of the 

system in the phase space is qualitatively modifed in passing 
thrcugh the bifurcation point (see section 33). 

Jo. The molecular symmetry is very important for 
these transitions. The notion of the local symmetry 
group for a given molecular axis being introduozd, 
the transitions considered correspond to a broken 
local symmetry of the rotation axis.-(for example, 
C_ or C,)_ Therefore, the mrmber of stable rotation 
axes at Jo increases, for example, twice (see sec- 
tion 3.3). 

The shift of the stable rotation axes results in a 
considerable variation of the intensities of the 
rovibrational transitions at high J. A new ap- 
proximate selection rule arises (for J xz- 1) which is 

due to a small overlap of the rotational wavefunc- 
tions corresponding to the states with a definite 
nearly maximal projection of the angular momen- 
tum on differently oriented axes of stable rotation 
(see section 3-4). 

The methods used earlier for the description of 
the chrster structure [2-51 were based on rather a 
simple diagonal approximation for the rotational 
hamiltonian after the appropriate choice of the 
quantization axis for the angular momentum. The 
boson expansion method [9] is more suitable for 
studying the critical phenomena in an isolated 
molecule under rotational excitation. This method 
is based on the Holstein-Primakoff representation 
[lo] for the angular momentum operators. This 
representation is widely used in the theory of the 
collective motion of atomic nuclei. The harmonic 
boson approximation is applicable to the descrip- 
tion of small oscillations near the equilibrium for a 
given dynamic system. For the problem considered 
the harmonic approximation is valid for the pre- 
cession of the angular momentum J around the 
stable rotation axis. Therefore, the boson ap- 
proxirnation enables one to find the stable axes 
and the critical transition point Jo. Moreover, the 
harmorrc approximation yields rather an accurate 
description of the rovibrational transition prob- 
abilities by straightforward analytical calculations. 

2. Rotational hamiltonian for slightly aspherical 

mokcuks and methods for its treatment 

To realize the general ideas mentioned in sec- 

tion 1 we consider the rotational structure of a 
non-degenerate -vibrational state of a tetrahedral 
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molecule XY,, assuming that its -tetrahedral sym- 
metry is slightly broken by an isotopic substitution 
of one or two Y atoms. Two isotopic modifica- 

masses m hnd &P of the Y and Y* &on;s, on:tbe 
total mass. M of the molecule, and ori &dist&e 
r -between the X and Y or- % and Y&-atoms. The 
asphericity parameter (A - C)/(A’.+ C) and the 
asymmetry parameter k = (2B - A - C)/(A - C) 
are prcportionaf to the small value (m - h +)/K. 
Therefore, the term [k(A 7 C)/2]J,? -in eq. (2_2)- 
may be omitted as it is of sewnd order in (m - 
m *)/m. The tensor operator RY4**l’ for the above 
chosen orientation of the molecularficame has the 
form 

tions, XY,‘Y, and XY*Y,, .of this molecule are 
discussed below. 

We assume that the following simple hamilto- 
nian is sufficient for the description of the rota- 
tional structure of the isolated vibrational state: 

W = Hsp -i- Uazp -I- rRY‘!-*~‘_ (2-l) 

The first term Hsp corresponds to the rotational 
energy m( J i- 1) of the rigid spherical top. The 
second one, Hyp, corresponds to -deviations from 
the rigid spherical top due to the isotopic substitu- 
tion. The third term takes into account the centri-. 
fugal distortion effects in the spherical molecule. 
This term is proportional to the tensor operator 
Rq4- Aa’ of the fourth rank with respect .to the 
SO(3) group, which is invariant with respect to the 
moiecular cubic symmetry group. The contribu- 
tions from the fourth-rank tensor operators of 
lower symmetry are small due to the small aspher- 
icity of the molecule. 

The standard orientation of the molecuiar frame 
is suitable for the XY$Y2 isotopic modification 
(the x, y, z axes coincide with the axes S, of the 
undistorted tetrahedral XY4 molecule). The rota- 
tional~hamiltonian for the rigid asymmetrical top 
has the form 

KP + H& = [(A + Cl/21 J2 

+[(A-C)/2](J,‘+!+<‘), 

(2-2) 

where 

are the rotational constants depending on the 

Rq4-Al’= 4m(T4,4 -t- Ta__4 + mT,,). 

(2.4) 

where the rotational tensor operators are * 

T4_o = (1/2fi)(35J; - 30J2J,I! + 3J4 

+25Jy- 6J’), (2.5) 

Jk=xr I iJs- 

For XY’Y, we choose the orientation of the 
molecular frame so that the z axis lies along the C, 
one. This results in the following rotational ham- 
iltonian: 

H=AJ’+(C-A)Jz+rRq4-“a’, (2-6) 

with the rotational wnstants 

A = B = 3/16mr’, 

C=3 

I 
N3( 8m 

m-m*) 3(m-mm*)’ -’ 

16mr2 I -16m(mi-m’) - 

The asphericity parameter is again proportional to 
(m - m *)/m. For this coordinate system 

Rq4.*l’= (16&/9)(T,_, - T,,, + ,/775T,,), 

(2.7) 

T 4.*3 = T (l/26) J;(2 J= f 3)_ 

The hamiltonian (2.6) is invariant with respect to 
the molecular symmetry group C,,_ 

A wncrete example of the molecule considered 

^ J_ is a raising operator and J, is a lowering one in rhe 
molecular frame. 



above is .CCI,. Its rotational constant B =5.7.x 
10-r cm-‘. The contribution of the aspherical 
terms for C37C1 35C1, to the’rotational energy is 
two orders Sma6er since (A - C)/2 - 8.1 x 10e4 
cm-‘. A crude estimation of the constant t in eq. 
(2.1) for the ground vibrational state is= 10d9 
cm-‘. Therefore, the deviations from the rigid. 
asymmetrical top are not important up to J = 100. 
At the same time the constant t has to be consid- 
erably larger for the vibrational state v1 due to 
2vz = v*_ If one assumes 2 = lo+ cm-‘, the 
centrifugal distortion effects become of the same 
order as those of the asphericity at J = 20. For 
such moments the effects of the centrifugal distor- 
tion due to the sixth-rank operator Rq6* Al’ and 
other high-order operators are still small. Thus. the 
ground vibrational state of C”Clr 3SC12 has the 
rotational structure typical of the asymmetrical 
top but the rotational structure of the excited Y, 
vibrational state must vary with J from the cluster 
structure characteristic of the asymmetric top to 
that determined mainly by the operator Rq4. *I)_ 
Another molecule 0~~~0 r602 may be more suita- 
ble from the point of vie; of experimental investi- 
gations but there are no highly degenerate clusters 
of the rotational levels of this molecule because the 
nuclei I60 and “0 have a zero nuclear spin. 

Let us consider the structure of the rotational 
multiplets of the XYTYr molecule in more detail. 
The operator Hsp in (2.1) is not essential and the 
hamiltonian may be written in the following tensor 
form 

H=[(A-C)/4](Tz_z+T,__,--~.,) 

+4tdw( T4.4 + T1_-4 + ,/~T,,). (2.8) 

T 7 _+ -, = (l/2) J;, ____ 

z-&e = (1/6)(3L? --Jr)_ 

The hamiltonian (2.8) is invariant with respect to 
the group Dz_ For A = C it becomes invariant 
with respect to a much higher cubic symmetry 

group- 

21. Harmonic approximation 

We use the boson representation proposed by 
Marshalek [ll] for the angular momentum oper- 

ators in the molecular frame to study the structure 
of the rotational multiplet The operators 

J= = J.- bib, 
; .: 

j,= Jz= b+(2j- b+b)lr-, 

.f =-(1/2)a*a, p) 

act in the space of wavefunctions 

(2.10) 

with a fixed projection M’ on one of the axes of 
the laboratory frame. The boson operators a+. and 
a (changing the quantum number J), b* and b 
(changing the projection M on. the molecular 
frame), c+ and c (changing the quantum number 
M’) satisfy the following commutation relations 

[a, a+]=[b, b+]=[c, c’]=l. 

[a, b] = [a, b+] = [a, c] = [a, c’] 

=[b,c]=[b,c+]=O_ 

Further we shall use the operators 

J,=J- b+b, 

(2.11) 

J,= J”= b+(2J - b+b)=?, (2.12) 

acting in the space of wavefunctions Q,,,,, corre- 
sponding to the states of one rotational multiplet. 

Applying the boson expansion method to the 
hamiltonian (2.8) we shall confine ourselves to the 
harmonic approximation using the following rela- 
tiOIlS 

J,’ = J’ - (2J - l)b+b, 

J=“=J”-(2J-l)(2J2-2J-l)b+b, - 

J,= J’= (2J)lnb+, 

J,J=” = J”(2J)‘%+, 

J:= (J:j’= [2J(2J- l)]lr-b+b+, 

JlJ=m =Jm[2J(2J-l)]‘r-b*b+-. (2.13) 

These formulae can be obtained by the procedure 
described in ref. [3]_ The general form of the 
hamiltonian in the harmonic approximation is 

H=E,+(P+iQ)b*b*+(P-iQ)bb+Sb+b, 

(2.14) 



where the coefficients E,; P, Q, S depend on the 
parameters of tbe hamiltonian (2.8) and on tbe- 
qusntum number J_ The harmonic approximation 
adequately describes the states with the nearly 
maximal angular momentum projection M on the 
rotation axis. In the h&ionic approximation M is 

a c‘good” quantum number and it may be used to 
classify levels for a given rotational multiplet which 
correspond to -the precession of J around the 
stable rotation axis. The energy of these levels, 

approximation-in the small paranieterJ~~r_ IziGs 
use the same parameter in tbc~quanturn problem- 
For- this purpose we tr&sfor& tbe:hsmiltor&n 
(2.8) by rotating the moIecular frame. through: the 
Euler angles rp, 6, +_ The correspon.ding u-a&for- 
mations of the Z&rank tensor operators is 

EJM = EJ - (l/2) S 

+(S/]S~)(S~-44p’-440=)1r- 

x(J- IMI +1/2), (2.15) (2.18) 

may be found by the diagonahzation of cq_ (2.14) 
(see appendix)_ The condition S’ > 4(P2 -i- Q2) is 

necessary for the states with the ener,oy (2.15) to 
be stable and the corresponding axis to be that of 
the stable rotation_ The critical value JO (for which 
S2 = 4(P2 + Q*)) is the transition point from the 
states E,.,, to those corresponding to .tbe preces- 
sion of J around some other stable rotation axis. 
The harmonic approximation is not applicable near 
the critical points 3,. Therefore, it may be used to 
analyse the stability of any stationary axis but it 
cannot be used to determine the orientation of 
other stationary axes. Classical mechanics or an 
asymptotic approach must be employed for this 
purpose. 

In classical mechanics we write the hamiltonian 
(2.8) in terms of J,_ & J= using eq. (2.5) and find 
the stationary solutions from the equations 

is the rotation operator. OA?. is the Wigner func- 
tion *. The transformed hamiltonian takes the 
form: 

j,= {W, J,} =o, J,= {H, 3.) =o, 

j,= {U, J,)=O, (2.16) 

where { _ _ _ } denotes the classical Poisson bracket. 
The solution of eqs. (2.16) defines the orientation 
of the stationary rotation axes. The analysis made 
in the harmonic approximation (see section 3-l) 
shows that two types of the axes are unstable for 
any J, one is stable for any J and the stability of 
the other axes depends on the J vahre. 

For the sake of simplicity the transformed ham- 
iltonian is written in terms of the operators tim 
containing linear combinations of the operators 
T Lm ad G.m- The orientation of new quantiza- 
tion axes (the stationary rotation ones) may be 
found from the equation 

(J. J- l@_,(% 8, +)IJv J> 

=<J, J@,,(q,8,#)jJ, J-1)=0. (2.20) 

2-Z. Asymptotic approach (see rej fsi) 

The.clas&al equations (2.16) define the orien- 
tation of the stationary rotation axes in a zero-order 

* Our defition of the rotation of the mokcuhr framt differs 

from that of Edmonds. but that of the Wigna function 

coinddcr with the latter (sa rcf- [IZD. 
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Table 1 
Stationary rotation ax:es-for the XY;Y, molecules and the~corresponding energy E, of the state with 1 M 1 1 I.- -: I .- 
fis .-. Axis orientation -. Permissible Stabilitjr 4E,y(A-CC)&?/-1).. -. - 

values of region ._ :~ 
parameter 8 

cp=~~2,+=o,cos2e=l~6 
ql=+=0,cos28=2/6 
e=1;/2. +=0,~~2~=-11/s 
cosZ~=l/(l-26/3), 
c0Ge = 1~3 + l/6. + = 0 

Its solution defining seven types of stationary rota- 
tion axes is given in table 1. The orientation of 
each axis varies with J and depends on the param- 
eter 

S=16JiZp -&(J-1)(2J--), (2.21) 

which is due to the tensor structure of the hamilto- 
nian (2.8) *. 

The average value of &, from eq. (2.19) is used 
as the zero-order approximation for the energy of 
the rotational levels with the given J 

(2.22) 

Here M is the angular momentum projection on 
one of the stable rotation axes whose orientation is 
defined by the angles rp, 8, +_ 

Formula (2.22) is applicable to states corre- 
sponding to the precession of the J vector around 
the stable rotation axis. It yields a fairly good 
approximation for levels ~5th such 1 M 1 that (J - 
] M I) -=ZZ J since *the condition (2.20) remains valid 
for these levels with an accuracy up to J-‘. This 
group of levels forms a well-defied cluster struc- 

* The condition of zero coefficients before b+ and b in the 
transformed hamiltonian (2.19) in the harmonic approxima- 
tion may be used to fmd the orientation of the stationary 
axes. It is easy to show that this condition coincides with 
that of eq. (2.20). 

ture inside the rotational multiplet. Table 1 pre- 
sents the energies E, of the states with the maxi- 
mal projection 1 M I= J for all the stationary axes. 
The approximation (2.22) is not applicable to un- 
stable axes. 

Although the asymptotic approximation is very 
simple it enables one to obtain reasonable numeri- 
cal es*tiations for some energy levels as well as to 
describe the. cluster structure of the whole rota- 
tional multiplet. Let us consider the rotational 
multiplet with J= 20 for the XY,‘Yz molecule 
(6 = 3.423) as an example. Table 2 shows exact 

(numerical diagonalization of eq. (2.8)) and ap- 
proximate energy levels of this multiplet. The clus- 
ter structure of the multiplet obtained by the 
asymptotic approximation (2.22) is rather com- 
plicated_ It includes four-fold degenerate clusters 
(Cr=, M) and three types of two-fold degenerate 
clusters (Cc, M), (cl; M), (G, M). The clusters 
(C;, M) are well defined for the projection 1 M 1 
= 20, 19, 12-8. At 1 M j = 20, 19 ‘&e energies of 
these clusters decrease and at f M 1 = 12-8 they 
increase as 1 M 1 decreases. Actually the clusters 
(CT=, 20) and (Cr’, 19) are formed by splitting the 
eight-fold degenerate cluster (C,, 20) since the J 
value is close to the critical Je one (see section 
3.3). The energy level patterns in the transition 
regions (see section 32). do’ not correspond- to an 
unambiguous cluster- structure. Thus the clusters 
(C& 14) and (C$ 13) may be equally classified as 
the splitted cluster (CJ=, 18), and the Bz level from 
the cluster (Gf, 16) together with the single B, 
level may be treated as the (C& 7) cluster. 



Table 2 

Relative energies of the levels of the I = 20 rotational multiplet 
of the XY;Yt- molecule..(A - C)/2 =lOra cm-‘. -t = 0.3333 
10e6 cm:‘_ The absolute~~agy of. the uppermost level of 
rotational muhipfet equal to 0.657556 cm-l is taken to be 
unity 

3. Rearrangement of rotational +-uctqe of $ckopic : 
modXications of h&cuIe Xy, under- e&&&on of 
state!3 WithhigKJ 1 T --- 

. . 
‘I 

Let us consider. the rotational. stnkture Of & 
isolated vibrational state of the XYTY, molecule. 
The rotational. multiplets with. ~3.B.1 are qf 
$mary interest to us. The multiplet &-ucture isto 
change (as follows from the hamiltonian (2.8)), 
provided parameters satisfy the con@tion (A - C) 
= 13’ (i.e. 6 = 1). The approximate eXpressions foi 
the. energy EJ of the levels with the.. maximal 
projection on the stationaryaxes obtied in set- 
ti.on 2 enable. one to describe the qualita&e 
changes of the multiplet structure Fig_ 1 shows de 
E, dependence on the parameter 6 (eq. (2.21)). Let 
us use the harmonic app&kxXion to determine 
more precisely the positions of clusters with nearly 
maximal porjections and to.define the stability of 
the specific axes. 

Type of sym- Levelenergy 
cluster metry exact . =ymp hXItlOniC 

VdUC totic approxi- 
approxi- mation 
mation 

(C;, 20) A 1_OOOOO 

J% lX@OOO 
09991 

cc;. 1% a 
Bl 

(C;. 18) A 

B3 
(C;: 20) B, 

A 
cc;. 17) B, 

a_ 
cc;. 19) Ba 

B. 
(C;. 16) A- 

R; 

0.71062 
0.71062 0.7071 

0.47484 
0.47483 0.4666 

0.41170 
0.41164 0.4060 

029107 
0.28992 02717 

013024 
022487 0.2030 

0.16430 0.14586 0.1170 

0.11143 - 
0.07070 
0.05416 0.1235 

- OBO606 
- 0.01502 

0.0375 

- 0.08698 

0.9999 . 

O-7095 

0.4190 

0.4105 

0.1286 

0.2166 

-0.1618 

a_ 
CC;. 8) A 

4 
cc;. 9) a_ 

B3 
(C;. 10) B, 

A 
cc:. 11) Jh 

a_ 
(cj. 20) B, 

A 

(c;l. 12) B, 
A 

(q.19) Q 

(C&13) 2 

R3 
(Cs, 14) A 

(cF=. 19) 2 

RI 

: 
(C-r=. 20) A 

Rl 
B2 
B3 

- 0.08847 
- 0.0497 

- 0.16387 
- 0.16502 

- 0.1353 

- 0.18374. 
- 0.18374 

- 0.1871 

- 023696 -02158 
-023699 
-027738 
-0-27741 -03011 

-0.31875 
- -0.31881 02879 

- 033877 
- 0.33888 

- 03474 

- 0.41073 
- 0.41073 - -0.41381 03548 

-0_41381 
- 0.47261 
-.0_47261 1 
-0.47285 o - 

4414 

- 0.47285 

- 

-0.1851 

- 02951 

- 

- 

- 0.4623 

4E,/(A-CYf2J-1) 

-1 
Fig. 1. Relative positions of the extreme clusters (solid lines) 
and .the transition regions (dotted lines) in the. system of 
rotational levels of the XYTYs molecule. Indices in parentheses 
denote the axis of rotation. 



Table3- 
Hamiltonian (2.8) in the harmonic appr6XiUlatiOU 

Preixssion around c axis : 

P = (l/S)(A - CHZJ(2J -l)]‘fl, Q=O. S=(l/2)(A-C)(ZJ-1)(3/2-S) 
o_ = [(S, - SXS, - S,p?* 6 1.2 = (1/2)(3~[2J/(2J- l>l’fl) 

Q<Scl: 
E ,~=(1/2)(2J-l)(A-c)f-(l+5)(5-S)/10+7/4+o,(J- IM[+-l/2)] 

2<sccQ: 

E ,,,,=(l/2)(2i-l)(A-C~-(J+5)(5-S)/10+7/4-~o,(J- [Mj+1,‘2)] 

Preession around Cz, 6 > 1 

P = (1/4XA - C)fIzJ(ZJ - l)]‘r-. Q = 0. S = - (l/ZXA - C)S(2/ - 1) 
OF = (6’ - cs;y, S, = [2J/(2J - l)]‘r- 
E,,=(l/ZXA-CXZJ-l~S(J+5)/10-~_~(/- lMI+1/2)] 

Precession around C,I 

P = -(1/8)(X - C)[2J(tJ - l)]=‘. Q=O. S=-(A-CXlJ-1X3/2+6) 
or = [(S + 6,X6 -i- S*)]‘fl 

Precession around Cy=, I< 6 c 3 

P = -(A - C)(1/166)(36’-3S-2~2j2J(2I-1)]“=, Q = 0 
S=(A-C)(1/8S)(S’+36-2)(2/-l) 
or= = (1/4S)[(S’-F36 -2)2- S,‘(3S” -3s -2)2]‘/1- 
E,,=(1/2)(A-C)(2J-1~-(J+5)(1/4.06)(6’+106+5) 

+7(S+1)/8S+o,,(J- lMj+1/2)] 

Precession around C, axes. 6 z- 3 

P= (1/4)(A-C)(l-~os2cp-2/S)[2/(2J-l)]’~ 
Q = (1/4)(A - c)cos 8 sin 2rp[2J(2J-l)]‘~ 
S=(A-C)(2J-l)(S/3-l/S) 
2= (2/3S)[(S’-3)2 -3S,‘(S’i3)]‘r- 

,~w=(1/2)(A-C)(2J-l~-(J+5)(S/15+1/2S) 
-h7/2S+o,,(/- IMj-F1/2)] 

3-I. CZuster structure of multipiet in harmonic 
approximation 

The harmonic approximation is valid for the 
precession of the angular momentum vector J 
around the stable rotation axis- In contrast to the 
asymptotic approximation the harmonic one for 
the hamiltonian (2.19) takes into account &, and 
I?* z in the linear approximation over the (J - 

IA4 J) value. The hmonic approximation yields 
accurate energies for some clusters with a nearly 
maximal f M I_ The energy levels forming each 
cluster are strictly degenerate in the zero-order 
harmonic approximation. Nevertheless, a reasona- 
ble estimate of the splitting of-levels inside a 

cluster may be obtained using a properly symme- 
trized wavefunction of the harmonic approxima- 
tion (see section 3.4, eqs. (3.15)). 

The results of the application of the harmonic 
approximation to the hamiltonian (2.8) are given 
in table 3. 

The harmonic approximation yields more accu- 
rate results than the asymptotic one for those 

states which correspond to the precession of J 
with a nearly maximal projection. Otherwise, the 
asymptctic approximation is better for the clusters 
with 1 M ] significantly different from j (see the 
comparison between :the exact .and approximate 
calculations in table 2 r&d fig. 2). Both methods 
use the smallness of the matrix elements of the 
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Fig 2_ The dependence of the lower energy levels on 6 for the I = 20 rotational multipler of &e XYgY2 molecule in the vicinity of the 
critical point k The energy El of the lowest energy level is taken IO be unity. -t The exact numerical solution for the 
hamiltonian (2.8). - - --I The asymptotic approximation of cq. (222). . ..I The harmonic approximation (see table 3). -----: The 
energy corresponding to the unstable rotation axis C’-‘ (see table 1). The doublet splitting is nor show% 

hamiltonian (2.19) with I AMI z 3. The asymp- 
totic approximation additionally assumes that the 

(1+1/4J~5~3+1/12J) and C, (6>3+ 

l/W) axes are separated on S by an interval of 
matrix elements with AM = -t_ 2 are small. There is 
no such limitation in the harmonic approximation 
but the diagonal matrix elements of the hamilto- 
man (2-19) are taken into acuxrnt 0nIy in the 
linear over (J - 1 M I) approximation. Further im- 
provement may be achieved by using three-term 
recurrence relations [13j. This approach enables 
one to take into consideration diagonal and non- 
diagonal (with AM= -+2) matrix elements of the 
hamiltonian (2.19). The harmonic approximation 
is valid in a wide range of the parameter 6. Never- 
theless, it is inapplicable in the transition reggons, 
i.e. close to *he critical points A and B (fig. 1) and 
those where the q and Gz axes become stable 
(6 = 1, 2). Therefore, the regions of the stable 
precession around the C: (0 G 6 -z 1 - l/W), C-“-- 

order J-‘_ Indeed, all the energy levels of the 
given rotational multiplet vary continuously with 
J. The width of the transition region on the 6 line, 
where the harmonic approximation is a fortiori 
inapplicable, was shown to be of order J-‘13 1141. 
The harmonic approximation works much worse 
for the clusters (C-r=, M) and (C3, M) than for 
(CT- .v- =_ M) since *-he equivalent axes btig about 
a stronger intro-cluster splitting 

3.2. Modification of multiple cluster structure under 

excirarion of states with high J 

The analysis of the multiplet cluster structure 
performed in sections 2.2 qd 3.1 as well as results 
of the numerical calculations show that the rota- 
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tional multiplets with small J (small S) possess the 
rotational structure typical of an asymmetric top. 
This top is characterized by two stable rotation 
axes for maximal and minimal moments of inertia 
and by an unstable one for intermediate moments 
of inertia. The increase of the quantum number J 
results in new stable rotation axes and in the 
change of the stability of the old ones. Only the C; 
axis corresponding to the minimal moment of 
inertia remains unchanged. The states with the 
maximal projection 1 M 1 = J on the stable rota- 
tion axis (the solid lines in fig. 1) form the extreme 
clusters. The clusters with smaller 1 M 1 are posi- 
tioned below (for the axes Cz, 6 > 2; CT, C,X) or 
above (for the axes Cf, 0 ,( 6 < 1; CJ=, C,) the 
extreme one. The energy levels close to the energy 
of states with the projection 1 MI = J on the un- 
stable axis (the dotted line in fig_ 1) form the 
transition region between the clusters of different 
types. The dotted line is a border for the clusters 
of a given type since the orientation of the unsta- 
ble axis corresponds to the saddle point of the 
rotational energy surface. The dotted line corre- 
sponding to the unstable axis C-“= in fig. 1 is a 
border separating the (C,, M) and (C-y--, M) 
clusters. The dotted line corresponding to the G(l 
( 6 -Z 2) and Cxz unstable axes separates the (Cx=, 

M) and (C;, M) clusters_ Finally, the dotted line 
corresponding to the Cg(O < 6 c 1) and C”’ axes 
separates the (CT, M) clusters from the (G, M) 

ones. 

each other and both types of clusters are present in 
the overlapping part of these regions. There are 
also two types of (cf, M) and (Cz, M) clusters 
present in the overlapping part of -regions 1 and 2 
due to the stability of both the nonkquivalent Cz 
and C: axes for the corresponding 6 values~ 

Sometimes, the states with I M I -Z J are better 
des_cribed by the precession approximation than 
those with the maximal projection on the same 
axis due to the local instability of that very axis. A 
general tendency arises for the XY;Y? molecules: 
there appear higher-degenerate clusters with the 
increase of the quantum number J_ 

3.3. Critical points 

As shown earlier, six types of stable rotation 
axes (see table 1) may exist in the XYTY2 molecule 
for different J (or 6). Thus, the six types of 
clusters are present in the rotational multiplets of 
this molecule. Six regions in the (E, 8) coordinates 
are shown in fig. 1 corresponding to the existence 
of different types of clusters: 

(1) Two-fold degenerate clusters (Gz, M). 

(2) Two-fold degenerate clusters (C$, M). 

(3) Two-fold degenerate clusters (Gz, M). 

(4) Two-fold degenerate clusters (C$ M). 

(5) Four-fold degenerate clusters (CJ=, M). 

(6) Right-fold degenerate clusters (C,, M). 

The Cg axis and the corresponding clusters are 
listed twice because there are two unlinked stabil- 
ity intervals over 6 which correspond to regions 3 
and 4 in fig. 1. Regions 3 and 4 partly overlap 

We now consider in detail the critical region 
(close to the points A and B) on the curve repre- 
senting the dependence of the extreme cluster en- 
er,T on the parameter 6 (see fig. 1). Our aim is to 
expkain the abovementioned regular tendency in 
the change of the cluster structure of the multiplet 
The precession frequency vanishes at the critical 
point. This means that the precession changes 
qualitatively upon passing through this point. In- 
deed, we have seen earlier (section 3.1) that to the 
left of the point A the J vector precesses around 
the c;I axis whereas to the right of the point A it 
may precess around any of the two equivaIent CJ’= 
axes. The true motion of the J vector is, naturally, 
the superposition of these precessions. Symme- 
trized wavefunctions have to be used, correspond- 
ingly, in the quantum problem. The same char- 
acter of the J vector motion is observed to be left 
of the point B. To the right of it each of the two 
C-“= axes transforms into an axis of the C, type. 
Finally, we have four axes around which the J 
vector may precess independently and its true 
motion is their appropriate superposition. Thus, 
the number of stable axes doubles at the points A 
and B and the degeneracy of the respective clusters 
doubles as well. 

Now consider the transition region in the classi- 
cal limit in more detail We use the hamiltonian 
(2.8) and write the rotational energy dependence 
on the angles 8 and 9 as 

E(8, F) = (1/2)(/t - C)J%(b’, q), (3-l) 
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_~ X [cos4B -I- sin48(cos4rp + 5in4q7) - 3/S] _ 

0 and Q, define the ‘orientation- of the -angular 
momentum .vector J in the molecular .frame, i.e. 
the orientation of the -axis of molecular rotation. 
The minimum of the function ~(0, 9) corresponds 
to the orientation of the stable rotation axis. 

To study the critical region close to the point A, 
we expand r(B, q) in a series over 0 near 8 = 0 up 
to terms proportional to o4 

e(f?, g+=e,,(J)+(l -J’/J~+cos’~)B’ 

where 

+ [7/8 - (1/3)cos’q 

+ (l,‘S)cos%p] 8”, (3-2) 

E,(J)= (1/2)(/f -C)&)(J) 

= (l/2)(,4 - C) J*( J’/Wj - 1) (3-3) 

is the energy of the molecular rotation around the 
Ci axis. J<= fi(A - C)/32mt is the critical 
value of the angular momentum at the point A. 

For J<J,, 0=0 is the minimum of the function 
(3.2) and the expression (3.3) gives the energy of 
the lowest-energy level of the multiplet with an 
accuracy of order J-l_ For J>JA, 8=0 becomes 
a saddle point and the minima correspond to two 
orientations of the rotation axes (Be, 7r/2) and (0,. 
391/2), with 0, = [( J’/Jz - 1)/2]‘fl, and 

(3-4) 

It follows from eqs. (13) and (3.4) *hat the first 
derivative dE/dJ is continuous whereas the sec- 
ond one d’E/d J’ has a discontinuity at J = JA 
with a jump equal to (A - C). 

The change in character of the rotational mo- 
tion may be visualized by the classical trajectories 
~(0, 9) = l at both sides of the critical point k 
Fig. 3 shows the classical trajectories of the top of 
the J vector around the north pole of a sphere of 
radius J_ The existence of the symmetry axes C$ 
and Cl implies that absolutely the same trajecto- 
ries are positioned close to the south pole of the 
sphere. In the case of. J <J, these trajectories 

J ’ & 

form a set of curves closed around 8 = 0 and 
stretched in the .direction of the F axis. The 
stretching of these curves increases as J ap- 
proaches JA. For J > JA the pattern of the classical 

trajectories abruptly changes. Three sets of closed 
curves are formed instead of one. Two of them are 
local sets centered at (0,-,, z/2) and (f?,, 3sr/2) (the 
points c and c’ in fig. 3)_ The third set is a global 
one embracing these points as well as the north 
pole. The three sets are separated from each other 
by a separatrix, i.e. a trajectory with enera l = z,, 
passing through the saddle point. The separatrix 
separates the local trajectories from global ones. 

We now expand ~(0, 9,) in the critical region 
close to the point B. We use the expansion near 
one of the four equivalent axes orientations speci- 
fied by the angles (8, = (1/2)arccos(l/6), cpe = 
~/2)_ Assuming Y and + to be the deviations from 
0, and q+, we have 

c(v, +)=Z,(J)+(8/3)v2 

i (l/2)(1 -d/J;)+ 

- (2&/3) ZJ# + (l/3) (i”, 

where 

_(3_5) 

E&J) F (1/2)(A - C)J’Zo(J) 

= -(1/6)(/f - C)J:(l -t- 65’/5J:) (3-6) 
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is the energy of the rotation around the considered 
axis, 1, = m(A -‘C)/32mt is the critical an- 
gular momentum at the point B. For J > JB the 
minimum ~(0, 0).of the function (3.5) corresponds 
to the orientation of the CJ” axis and to the energy 
(3.6) For J > JB this minimum is transformed into 
the saddle point and the two equivalent axes be- 
come stable ones whose orientation is defined by 
the angles 0 = (I/2)arccos(l/S) + vo, q = =/2 & 
+. (the points d and d’ in fig. 4) where +,-, = 
(J’/.J; - l)lr-, v,, = (l/4&$, and 

character of the motion of J near tbe~critical 
points A and B is similar_ ce.main difference is 
that for point B. there are- two sets of trajectories 
mirror-symmetrical with respect to the IX plane. 

E(J)=&(J)-(I/~)(A - c).P(J2/.r;-i)2_ 

(3-7) 

The comparison between the energies (3.6) and 
‘(3.7) dermed for both sides of the critical point 
shows that the first derivative dE/d J is continu- 
ous but the second one, d’?E/dJ’, has a discon- 
tinuity with a jump equal to (A - C). 

The classical trajectories for the transition re- 
gion close to the point B are shown in fig. 4. The 

J >JB 

Fig. 4. Classical trajectories in the vicinity of the critical point 
B. 

A complete description qf the transition region 
for the quantum problem may be made employing 
the method proposed in ref. [14], in which a simi- 
lar transition was investigated for-a model many- 
particle system. The main features of the quantum 
description of the transitions mentioned above are 
the following. The independent precession of the 
vector J around the equivalent axes is impossible 
in quantum mechanics due & tunelling through 
the potential barrier separating the two equi- 
librium positions c and c’ (fig. 3) or d .and d’ (fig. 
4)_ This tunnelling leads to the splitting of clusters 
formed by states with the same projection M on 
the equivalent axes. This splitting is maximal in 
the transition region where the barrier is narrow 
while the turning points a and a’ are close to each 
other and decreases as .I increases. To the left of 
the transition point the splitted levels smoothly 
transform into states with different projections on 
some other rotation axis (see fig. 2). 

3.4. Intensities of rovibrational transitions 

Up to now we have considered only the re- 
arrangement of the energy levels of the rotational 
multiplet due to the axis shifting. We now study 
the effect of axis shifting on the intensities of 
electromagnetic rovibrational transitions between 
non-degenerate vibrational states. Rovibrational 
transitions in the Y; band of tetrahedral molecules 
are forbidden in the dipole approximation. But 
they may be studied by Raman scattering or by 
more complicated many-quantum processes. For 
example, recently the CARS technique has been 
widely employed to obtain high-resolution spectra 
of the Q-branches of the Y, bands for a number of 
tetrahedral molecules 1151. 

The intensity of the Raman kattering is defined 
by the matrix element 

(v, JM’nl&ju’, JM’n’) (3-g) 

from the polarization & between the levek of. two 
rotational multiplets characterized by the quantum 



numbers tiM'n- -and v=IiWn’ (where M’ is the 
angular~ momentum projection on. the laboratory 
fixed frame, v; v’ are the vibrational quantum 
numbers)_ The polarization -& depends on the 
vibrational coordinates only: Effective rotational 
hamiltonians have to be usually used in applica- 
tions which may be obtained by a partial di- 
agonalization of the complete molecular rovibra- 
tional hamiltonian These effective hamiltonians 
are different for different vibrational states. The 
corresponding transformation results in the trans- 
formed operator 

0 

iTi= c C&in, 
D-O 

(3-Q) 

where &n depends on the angular momentum op- 
erators Ji with the total degree equal to 2Q. 

A characteristic quantity in transition to effec- 
tive hamiltonians is the Born-Oppenheimer 
parameter K = (mJm)‘14 where m, is the electron 
mass. The coefficients Cc in eq. (3.9) may be 
presented as ca Oc Key_ 

Transitions between the levels of the rotational 
mulfiplets belonging to different vibrational states 
of the XY,*Y2 molecule may occur either without 
or with some change in orientation of the preces- 
sion axis. In the first case the operator h, makes 
the main contribution to the sum (3-Q) and all 
other terms may be omitted. Generally, all terms 
of eq. (3.9) are important for transitions with a 

change in orientation of the~precession axis_.kow~ 
let us consider the fir-k term in: eq. (3_9)_--Thc~-~.~. 
corresponding matrix element (3:s) ii -factor&d 
and the transition intensity becomes proportional 
to ._-. 

G’,(n;JZ’)T j(JM’nlJ~n’)~‘, .. ,., (3.iO) 

The factor 0,(n, n’) describes the overlap of the 
rotational wavefunctions (210) with ihe +ant;;m 
numbers n and n’ corresponding to different 
orientations of the precession axis_ 

We use the function @,,, in the harmonic ai- 
proximation to calculate the overlap integral 0,. 
For the sake of simplicity we consider only states 
with the maximal projection M = J on the preces- 
sion axis. According to (110) we introduce the 
factor 

(3-U) 

where the function @$‘(S, q) for the ground vibra- 
tional state corresponds to the precession of J 
around the axis i (i = C;, C;) and the function 
a:;)( S’- q) for the vibrational state V, corresponds 
to the precession around one of the six stable 
rotation axes listed in table l_ The functions be- 
longing to the upper and lower muhiplets have 
different values of the parameter 6 in accordance 
with section 2. 

Table 4 
Eigenfunction of different states of the multiplet corresponding to the vector J precession around stable axes. The angles 8. cp arc 
listed in table 1 

AxiS Stability Eigenfunctioil @p(q) f(6) 

c: 

Ci 
0<6<1.6>2 W=Y”‘exP( - /q2/2> I(s-~,)/(~--6,)ltr- 
6=-l (~,k;>‘+xp(- fq'/Z+id'Eq/2) KS-63)/<6+63)1'" 

C,x O,zSSGoO (I/=-)“%xp[ - /( q + zY~/z)3/2] [(s+s,)/(s-!&)]'~ 

C‘-‘ l-=8-=2 (//=)"~~p(-_qz/Z;iB1'/2q) 

1 

6’+36-2-6s,(36’-336-2) lr- 

6’+36-2;6,(36”-36-2) 1 
c3 s=-3 (//5:)1~ocXp[-(/~ig~q+.B~‘/2)z~-iglJJ” 

(26-3)[(6’-3)=-336;(S’+3)l’/2 

(26-3)(6’-3)-36;(6’-26~3) 

=’ This function ha5 ?I non-zero value of g( 6) = 
(1/2)66,[3(6’-9)y 

(26--3j(6’-3)-36a(6’-26+3)- 



_ 
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Table 4 gives the functions @,, describing. the 
precession of-~ J around each of the six stable 
rotation axes. These functions are obtained by 
transforming the function (A-11) by the molecu!ar 
frame rotation described in section 2.2. Thz ex- 
plicit form of the rotational functions enables one 
to easily calculate any of the 12 overlap integrals. 
Given below are the formulae for some of them. 
The overlap integrals for which the precession axes 
are mutually orthogonal have the form 

_[L(m)‘“+pJ”]-’ 

Xexp -Z 
( 

2 L(S)L(S’) 

4 fl-(S)+LWJ ’ 1 

= [pl)‘n+ ;iEJj’ 

( 
7 

Tr- 

xexp - 4 A(S) $.(S’) 1 ’ 

4 L@)+f,.(@) ] 
(3.12) 

These and all other overlap integrals with different 
precession axes decrease as exp( - aJ), u = 1; with 
increasing J_ For the overlap integrals the coeffi- 
cient a may be reduced to zero for the cluster 
(C-V’, J) or (C,, J) in the vicinity of the critical 
point A or B. For example, the overiap integral 

= [+si’“- pci’l-’ 

Xexp -- 
( 

J [arccos(l/k?)]’ 

4 A(S) +f,W) 1 
(3.13) 

increases for. 6’ --, 1 (the critical point A)_ The 
overlap integrals of the wavefunctions of. the same 
type of rotational clusters belonging to different 
vibrational states are not exponentially small since 
their precession axes coincide. For i = k expres- 
sion (3.11) is reduced to 

We compare the overlap integrals calculated 
from eq. (3.10) with the exact numerical functions 
of the hamiltonian (2.8) (the parameters (A - 
C)/2 = lo-’ cm-‘; t = 0 in the lower multiplet 
and t= 0.55 x lob6 cm-’ (6 = 1.23) in the upper 
multiplet) with the corresponding integrals calcu- 
lated with the rotational functions taken in the 
harmonic approximation. For this pur&ose we 
construct a wavefunction of a definite type of 
symmetry in the harmonic approximation. 

The required function for the two-fold degener- 
ate clusters (C:, J) and (Ci, J) has the form 

@j;;(q) = (2 + a2S)-‘r- 

X(@jj’+o@jz,), i=x, 2. (3.15) 

where S is the .non-orthogonality integral and 
(T = 2 1 depending on the symmetry of the func- 
tion. The overlap integrals for the states of A-type 
symmetry calculated using the approximate func- 
tions for J = 10 are: 

O:;-x’(O, 1.23) = 0.95 x lo-‘, 

0:,x-“‘(0,123) = 0.9966. 

The exact q-dues of the corresponding overlap 
integrals 0, (li, 12’) are: 

O,,(l, 6) = 3.0 x lo-‘, 

0,,(6,6) = 0.9975. 

We now consider the next terms in the transi- 
tion operator (3-9). The matrix element of the 
operator k, for states corresponding to different 
precession axes is also exponentially smaJ.l. Since 
C, a tc4, the contribution of the second term of the 
sum (3.9) to the transition intensity may be ne- 
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glected As 52 .increases; the exponential factor 
grows gradually whereas the -pre-exponential de- 
creases proportional to BP_ l%e maximal contri- 
bution should- be made by those terms (3-g) for 
which Q is comparable with the effective dif- 
ference between the projections of the angular 
momentum of the initial and final states on the z 
axis of the molecular frame. If -the orientation of 
the precession axes for these two states differs by 
an angle B and each state has a maximal projcc- 
tion on the quantization axis, 2Q = AM = J(1 - 

cos 0) = J. From this it immediately follows that 
~~cJz a exp[ --J ln(l/~)], if i a l/~. Thus the 
contribution of the terms of eq_ (3-g) with 53 > 1 
does not change the estimate of the transition 
intensity calculated by taking into account only 
the operator G,,. This irnplies that a new approxi- 
mate selection rule is valid for rovibrational transi- 
tions with a sufficiently high J value. This selec- 
tion rule is due to the different orientation of the 
rotation axes in the molecular frame. 

The possibility of a unified treatme&of -the 
abovementioned problems and much -wider : 
rovibronic problems .is due to the fa:ct that. J.& 
critical phenomena are completely defied by the. 
t_vpe of singularity responsible for its ~$pear5nc& 
The critical phenomena play an important part in 
various fields of scienc& and technology investigat- 
ing any considerably non-linear systems. As yet 
the critical behaviour has not be& treated sys- 
tematically for isolated molecules. ., ._ 

The experimental investigation of the &f&s 

4. Conclusion 

The detailed investigation of the rotational 
states given in the present paper enables us to treat 
a general scheme for the analysis of critical phe- 
nomena in isolated quantum systems with a small 
number of degrees of freedom rather than simply 
to find rotational energy levels for one concrete 
example of nearly spherical tops. The hamiltonian 
(2.6) for the xY,Y* molecule may be treated in the 
same way as that of eq. (2.8). The results are 
qualitatively different due to the symmetry dif- 
ference for eqs. (2.6) and (2.8). The hamihonian 
(2.6) posscsscs, for example, two-fold and six-fold 
degenerate clusters in the rotational multiplet 
rather than four-fold and eight-fold ones as the 
operator (2.8) does. The six-fold degenerate clus- 
ters correspond to the orientation of the stable 
rotation axes in the molecular symmetry planes 
(the C,, molecular symmetry group). The hamilto- 
man (2.6) has critical points of a new type_ At the 
same time the critical phenomena themselves are 
characteristic not only of both types of aspherical 
tops (XYZYz_ and XY3Y*), but also of a wide class 
of other molecules 

mentioned in this paper may be realized for Ccl, 
or 0~0, with asymmetrical isotopi&ubstitution of 
Cl or 9. Recent expcrimen~ stucii@of hi&&so- 
lution spectra of C”Cl, [16] allows one to hope 
that other isotopic modifications of this molecule 
would be studied in near future. 

Appendix. Diagonalization of the hamiltonian in 
the harmonic approximation 

Let us make a linear canonical transformation 
of the hamiltonian (2.14) with new boson oper- 
ators 13’ and B 

b=u$+v$+, b*= P/3’+ v*p_ (A-1) 

Bi and j3 satisfy the standard commutation rela- 
tions 

[B’. S-J = 1, IS, BI = Is+, S’l =cJ- (A-2) 

We demand the coefficients before fi’fii and j9B 
in the transformed hamiltonian to be zero. These 
two conditions, together with the relations (A-2), 
may be written in the form of a system of the 
algebraic equations 

2P(]u]‘+ /v]‘)+S(U~++*u*)=o, 

2iQ(]u]z+ ]uJ’)-I-S(uu--*u*)=O, 

]u]‘- ]v]‘=l. (A-3) 

defining the coefficients of the transformation 
(A-1). 

We take the coefficients u and v in the form 

u = e’“chq, u = e’%hq_ (A-4) 

Substitution of eq. (A-4) into eq. (A-3) yields 
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the following solutions 

1 [( )I 

In 

u= - ISI 
2 (s2_4p2_4Q2)1/2~+1 

eia 
’ 

ISI 1 [( ISI )I 
l/2 

u=s z (s’_44p2_4Q2)lr- -1 eis* 
tg(a + B) = Q/p, (A-5) 
which enable one to represent the hamiltonian in 
the boson approximation in the form of eq_ (2-15). 

We now express the wavefunction @,,%, for the 
hamiltonian (2.15) for the lowest state with the 

projection M = J through the vacuum function IO) 
for the boson operators bi and b. The function 
@,, satisfies the equation 

/3& = (u*b - ub+) @,, = 0. (-4-6) 

It can easily be verified that the normalized solu- 
tion of eq. (A-6) has the form 

@,, = (l~l)-‘~exp 
( 
Gb’b’) IO)_ (-4-7) 

The function (A-7) allows one to easily calculate 
the matrix elements of the operators containing 
the boson operators bi and b for the states corre- 
sponding to the precession around a given axis. 

The coordinate representation proves to be use- 
ful for calculating overlap integrals of wavefunc- 
tions corresponding to the vector J precession 
around differently oriented axes. For this purpose 
we introduce a dimensionless coordinate q by the 
relation 

b+= (l/fi)(q - d/dq), 

b= (l/fi)(q+ d/dq). (A-8) 

We put (A-8) into the equation H@,,,, = E@,&, 
with the hamiltonian (2.14) and transform the 
so-obtained equation by the substitution 

%zJ.w(q) = *(qkxp( -i&q2) (A.91 

to the form 

S--P d’q t Sz _ 4~2 _ 402 

2 dq2 2(s - 2Pj- q+ 

Eq_ (AJO) can describe small precessions near 
equilibrium, q = 0, if (S + 2P) and.(S ---2P) have 
the same sign and .S’ - 4P’ > 4Qz_ In-the kordi- 
nate representation the wavefunction (A-7) of the 
M = J state has the following form 

@k(q) = (I/=)“” exp[ - 0/&f+ ig)q21 - 
(A-11) 

where 

f= (S’-4p’-4Q”)‘/2 

s-2P 
, g’A s_zp- (A-12) 

Thus, the linear canonical transformation (A.l) is 
reduced to a change of mass, force constant and 
phase of the wavefunction of the oscillatory mo- 
tion. 
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