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Nonlinear effects in rotational spectra of molecules and atomic nuclei caused by a cen- 
trifugal distortion for high values of an angular momentum quantum number J are 
investigated. The theoretical analysis is based on a new expansion form of the effective 
rotational Hamiltonian. It is shown that qualitative changes of rotational motion may occur 
in the rotational spectra for some value J, of the quantum number J. These phenomena which 
are in some sense analogous to the macroscopic phase transitions are called critical 
phenomena and correspond to bifurcations in classical mechanics. The classification of critical 
phenomena for a purely rotational motion is given. This classification is based on the concept 
of a local symmetry group (li. There exist five types of critical phenomena in the rotational 
spectra. The local critical phenomena occuring in a bounded region of the rotational motion 
phase space are specially discussed. In the classical limit the local critical phenomena are 
characterized by a broken symmetry (r, and di.scontinuity of the second derivatiue of the 
rotational energy with respecf 20 J at J,. A universal rotational Hamiltonian is shown to exist 
in the neighborhood of J,, which does not depend on the dynamical systems internal structure 
up to numerical values of its parameters. A phenomenological theory of the local critical 
phenomena is developed with the aid of universal Hamiltonians. The difference between the 
local critical phenomena and second-order phase transitions in macroscopic systems is 
shown. (0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Quantum rotation is a specific type of excitation of microscopic systems: 
molecules, atomic nuclei, and even hadrons, the spectra of which show regular 
sequences of the rotational type states (Regge trajectories). The rotational spectra 
of molecules and nuclei are studied in more detail. The energy levels of these 
systems are grouped in rotational bands having a regular sequence of energy levels 
characterized by the energy and quantum number J of the total angular momen- 
tum. Thus, the rotational states may be extracted rather easily from the complex 
excitation spectra of these many-particle systems. The rotational states are rather 
pure, i.e., they contain an almost negligible admixture of excitations of some other 
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2 PAVLICHENKOV AND ZHILINSKII 

origin, even for high J values achieved experimentally by using modern molecular 
and nuclear spectroscopy methods. From the point of view of the dynamical 
behaviour of the finite many-particle system, deviations from the above-mentioned 
regularity rather than the regularity itself are of primary interest. These deviations 
may be claused by the interaction of the rotation with other degrees of freedom. A 
centrifugal distortion is the simplest effect of such interactions which becomes essen- 
tial for high J values. It is the centrifugal distortion effect that we consider in the 
present paper. 

Electronic excitations are much higher than vibrational ones for most so-called 
“normal” molecules. Therefore they may be described adequately in the Born- 
Oppenheimer approximation. For a nondegenerate ground electronic state it is 
sufficient to consider the following rovibrational Hamiltonian [ 11, 

+; 3’f 6 p:- + U(q, , . . . . q3n-6), 
k=l 

(1.1) 

where J, (a =x, y, z) are the projections of the total angular momentum operator 
on the body-fixed frame axes; z, are the vibrational angular momentum operators; 
and pzB stands for the matrix elements of the inverse inertia tensor, which depend 
on the normal coordinates qi of n-atomic molecules and on the conjugated 
momenta pi. W is the molecular potential energy for the ground electronic state. 
The vibration-rotation interaction is reduced to the centrifugal distortion effects 
being due to the pmP dependence on qi and the Coriolis interaction due to A,. 

There is no analog of the Born-Oppenheimer approximation for atomic nuclei. 
Nevertheless, the formation of the bands with strong (of the order of 100 single par- 
ticles) E-2 transitions between neighbouring states shows the existence of collective 
motion. All nuclei participate cooperatively into this collective motion with internal 
degrees of freedom being frozen completely or partly. During the last 10 years the 
application of new methods of rotational excitation based on heavy-ion reactions 
enabled one to demonstrate new types of rotational bands corresponding to dif- 
ferent nuclear shapes: oblate, triaxial, superdeformed prolate. Light nuclei were 
shown to possess rotational bands based on cluster or quasimolecular states. 

The type of deformation defines the character of rotation. So, it is ery important 
to find the mechanism of the shape changes under an increase in momentum J. For 
example, the deformation of the axially deformed nucleus in the yrast band begins 
to change noticeably when the centrifugal energy in a rotating nucleus becomes 
comparable to the shell energy. It takes place typically at J z 30. The deformation 
changes so that the rotational energy of the nucleus is the minimum. The highest 
moment of inertia corresponds to the rotation of an oblate nucleus around its sym- 
metry axis. Therefore, the nucleus tends to go over from the prolate into the ablate 
state with increasing J in the yrast band but the shell effects hinder it. As a result, 
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Starting from Jz 40, the nucleus becomes nonaxial and the yrast band corresponds 
to the rotation of the nucleus about the axis with the highest moment of inertia. 

Thus, the centrifugal effects are common for both molecules and atomic nuclei. 
The centrifugal distortion is responsible for the structure of rotational excitations in 
these systems at sufficiently high angular momenta. Usually, the centrifugal distor- 
tion effects are treated phenomenologically: the model of a variable inertia moment 
is used in nuclear physics [2] and the so-called reduced effective rotational 
Hamiltonians are used in molecular problems [3]. These Hamiltonians are power 
series of J, operators with a minimal number of phenomenological parameters 
which are necessary for the description of all rotational states with angular momen- 
tum quantum numbers varying from 0 to a given J value. Both methods enable one 
to obtain a rather good description of a great number of rotational levels. For 
example, the rotational band of the ground vibrational state of the H,S molecule 
requires 29 adjustable parameters to reproduce 426 experimentally observed trans- 
itions with J<22 [4]. It should be noted that for J~20 the subsequent terms of 
the Hamiltonian are no smaller than the preceding ones. The convergence of the 
power expansion is worse for an H,O molecule and the corresponding reduced 
Hamiltonian includes terms with higher powers of J,. Such a situation is typical of 
the rotational structure of the ground vibrational states of a lot of molecules, since 
the expansion near J= 0 cannot adequately describe rotational states with high J 
for which the nonlinear features of the rotational dynamics are essential. 

The nonlinear behaviour at high J values results in qualitatively new effects 
which have not attracted much attention until now. The 90” rotation of the angular 
momentum vector J relative to the body-fixed frame under the excitation of the 
yrast rotational band in nonaxially deformed nuclei was studied in Ref. [5]. This 
phenomenon is analogous to the phase transition of the first order. In [6] the 
appearance of the equivalent rotation axes for an isolated band of the live-atomic 
slightly aspherical molecules is shown. This phenomenon is an analog of the 
second-order phase transition. Both effects result in an irregular variation of the 
energy levels in the rotational multiplet’ near some critical value J,. Hereinafter, 
such qualitative effects in the microsystems will be called critical phenomena taking 
into account their difference from the phase transitions in the macroscopic systems. 
The notion “critical phenomena” is taken from the catastrophe theory. It will be 
shown below that each critical phenomenon is associated with a degenerate critical 
point on the classical energy surface of the system considered. 

Until now the critical phenomena have been studied mainly for model systems. 
The Lipkin-Meshkov-Glick model is the most popular [7]. Different approaches 
to the study of the critical phenomena in this model were proposed in works 
[g-10]. The phase transitions for a more complicated collective motion in the 
interacting boson model were investigated in [ 111. 

The critical phenomenon is a qualitative change of the collective motion 
dynamics of the microscopic system, occurring at certain values of its integrals of 

I The rotational multiplet is a set of rotational levels with the same value of quantum number J. 
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motion (the particle number, angular momentum, energy). It manifests itself by 
changes in the spectra of the collective excitations. The study of critical phenomena 
is a principal and as yet unresolved problem in the physics of finite many-particle 
systems. Three main problems arise in studying critical phenomena: 

(i) The is a problem of classification, i.e., determination, of all possible types 
of critical phenomena for a given collective motion of the microsystem. This 
problem may be reduced to the study of the classical energy surface of the collective 
motion and can be solved in the spirit of the catastrophe theory. The bifurcation is 
the analog of the critical phenomenon in classic mechanics. An important point 
here is the introduction of a local symmetry group 6, which characterizes a small 
region of the collective motion phase space. The classification of critical phenomena 
is made in accordance with the group 6. All critical phenomena can be divided into 
two classes: local ones occurring in a finite region of the phase space and global 
ones which do not obey the above-mentioned restriction. 

(ii) Investigations of the excitation spectra near the critical point are a 
problem. It is only natural to call this problem a quantum bifurcation theory which 
can be solved rather easily only for local critical phenomena characterized by closed 
collective Hamiltonians describing the lowest collective excitations of the system. 
These Hamiltonians must be universal, i.e., independent of the internal structure of 
the system up to numerical values of their parameters. The solution of this problem 
is, the construction of a phenomenological theory of local critical phenomena. This 
theory explains the variation of the spectrum of the lowest collective excitation 
close to the critical point. This variation is the only evidence for a critical 
phenomenon in the finite-particle system. 

(iii) The microscopic theory of the local critical phenomena should answer 
the question whether critical phenomena really exist for a given type of collective 
motion in the system considered. If the answer is positive, it should also predict the 
parameters of the universal collective Hamiltonian. 

The first two problems are solved in the present paper for rotation which is the 
simplest type of collective motion. The results obtained are general and do not 
depend on a concrete type of system. 

2. EFFECTIVE ROTATIONAL HAMILTONIAN AND ITS SYMMETRY 

It is convenient to study critical phenomena with the effective rotational 
Hamiltonian 

H~~=h*+Ch,J,+Ch,8JIJs+ 1 h,ByJiZJ8J,+ . . . . (2.1) 
a %B Q%Y 

which is an infinite power series in J, operators. The coefficients of the series 
depend on the internal structure of the system. The Hamiltonian (2.1) may be 
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obtained using the generalized density matrix approach which is used for the 
description of collective excitations of atomic nuclei [12]. For molecular systems 
the expression (2.1) results from the rovibrational Hamiltonian ( 1.1) by using 
contact transformations or any type of operator perturbation theory [3, 131. The 
terms of the series (2.1) converge rapidly if the rotation is adiabatic with respect to 
other degrees of freedom of the system. 

If the internal stae (vibrational, single-particle, etc.) is not degenerate, the 
Coriolis effects are absent from the corresponding rotational band. In such a case 
h,=h+= ... = 0 in (2.1) and Hefl describes the centrifugal distortion effects. We 
shall study these effects for an isolated rotational band whose coupling with other 
rotational bands is negligible.2 For this band the coefficients h, h,,, etc. are the 
c-numbers. 

The effective rotational Hamiltonian for an isolated band based on a non- 
degenerate internal state is invariant with respect to the time reversal and inversion 
of the body-fixed frame. Further restrictions on the coefficients of the Hamiltonian 
(2.1) are due to the point symmetry groups. Both the point group operations and 
the inversion form a symmetry group G of the effective rotational Hamiltonian. For 
nuclei the symmetry group D, is a point group. It consists of an identity operation 
and three rotations through 180” about the X, y, z axes (the C2 symmetry axes). 
Molecular point groups are more various. They contain such elements as symmetry 
planes, 0; n-fold symmetry axes, C, ; n-fold mirror symmetry axes, S, ;3 and their 
combinations. 

We write H,, for an isolated rotational band based on a nondegenerate state as 
an expansion 

Herr= f f {~k,m~2k,m+(-~)m~~,m~2k.~m~ 
k=Om=O 

(2.2) 

in terms of the irreducible spherical tensor operators 

(2.3) 

where J2 =J”, + <, + .I?, J, = J,+ iJy (L is the raising operator and .I+ is the 
lowering one in the body-fixed frame), and f stands for the real functions, the 
explicit form of which is given, for example, in [14]. The t coefficients in (2.2) can 
be expressed in terms of h, h,,, . . . . 

It is suitable to regroup the sum in (2.2) and to write the effective Hamiltonian in 
the form 

Her=; f (J”,g~(J2,J;)+g,(J2,J=)Jm_), 
??Z=O 

(2.4) 

*The ground rotational band of the even-even deformed nuclei meets this requirement. The isolated 
rotational bands are common for either asymmetric or highly symmetric molecules. 

3 The axis S, is identical to Cnh for even n and to C2”,, for odd n if the Hamiltonian is invariant with 

respect to the body-tixed frame inversion. 
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where g, satisfies the relation 

(-l)“g,(J’, -J,)Jm+ =Jm+gm(J’, Jz), 

and depends on the coefficient fk*, and the symmetry group G. 

(2.5) 

In addition to the quantum number J, the energy levels of the rotational mul- 
tiplet are characterized by irreducible representations of G. The fine structure of 
energy levels belonging to one multiplet is called a cluster structure Cl.51 and can 
be described clearly by using the classical precession motion representation. Let us 
introduce a classical stationary rotation axis. Its orientation in the body-fixed frame 
is defined by the equations 

{ ffdr, A} = 0, CI = x, y, z, (2.6) 

where H,, is the classical analog of the Hamiltonian (2.2) or (2.4), and (...} is the 
Poisson bracket. Each stable stationary axis is connected with a set of energy levels 
in a multiplet having, as a classical analog, a precession of the vector J around this 
axis. An unstable stationary axis is associated with a group of levels situated in the 
transition region between states corresponding to the precession of the vector J 
around different stable axes. Sometimes several equivalent stable rotation axes may 
exist due to the symmetry. The precession around these axes is identical up to a 
symmetry transformation. The precession around equivalent axes is independent in 
the zero approximation only. Tunneling through the barrier separating the regions 
of equivalent precessions yields an intracluster splitting. Thus, the structure of the 
rotational multiplet is completely defined by a set of stationary axes and their 
stability. 

We shall distinguish regular and critical changes in the structure of the rotational 
multiplet. In the first case only the orientation of the stationary axes changes, which 
results in the energy level monotonic dependence on J. Critical phenomena are con- 
nected with a change of the equivalent stationary axes number or variations of their 
stability. At J, there takes place a reconstruction of that part of the rotational mul- 
tiplet, which corresponds to the precession around new rotation axes. The 
appearance or dissappearance of equivalent stable rotation axes leads to the 
variation of the cluster structure of the rotational multiplet. 

To study the irregular variations of the energy levels of rotational multiplet, we 
consider the Hamiltonian (2.4) near a given direction which we choose to coincide 
with the z axis of the body-fixed frame. Let us consider a subgroup 8 c G which 
leaves the z axis invariant. We call 8 a local symmetry group. It specifies the form of 
Hefl (2.4) close to a chosen z-axis direction. Let the z axis lie in a symmetry plane D 
which coincides, for example, with the xz plane. The reflection in this plane is 
equivalent to a replacement of J, with --Jr and J, with -J,. Using (2.5) one can 
easily prove that the Hamiltonian (2.4) is invariant under 0 if gz = g,. The 
invariance of the Hamiltonian Herr with respect to the C, symmetry axis requires 
that the only nonzero g, functions are those with m = np, where p = 0, I, 2, . . . . The 
invariance with respect to the C,, axis requires that the g, functions satisfy both 
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the above-mentioned requirements. The Cnh symmetry axis does not yield any new 
features of the Hamiltonian (2.4) due to the equivalence of the Cnh axis to C, (for 
even n) or to Cl,, (for odd n). 

The functions g, are obviously influenced by the total symmetry of the system, 
i.e., by the group G. Nevertheless, it is the group 6 which is suitable for the descrip- 
tion of a part of the energy levels and for the classification of the critical 
phenomena. The concept of the local symmetry group is closely connected with the 
principal difference between the proposed theory of the rotational spectra and other 
approaches based, mainly, on the adiabaticity of the rotation and on the power 
expansion of the rotational Hamiltonian in J,. The sum (2.5) is not a power series 
expansion and it will be shown to be appropriate for the description of a part of the 
states of the rotational multiplet. 

As a first step to solving the problem mentioned above, we use the Hamiltonian 
(2.4) to calculate the classical rotation energy E for that part of the phase space 
which corresponds to the rotation around a an axis of the body-fixed frame. The 
phase space of the rotation motion of the rigid body is formed by three Euler angles 
4, v, @ and three conjugated momenta p,, py, pti. The absolute value of the angular 
momentum J and its projection J,, = pI on the z’ axis of the laboratory fixed frame 
are the integrals of motion. It is suitable to perform the canonical transformation to 
new canonically conjugated variables J and q5, Jz. and qzo, Jz and qz [16]. The 
phase space of the rotating body is really two-dimensional as qJ and q;, are cyclic 
variables. It can be mapped on the surface of the sphere of the J radius with the 
centre in the origin of the body-fixed frame (the phase sphere).4 The point on the 
sphere specified by the coordinates %, cp defines the orientation of the vector J in the 
body-fixed frame. The canonical transformation enables us to relate the conjugated 
variables J= and qz to the angles % and cp. The assumption of J,, = qJ = 0 yields 

Jz cosey, v=q-q;, (2.7) 

provided that qz, is arbitrary. Thus, the trajectories of the top of the vector J on the 
phase sphere are classical trajectories of the system in its rotational phase space. 
From (2.4) we find the rotation energy in the classical limit 

E(%,~)=+,(J,%)+~ f (~:(J,%)e~~~++~(J,%)e-~~~jsitP%. (2.8) 
m=l 

3. CRITICAL PHENOMENA FOR DIFFERENT LOCAL SYMMETRY GROUPS 

Only quantum mechanics can yield an adequate description of critical 
phenomena in an isolated microsystem. However, the classical approach is 

4 In quantum optics it is called the “Bloch sphere.” 
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appropriate for their classification and clear physical interpretation. So, we begin 
discussion of each type of critical phenomenon with the study of the rotational 
energy surface (2.8) close to a given direction of the z axis in a body-fixed frame. 

3.1. Critical Phenomenon for Local Symmetry Group C, 

Let us consider the case of 6 = C,, i.e., the axis z being a generic one. In such a 
case all the g, functions in (2.8) are other than zero. We expand the rotation energy 
E(f3, 9) in series assuming 6 small. We use the Cartesian coordinates g = 8 cos 9, 
q = 8 sin 9 in the neighborhood of the north pole of the phase sphere (the axes 5 
and v are directed along the x and y axes of the body-fixed frame, respectively): 

+a3043+a,,r2r+a,,rr12+a03~3+ .... (3.1) 

E,(J) is the energy of the rotation around the z axis. The coefficients au depend on 
the value of the angular momentum J. Let the z axis be stationary for J = Jo, i.e., 
alo = aol(J,,) = 0. In such a case we can confine ourselves to quadratic terms in r 
and q in the expansion (3.1). Under the J variation the local behaviour of E(& q) 
does not change qualitatively and the system still has the stationary rotation axis 
which can move, however, with respect to its position at J= Jo. This is a regular 
variation of the precession axis. 

The critical point’ J, (if it exists) is defined by both the stationary condition and 
the equation a:,(J,) - 4a,,(J,) a,,(J,) = 0 (the vanishing of the Hessian). The cubic 
terms of the expansion (3.1) are to be taken into account in the neighbourhood of 
the critical point. The expression (3.1) can be transformed by a nonlinear transfor- 
mation to a canonical form of a catastrophe function of a fold type [ 171. It has the 
form 

E(r,?)=Eo(J)-cc(J-J,)5+a,2r12+a3053, (3.2) 

where the coefficients a02 and a3,, are present at the point J,. 
The study of the surface (3.2) shows that the critical phenomenon considered is 

connected with the appearance of two stationary rotation axes, stable and unstable. 
The energy of rotation around these axes is equal to 

E,,dJ) = K,(J) T 
21a(J- Jc)13’2 

&m ’ 

and the directions of these axes are close to that of the z axis. The stationary axes 
arise for J> J, if c( and a3O are of the same sign and for J< J, if they are opposite in 
sign. In both cases the axes coincide and disappear at J,. The stability of the 
stationary axis depends on the sign of a,,. For a,, > 0 the axis with the minimal 
rotation energy E,(J)% stable and for ao2 ~0, that with the maximal energy E,(J) 

5 To be more exact, it is a degenerate critical point in terms of the catastrophe theory. 
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is stable. The singularity of the second derivative of the rotation energy with respect 
to J takes place at J,: E;,(J) cc 7 [J--J,1 -‘j2. 

Figure 1 shows the classical trajectories of the rotational motion to the left and to 
the right of the critical point. The trajectories in the part of the phase space where 
the stationary axes arise are shown. All the trajectories are global for J < J, which is 
due to the absence of a stationary rotation axis. For J> J, the local trajectories 
describe the precession of the vector J around the stationary axis if their energy E 
satisfies E, <E < E,. The separatrix s passes through the saddle point of the surface 
(3.2) with the energy E= E,(J) and separates the local trajectories from the global 
ones. The separatrix is a global curve and, therefore, this critical phenomenon is not 
local. 

3.2. Critical Phenomena for Local Symmetry Groups C,, C,, and C,, 

Let us choose the symmetry plane (T to be the plane xz of the body-fixed frame. 
Then the g, functions in the classical rotation energy E(B, cp) (2.8) are real. 
Expanding E(8, cp) for small t? and retaining the terms up to the fourth order of 
smallness, we have 

Et{, YI) = J%(J) + alot + azot2 + ao2y12 + a3o53 + a125v2 

+ adot + a2,~*q2 + a,q4. (3.4) 

Here E,(J) is the energy of rotation around the z axis. If the coefficient a02 is other 
than zero for all the J values, the stationary rotation axis (if any exists) changes its 
orientation in a regular manner and remains in the plane O. The critical point can 
arise in this case if both the two coefficients a,, and azo become zero. This critical 
phenomenon has been discussed earlier. It is connected with the appearance of two 
stationary rotation axes lying in the g plane. 

X 

J< J, J >Jc 

FIG. 1. The classical trajectories close to the north pole of the phase sphere for the critical 
phenomenon corresponding to the local symmetry group C1. The positive values of the coetlicients a, 
a02. and ajO in the expression (3.2) are chosen. 
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The critical point J,, defined by a,,(J,.) = 0, is a new one. Let us transform the 
expression (3.4) for this case. We rotate the body-fixed frame to align the z axis 
with the stationary rotation axis. Then, using a nonlinear coordinate transfor- 
mation, we reduce the expansion (3.4) in the neighbourhood of J, to the form 

E(5, ?I = E,(J) -4J- JJ v2 + a*0t2 + %4q4, (3.5) 

where the coefficients a,, and ao4 are taken at J,. It is not difficult to show that the 
critical phenomena for the local symmetry groups C, and C,, are characterized by 
the same energy surface (3.5). 

There are two types of critical phenomena depending on the relative signs of the 
coefficients u20 and uo4 in the expression (3.5). If u2,, and uo4 have opposite signs, the 
critical phenomenon is reduced to a change of the stability of the stationary 
rotation axis. The rotation axis z, stable for J< J,, becomes unstable for J> J, if a 
and u2,, are of the same sign. The stability changes in an inverse order if a and ad0 
are of the same sign. The appearance or disappearance of the stable rotation axis is 
accompanied by a simultaneous appearance or disappearance of two equivalent 
unstable axes lying in the yz plane symmetric to the z axis and close to it. These 
axes correspond to the saddle points A and A’ on the surface (3.5) with the energy 

E,(J) = E,(J) - 
a2(J- J,)2 

4u 
04 

(3.6) 

The separatrix s goes through the points A and A’ (see Fig. 2). Classical trajectories 
are shown in Fig. 2 for the system close to the critical point J,. It follows from the 
figure that this critical phenomenon is not local and is not accompanied by the 
symmetry breaking for the classical rotation. 

J<J, J>J, 

FIG. 2. The classical trajectories for the nonlocal critical phenomenon of the Czu symmetry (a to, 
a,,>o, a,<O). 
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If the coefficients a,, and uo4 have the same sign, the critical phenomenon results 
in the variation of the direction and number of the stationary rotation axes. Instead 
of the z axis, there arise two equivalent stationary rotation axes lying in the yz 
plane symmetric to the z axis. The energy of rotation around these equivalent axes 
is given by the expression (3.6). The system of classical trajectories changes as 
follows in passing the critical point J,. If c(, u20, and u04 all are of the same sign, the 
z-axis rotation with the energy E,,(J) goes over into the rotation around one of the 
equivalent axes with the energy E,(J) for J> J,. If the sign of CI is opposite to those 
of a20 and ao4, the transition occurs in the inverse order. In both cases the 
invariance of the classical solution with respect to the CJ or Cz symmetry elements is 
violated. Another particular feature of the considered critical phenomenon is the 
discontinuity of the second derivative of the maximal or minimal rotation energy 
with respect to J at J,, 

dE”(J,) = E;‘(J,) - El(J,) = - LY2/2a,,. (3.7) 

The character of the critical phenomenon can be determined by considering the 
family of classical trajectories of the rotational motion in the phase space. Figure 3 
shows these trajectories close to the north pole of the phase sphere to the left and to 
the right of the critical point J, for positive values of the coefficients CI, u,~, uo4. The 
trajectories describe the precession of the vector J around the z axis with the energy 
E > E, for J< J,. For J> J, the precession takes place around one of the two 
equivalent axes specified by the orientation k(O,, 42) and k’(BO, 37~/2), where 
e; = a(J- J,)/2u,, and by the energy E, < E < E,,. The energy E,(J) corresponds 
to the saddle point of the surface (3.5) and to the separatrix s which separates the 

5 

J < J, J ‘Jc 

FIG. 3. The classical trajectories for the local critical phenomenon of the Czc symmetry (a > 0, 
a,>O, a,>O). 
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local trajectories of the precessional motion from the global ones. The localization 
of the separatrix near the critical point J, is evidence for a local critical phenomenon 
occurring in a limited region of the phase space. 

Now let us consider a quantum treatment of this local critical phenomenon. For 
simplicity, we use the effective rotational Hamiltonian (2.4) for the local symmetry 
group Czvy 

Hem= g,(J”, J;“, + $.I?+ g,(J’, J,) + $ g,(J’, Jz) JZ 

+ 4 J”, g4( J*, Jz) + ; g4( J2, J;) 5: + . . (3.8) 

The set of classical trajectories in the phase space shown in Fig. 3 is associated with 
quantum states v of the rotational multiplet which satisfy the condition 

(JvIJ’-J;JJv)/J2G1. (3.9) 

We shall call them the lowest states of the rotational multiplet although, in fact, they 
are the lowest only when the maximal moment of inertia corresponds to the z axis. 
To describe these states, one can use the approximate Hamiltonian resulting from 
(3.8) by expanding the g,, g,, and g, functions in series in terms of the small value 
(J,’ - J’)/J’. The approximate Hamiltonian possesses all the symmetry properties of 
the initial one and has the form 

52-J’ 
Hc,=E,(J)+~,(J)~+~~ 

J4 + J4 
+$([Ji-p, J:]+ + [Jf-J’, JZ]+)+cI v, (3.10) 

where 

a,(J) = J2 gb(J’, J’) z -2b, + a(J- J,), 

a2 = $5: g;(J,Z, Jf), 

b, = fJf gAJ,2, Jc), 62 = $J,‘g;(J,z, J,), 

CI = tJ:&(J:, Jc). 

(3.11) 

Its regular part E,(J) = g,(J’, J2) is the energy of the classical rotation around the 
axis z. Appendix B shows that the terms included in (3.10) are sufficient for the 
description of the lowest levels of the rotational multiplet in the transition region. 
This means that the Hamiltonian (3.10), depending on six coefficients J,, a, a,, b,, 
b c,, specified by the internal structure of the system, is universal for critical 
phenomena in the case of the Csv local symmetry. 

We use approximate solutions for the Hamiltonian (3.10) to study the changes in 
the rotational motion in passing the critical point. The boson representation of the 
angular momentum operators in the body-fixed frame is appropriate for this pur- 
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pose (see Appendix A). For J< J, the axis z is stable and the lowest levels of the 
Hamiltonian (3.10) correspond to the precession of the vector J around this axis. 
These levels are accurately reproduced by the harmonic approximation in which the 
effective rotational Hamiltonian has the form of (A.3) with the coefficients of (B.5). 
In such an approximation the lowest levels of the rotational multiplet can be 
characterized by a quantum number M of the angular momentum projection on the 
z axis of the body-fixed frame. The energy of these states is given, according to 
(AS), by the expression 

E,, = E,(J) + a,(J) ~+m;(J-,,I+;), M= &-J, &(J-1) ,..., (3.12) 

where the precession frequency is approximately equal to 

The states are doubly degenerate with respect to the sign of the projection A4.6 The 
lowest level corresponds to the state with JMl = J, which corresponds, in its turn, to 
the rotation of the system around the z axis with the energy E,,(J) in the classical 
limit (J + co ). 

The frequency (3.13) becomes imaginary for J> J,. It indicates the instability of 
the precession around the z axis. As a result, two equivalent precession axes k and 
k’ arise. Let us consider, first, the precession of the vector J around the first axis. 
The precession axis should coincide with the z axis to use the harmonic 
approximation. The required transformation of the HCzu Hamiltonian is given in 
Appendix B. In the harmonic approximation the Hamiltonian (3.10) is reduced to 
the form of (A.3) with coefficients given by (B.12) which can be written as 

pJmm 
25’ 

2h,-$(J-l)+ a,+2h,-?(2J’-3J+2) 

-$(6J’-llJ+5)-$(J-1)(2J-3) 1 I sin’&, , 

Q=O, (3.14) 

2J- 1 
s=7 -u,+$(2J-1)+ -a,-2h,+$(4J2-8Jf5) 

+h(6J2-llJ+5) 
J2 1 I sin20, 

6 The degeneracy is the consequence of the symmetry of the Hamiltonian (3.10) with respect to the 
inversion. In real molecular spectra this symmetry results in a doublet structure including the 
D,-symmetry levels A and E, for even M and the B, and B, levels for odd M. There is only one totally 
symmetric state A instead of the doublet in the rotational spectra of deformed nuclei and molecules con- 
sisting of nuclei with zero spins. The doublet splitting is small compared to the energy gap between levels 
for the local critical phenomena. We shall neglect it assuming each level of the rotational multiplet to be 
doubly degenerate. 
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According to (B.14) the angle B0 specifying the orientation of the precession axis k 
is given by 

0: z sin’ 8, dJ- JJ = 
2(a, + 2b, + 2c, 1’ 

(3.15) 

The energy of the lowest energy levels of the rotational multiplet for J> J, is 
characterized approximately by the quantum number K of the angular momentum 
projection on the precession axis k, 

E,, = E,(J) - S/2 + w,(J- IKI + l/2), K= +.I, +(J-- l), . . . . (3.16) 

where 

E,(J)=E,(J)--&(J-1)(2J-1)(2J-3)(a2+2b2+2c,)sin48, (3.17) 

is reduced in the classical limit to the energy (3.6) of the rotation around the k axis. 
The precession frequency is given by 

w,z4.J~ (3.18) 

for sufficiently small OO. 
The wavefunction of the lowest level of the rotational multiplet with K = J for the 

precession around the k axis can be calculated from (A.lO) using the rotation 
(B.lO). It takes the form 

cp.u(k 4) = R(77/2,~0, -7Q) vJq) 

=JZexp{ --~~~q-~oA2}~ (3.19) 

where q is the dimensionless coordinate for the oscillation motion. The 
wavefunction cpJ J(k’, q) for the precession around the axis can be calculated 
analogously. It differs from (3.19) in the sign of the angle 8,. The functions q(k) 
and cp(k’), corresponding to the same energy (3.16), describe the states of the HCzr 
Hamiltonian with a broken C, symmetry. The operator of this symmetry element 
transforms cp(k) into cp(k’) and vice versa. It should be noted that the broken 
symmetry is a consequence of the harmonic approximation. 

C2 invariant combinations can be constructed using q(k) and cp(k’) as a basis: 

(P.I.Lr(4) = $+$Lq b,Ak 4) + v,.Ak’, 4)). 

Here T = + 1 are eigenvalues of the symmetry element CZ. R = exp{ -Joi 
&GFFTl) is an overlap integral for q,,(k) and cp,,(k’). The symmetrized 
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functions (3.20) enable us to estimate the splitting energy AE of the opposite parity 
energy levels. We obtain AE a exp( -6(J-- J,)) with 6 z 1 by averaging the H,,,, 
Hamiltonian over these functions. Thus, the energy splitting of the opposite parity 
levels in the rotational multiplet becomes exponentially small for sufficiently large 
(J- Jd 

The harmonic approximation becomes inappropriate in the vicinity of the critical 
point J,. An exact numerical solution of HClc (3.10) for some J values close to J, is 
required to follow the rearrangement of the lowest energy levels in the rotational 
multiplet. It is natural to perform the diagonalization of this Hamiltonian on the 
basis IJ, M) of the Jz eigenfunctions. The eigenstates of HCzr are classified 
according to the irreducible representations A,, A,, B,, B, of the group CZL, [IS], 
which is a local symmetry group of this Hamiltonian. The type of representation 
depends on the quantum number M in the expansion of the HczL eigenfunctions in 
terms of the IJ, M) functions. The results of the numerical diagonalization of the 
H,,& Hamiltonian for some particular set of parameters are given in Fig. 4. It shows 
the lowest energy level dependence on the quantum number J. These levels form a 
sequence of the A, + AZ doublets for even M and the B, + B, doublets for odd M at 
J-c J,. The inversion splitting of the doublets is not shown due to its smallness. As 
J approaches J,, the doublets A, + A, and B, + B, also come closer, forming for 

FIG. 4. The lowest levels of the rotational multiplet in the transition region for the local critical 
phenomenon of the C,, symmetry. The parameters of the H,,, Hamiltonian: J, = 30; a/b, = 0.3; 
b,/b, = -1.0; a2/b, =7.0; cl/b, =0.5. (0) A, + A2 doublets; (0) B, + B, doublets; (...) the harmonic 
approximation. 

595/184/l-2 
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J> J, a four-fold cluster A i + A, + B, + B, which corresponds to a delocalized 
precession around two equivalent axes. The lowest energy levels calculated using 
(3.12) and (3.16) in the harmonic approximation are shown in the same figure for 
comparison. 

Higher local symmetry grous C, or C,, (n > 3) are appropriate for molecular 
problems and for cluster and quasimolecular states of nuclei. There are two types of 
associated critical phenomena. Fro the point of view of their classification it makes 
no difference whether the z axis is the C, or the C,, symmetry axis, because the 
difference between these local energy surfaces is not essential for these two cases. 
For the case of simplicity we shall consider the local symmetry grous C,,. The 
rotational energy surface close to the z axis can be obtained by the expansion of 
(2.8) in series in terms of the small value 8. The condition of the appearance of the 
critical phenomena is the zero value of the coefficient before 8* at J= J,. The 
dependence which is different for various local symmetries defines only the number 
of equivalent axes but not the type of the critical phenomena. 

3.3. Critical Phenomena for Local Symmetry Groups C3 and Cj, 

The rotation energy surface for the local symmetry group C,, close to the critical 
point J, has the form 

qe, cp) = E,(J) - a(J- J,) e* + 2be3 cos 34?, (3.21) 

where E,(J) is the energy of rotation around the stationary z axis; CL, b are con- 
stants. A critical phenomenon consists in the change of the stability type of the 
rotation axis. If a>O, the axis z with the maximal moment of inertia7 (minimal 
rotation energy &) for J < J, is transformed into an axis with the minimal moment 
of inertia (maximal rotation energy E,) for J> J,. The transformation takes place 
in the reverse order for a < 0. The z axis transformation is accompanied by a 
reorientation of the three unstable rotation axis in the neighbourhood of 8=0 
rotated through an angle of 120” with respect to each other. They are associated 
with three saddle points on the surface (3.21) with the rotation energy E,(J) = 
E,(J) + a3(J, - J)3/27b2. 

The classical trajectories close to the north pole of the phase sphere are shown in 
Fig. 5. The local trajectories are separated from the global ones by separatrices s, 
being themselves global curves, passing through the saddle points of the surface 
(3.21) with the energy El .’ It is clear from the figure that the precession motion of 
the vector J around the z axis (point 0) is local if the system is far from J,. The axis 
z becomes unstable at the very critical point J, because the separatrices pass 
through the point 0 and the local trajectories disappear. Thus, the critical 

‘We speak about a local characteristic of the moment of inertia for the z-axis rotation. 
’ The rotation energy surface (3.21) is identical to the potential energy surface of the Henon-Heiles 

model system [19] which is widely used to study a chaotic motion. 
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J<J, J ’ J, 

FIG. 5. The classical trajectories for the critical phenomenon of the C,, symmetry. 

phenomenon is not local close to J,. It is necessary to include the terms with the 
operators J”,, P+, etc. in the Hamiltonian Herr, 

Hen= g,(J’, 5;2)+ &I: g,(J2, J,)+ &(J2, J;) 53 + . . . (3.22) 

for an appropriate quantum description. 
Let us consider a quantum problem assuming the parameter tl in (3.22) to be 

sufficiently large in its absolute value. In such a case the discrete character of the 
quantum number J enables us to exclude the essentially nonlocal region and to use 
the first terms of the expansion of H,, (3.22) in (4 -J’)/.l’. The so-obtained 
Hamiltonian 

J2-J2 b 
Hc,, = E,(J) + cc(J- J,) y +zJ”~cJ:~J;1++c~‘~J,1+x (3.23) 

where 

J’ g;( J2, J2) = a(J - I,), 

b = tJ,‘gAJ,z, Jd, 
(3.24) 

is adequate for the lowest energy levels of the rotational multiplet. For these levels 
the second term in H,,” is more important than the third. The Hamiltonian (3.23) 
retains the symmetry properties of the initial Hamiltonian (3.22). 

It is sufficient to take into account only the two first terms of the H,,c 
Hamiltonian to describe the precession motion in the harmonic approximation. The 
precession energy equals 

E/M=Eo(J)-~(J-J,)(J-IMl), M= +J, &(J- l), . . . . (3.25) 
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The corresponding eigenfunction coincides with that of the JZ operator. The same 
functions are used to obtain the exact solutions of the Hamiltonian (3.23). These 
solutions are classified according to the irreducible representations A,, A 2, E of the 
C,, group [ 181. The type of representation is connected with the sequence of the 
quantum number M in the expansion of the H,, eigenfunctions in terms of the 
IJ, M) functions. Accordingly, there appear three sequences of the quantum num- 
bers J (3n, 3n + 1,3n + 2) with different orders of the lowest energy levels in the 
rotational multiplet. Figure 6 shows the ratio of the lowest level energy to the 
precession frequency E,, + (J _ , , -E,,(J) (3.25). The regular part of the energy E,(J) 
is taken to be a zero point. To the left and to the right of the critical point the 
lowest levels form a system of doublets A, + A, for M = 3n, and a system of doubly 
degenerate levels of the E type for M = 3n + 1, 3n + 2. Figure 6 clearly shows that 
the critical phenomenon manifests itself by a decrease in the number of equidistant 
levels corresponding to the procession of the vector J in approaching the critical 
point .I, and by its increase in going away from it. The inversion of the energy level 
structure takes place in passing through the critical point. 

3.4. Critical Phenomena for Local Symmetry Groups C, and Cdu 

The classical rotation energy surface in the neighbourhood of the z axis and close 
to the critical point .I, has the following form for the local symmetry group C4”, 

E(8, cp) = E,(J) - cl(J- .I,) 8* + (a + 26 cos 4~) 04. (3.26) 

FIG. 6. The lowest levels of the rotational multiplet in the transition region for the critical 
phenomenon of the CSv symmetry (1, = 30; a/b = 0.8 in the Hamiltonian (3.23)). (0) A, + A, doublets; 
(0 ) doubly degenerate levels of the E type. 
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Here E,(J) is the energy of the rotation around the stationary axis z; cc, a, b are 
constants and, in general, one may assume b > 0. Two types of critical phenomena 
are possible depending on relative values of a and 6. 

If [al < 2b, the critical phenomenon is not local and, analogously to that of the 
C,, symmetry, corresponds to a change of the stability type of the rotation axis. 
The difference is as follows. The change of stability is associated with the reorien- 
tation of four equivalent unstable rotation axes with the energy E, or Ez, 

E,,,(J) = E,(J) - 
a’(J- J,)’ 
4(aT 2b) ’ 

(3.27) 

where E,, is the maximal or minimal energy of rotation around the z axis. 
The critical phenomenon is more complicated for [a( > 2b. In such a case four 

stable equivalent axes rotated by 90” with respect to one another arise or disappear 
together. The z axis remains stable but changes its type of stability at the critical 
point J,. If a > 2b, at LY > 0 the minimal rotation energy E,(J) about the z axis for 
J-c J, changes into the maximal one for J> J,. This variation is accompanied by 
an appearance of four additional equivalent stable rotation axes ki(oo, 7r(2i- 1)/4), 
i= 1,2, 3,4; 0; = a(J- J,)/2 (a - 26) with the energy E,(J). At CI < 0 the transition 
takes places in the reverse order with increasing J. If a < -26, the same transitions 
occur with the small difference of an interchange of the minimal and maximal 
rotation energies. Four unstable equivalent axes arise simultaneously with the 
stable ones in all cases. These unstable axes are rotated by 45” about the z axis with 
respect to the stable axes. They correspond to the saddle points of the surface (3.26) 
with the energy E,(J) for a > 2b and E,(J) for a < -2b. 

The classical trajectories near the north pole of the phase sphere are shown in 
Fig. 7 for the case of a > 2b and c1> 0. The closed trajectories with the energy 
E > E,, correspond to the precession of the J vector around the z axis (the point 0) 

# 

J >J, J >J, 

FIG. 7. The classical trajectories for the local critical phenomenon of the C,, symmetry (a 20, 
a/b = 8.0). 
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for J< J,. The precessions around each of the four stable axes k, with the energy 
E, <E < E2 arise for J> J, along with the precession around the z axis with the 
energy E, < E < Eo, The separatrix s passing through these four saddle points of the 
surface (3.26) separates trajectories of these precessional motions. It also separates 
the local precessional trajectories from the global ones. The family of phase trajec- 
tories is typical of the local critical phenomenon. It is characterized by a breaking of 
the classical rotation invariance with respect to the C, symmetry element and by a 
jump discontinuity at J, of the second derivative with respect to J of the minimal 
(E, ) or maximal (E2) rotation energy, 

cc2 
E”(J,)=Ee,(J,)-E,“(J,)= -2taf2bj. (3.28) 

The local character of this critical phenomenon enables us to obtain a universal 
Hamiltonian from Herr (2.4) for the lowest energy levels of the rotational multiplet 
(see Appendix B), 

H,u=E,(J)+n,(J)~+q (3.29) 

where 

a,(J) = J* g;(J*, J*) = a(J- J,), 

a, = fJf gf;(Jf, J,‘); b, = tJ,‘g,(J:, Jc). 
(3.30) 

The regular part E,(J) = g,(J’, J’) is the energy of the rotation around the z axis. 
Consider now the variation of the precession motion in passing through the 

critical point J, for a > 2b and c1 >O. The axis z is stable both to the left and to 
the right of J,. The precession of the J vector around this axis is described by the 
harmonic approximation Hamiltonian (A.3) whose parameters 

P=Q=O; 
2J- 1 

S= -cx(J-J,)~+~~ (3.31) 

can be found easily from H,“. The energy of the lowest levels of the rotational mul- 
tiplet is given by 

E 
2J- 1 

J,M=EO(J)+~ c1( J, - J) + a2 y> (J- IMI). 

The precession around the z axis with the aximal moment of inertia is transformed 
into that with the minimal moment in passing through the critical point. 

Four equivalent precession axes arise for J> J,. Let us consider the J-vector 
precession around the k,(B,,, x/4) axis. To realize the harmonic approximation we 
express the Hamiltonian H,,, in terms of the spherical tensors (2.3) and perform the 
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rotation R (B.lO) in the body-fixed frame through angles LX = 7c/4, /I = I$,, y = 0. In 
passing from the transformed Hamiltonian RH,“R-’ to the harmonic 
approximation Hamiltonian (A.3) we get 

p=Jw- 1) 
2J2 

-a(J-J,)+;(U’-3J+2) 

-s (2J- 3)(J- I)} sin* 8,, 

e=o, 
2J- 1 s=- 

J2 
-ct(J-J,)+;(2J-1) 

(3.33) 

+ -a(J-Jc)+$(14J2-43Jf26) 1 1 sin2& , 

sin28 =~(J-Jcb42J-lYJ2 J2 

’ (J- 1)(2J-3)(a-2b) ’ 

The energy of the lowest levels is given in this approximation by 

E,,,=E,(J)-S/2+o(J- IKI + l/2), K= fJ, k(J- l), . . . . (3.34) 

where 

E,(J) = E,(J) - fZ?! (2J- 1)(2J- 3) J(J- 1) sin4 8, 4J3 (3.35) 

is the energy of the rotation around the k, axis, and K is the angular momentum 
projection on this axis. The precession frequency is given for a sufficiently small 
0, by 

~=$(J-J~)JGGTG, J> J,. (3.36) 

The harmonic approximation with the broken symmetry (3.34) can be improved by 
using delocalized and properly C,,-symmetrized wavefunctions. 

The modification of the precession motion results in a rearrangement of the 
lowest energy levels of the rotational multiplet. This rearrangement can be followed 
by using an exact numerical treatment of the H,. Hamiltonian. We classify the 
eigenstates of H,” by irreducible representations A i, A,, B, , B,, E of the C,, group 
[18]. Figure 8 shows the ratio of the lowest level energy to the precession fre- 
quency around the z axis for J-c J,. For J-c J, the lowest part of the rotational 
multiplet forms a nearly equally spaced system of doublets A, + A, (M = 4n), 
B, + B, (M= 4n + 2) and doubly degenerate E type levels (M= 4n + 1, 4n + 3). 
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-50 
t 55 

FIG. 8. The lowest levels of the rotational multiplet in the transition region for the local critical 
phenomenon of the C4” symmetry. The parameters of the Hcau Hamiltonian: .I, = 30; a/b = 0.18; 
a/b=S.O. (0) A, + A, doublets; (0) doubly degenerate levels of the E type; (a) B, +I?, doublets; 
(. . .) the harmonic approximation. 

Under increase in J these levels either come closer forming an eight-fold degenerate 
cluster A, + A, + B, + B, + 2E (a delocalized precession around four equivalent 
axes) or rearrange to form the initial structure (the precession around the z axis). 
The results of the lowest energy level calculations for J> J, in the harmonic 
approximation (3.34) are shown in the same figure for comparison. 

3.5. Critical Phenomena for Local Symmetry Groups C, and C,,, n > 5 

High symmetry elements C, (n 2 5) are rather rare. They are available only for 
heavy molecules which usually have a spectroscopically unresolved rotational struc- 
ture. Nevertheless, we consider the critical phenomena for the local symmetry 
groups C,, (n 2 5) for completeness. The rotational energy surface in the 
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neighbourhood of the z axis and close to the critical point J, can be written in the 
form 

E(B, rp) = E,(J) - a(J- J,) O2 + a04 + 269” cos ncp. (3.37) 

The last term in this expression is small compared to a04. Thus, there is only one 
type of critical phenomenon for all the groups considered. This critical phenomenon 
is the same as that for the C,, group in the case of Ial > 2b. The difference is that 
there exist n equivalent axes instead of four for the surface (3.37). 

4. CONCLUSION 

All the critical phenomena for the purely rotational motion are presented in 
Table I. A graphical representation of the dependence of the classical rotation 
energy E on the angular momentum J in the neighbourhood of the critical point J, 
is shown in Table I for positive values of coefficients specifying the energy surface. 
The dashed line corresponds to the energy of rotation around the unstable axis; the 
solid line, around the stable one. The solid line is associated with the rotation 
around the maximal inertia moment axis if it is lower than the dashed line in 
energy. If it lies above the dashed line, it corresponds to the rotation around 
the minimal inertia moment axis. A numeral in parenheses at the line denotes the 
number of equivalent rotation axes. 

All the critical phenomena considered can be called elementary. This means that 
they are associated with the going to zero of only one coefficient of the local 
rotational Hamiltonian at the critical point J,. More complicated cases, which 
correspond to the going to zero of several or even an infinite number of coefficients 
simultaneously, are possible. In the last case a groove with an indifferent 
equilibrium is formed on the energy surface and the corresponding critical 
phenomenon resulting in the rotation of the J-vector through a finite angle with 
respect to the body-fixed frame is analogous to a first-order phase transition [S]. 

There are two local critical phenomena among the live types of elementary ones 
considered. In the classical limit the local critical phenomena are characterized by 
the degeneracy (equivalent rotation axes), the breaking of the local group @J sym- 
metry, and the discontinuity of the second derivative of the rotation energy with 
respect to J in the J, point. These local critical phenomena are similar to the 
second-order phase transitions. The classical picture is only an illustration for such 
isolated quantum systems as molecules and atomic nuclei. The local critical 
phenomena in the rotational spectra can be seen by the rearrangement of the 
rotational multiplet structure, i.e., by the appearance of energy level clusters 
corresponding to the delocalized precession of the vector J around equivalent axes. 
The (J- J,) increase results in the exponential decrease in the intracluster splitting. 
However, the precession is not localized on one axis and the intracluster states have 
definite symmetry with respect to the group 6. Thus, the spontaneously broken 
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TABLE I 

Types of Critical Phenomena for a Nondegenerate Isolated Rotational Band 

Local 
symmetry 
group 6 

Energy surface close to the 
z axis of the body-fixed frame 

Graphical 
representation of Singularity in the 
the E(J) depen- critical point J, 

dence 

c, E(r,rl)=E,(J)-aG((J-JJ,)5+u0*~2+u)053 E”(J) c -(J-J,)- w 

E(5, VI= &(J) - a(J- J,) q2 + azot2 + a,,&’ 

c,, c,, E(0, cp) = E,(J) - a(J-J,) O2 + 2b03 cos 3cp 

c4, C4” E(0, cp) = E,(J) - a(J- J,) O2 + (a + 2b cos 4rp) 0“ 

cm C”, 
n>S 

E(0, cp) = E,(J) - a(J - J,) t12 + atI + 2bB” cos ncp 

dE”(J,) = -g 
04 

a2 
dE”(J,) = -~ 

2(a-2b) 

dE”(J,) = -g 

symmetry [20, 211 is not appropriate for the critical phenomena. The Hamiltonian 
and its eigenfunctions remain invariant with respect to the local symmetry group 6. 
This is a principal difference between the critical phenomena and the phase trans- 
itions in macroscopic systems. 

For sufficiently large J an arbitrarily small perturbation, nonsymmetric with 
respect to -6, transforms the system from a symmetric delocalized state to a non- 
symmetric localized one which corresponds to the classical picture. This state is 
nonstationary but its decay time may be large enough (due to a small tunneling 
through the barrier separating equivalent axes) for it to be treated as really existing. 
An example of such a transition for an inversion doublet in the XY, type molecules 
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under the influence of the interaction with the environment is discussed in [22]. 
The similarity between the local critical phenomena and the second-order phase 
transitions manifests itself in the universal nature of the collective motion close to 
the critical point. For the phase transitions this universality means that a detailed 
structure of the Hamiltonian of the macroscopic system is not essential on the scale 
of long-wave fluctuations responsible for the phase transition [23]. The universal 
character of the local critical phenomena is due to the fact that it occurs in a limited 
region of the collective motion phase space. Accordingly, the collective Hamiltonian 
in the vicinity of the critical point does not depend on the internal structure of the 
system up to numerical values of its coefficients. 

The universal behaviour is of practical importance for the description of the 
rotational spectra of molecules and atomic nuclei. It allows us to replace the power 
expansion at J= 0 which is clearly inadequate for high J by an expansion at J,. 
Until now such a possibility has not been studied in either nuclear or molecular 
spectroscopy. 

APPENDIX A: HARMONIC APPROXIMATION FOR QUANTUM PRECESSION 

We use the boson representation proposed by Marshalek [24] for the angular 
momentum operators to study the energy levels of the rotational multilet. We shall 
consider the angular momentum operators in the body-fixed frame 

J==J-b+b, J,=J~=b’,,/~?, 

which act in the space of wavefunctions 

cp J,v = b4.2) 

corresponding to the state v of an isolated rotational multiplet. IO) is a vacuum 
state of the boson operators b +, 6. 

Let us consider the precession motion around the z axis. We expand the 
Hamiltonian H,, (2.4) in terms of boson operators b+ and b employing the 
formulae (A.l) and one of the methods described in Ref. [25]. The general form of 
the Hamiltonian in the harmonic approximation is 

H=E,(J)+Sb+b+(P+iQ)b+b++(P-iQ)bb, (A.3) 

where the coefficients E,, P, Q, S depend on the parameters of the Hamiltonian 
(2.4) and on the quantum number J. The harmonic approximation describes the 
states which can be approximately characterized by the quantum number M of the 
angular momentum projection on the z axis of the body-fixed frame. 

The Hamiltonian (A.3) can be diagonalized by a linear canonical transformation 

b=ufl+v/?+, 1u1*- /VI*= 1 (A.4) 
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with new boson operators /I’ and fl. The energy of the levels corresponding to the 
precession of the vector J around the z axis is given by 

E I,M=EU(J)-;S+~$2-4P2-4Q2 (J- IM, + l/2), 

M= +J, -t-(J- l), . . . . (AS) 

The condition S2 > 4(P* + Q’) is necessary for the states with M = fJ to be stable 
and the corresponding axis to be that of the stable rotation. The critical value J, 
(for which S* = 4(P2 + Q*)) is the transition point from the states with energy (A.5) 
to those corresponding to the precession of J around some other stable rotation 
axis. The harmonic approximation is adequate if the following condition is satisfied: 
IJ- JJ 9 J,m2’3 [lo]. 

The wavefunction of the Hamiltonian (A.3) for the state IMI = J has the form 

The coordinate representation proves to be useful for studying the precession 
around equivalent axes. For this purpose we introduce a dimensionless coordinate q 
(141 < co) according to the relation 

b+ =$=(q--$ b=-$(q+-$). (A.7) 

We put (A.7) into the equation HcpJ.,, = EqJ,,, with the Hamiltonian (A.3) and 
transform the so-obtained differential equation by the substitution 

( Q cpJ,dq)=t4q)exp -i- s-2p4* > 

to the form 

-f(S-2p)$+s22(~~;p;Q2q2~=(E-E,,+S,2)t+k (A-9) 

This equation can describe small precession near the equilibrium, q = 0, if (S + 2P) 
and (S - 2P) have the same sign, and S2 - 4P2 > 4Q2. In the coordinate represen- 
tation the wavefunction of the M= J state has the form 

cpAd4) = We)“” exp{ -t(f+ ig) q2}, (A.lO) 

where 

f=(S2-4P2-4Q2)1’2 Q 
s-2P ’ g=s-2p. (A.ll) 
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Thus, the linear canonical transformation (A.4) changes the mass, force constant, 
and phase of the wavefunction of the oscillatory motion. 

APPENDIX B : 
PROOF OF UNIVERSAL CHARACTER OF 

LOCAL CRITICAL PHENOMENON HAMILTONIANS 

The Hamiltonian describing the lowest energy levels of the rotational multiplet 
will be called universal if it depends on a finite number of constants. The universal 
Hamiltonian contains a finite number of expansion terms of the effective rotational 
Hamiltonian (2.4) with the expansion parameter (3.9). The universality is inherent 
in the Hamiltonian of local critical phenomena only. 

Let the effective Hamiltonian (2.4) be written in the form 

H,,=H’~‘+H’~‘+H@‘+ . . . . (B.1) 

where Hck’ contains the operators J, with their power not exceeding k. For the 
critical phenomena with the Czv and C4” symmetries the H’4’ terms are given by 
(3.10) and (3.29), correspondingly, and the Hc6’ terms equal 

+$([J.z-J2,J4+1+ + [Ji-f,Pl+)+$-p+ +J”), (B-2) 

J”,], + [Jz’-J’, 54-l+). U3.3) 

The coefficients E,, ai, bi, etc., can be expressed in terms of derivatives of the g, 
functions and have the same order of magnitude (see Eqs. (3.11) and (3.30)). We 
prove that in the transition region the term Hc4’ . 1s the leading term of the expan- 
sion (B.l). This very term is a universal rotational Hamiltonian. To prove it, we use 
the harmonic approximation where the Hamiltonian (B.l) has the form (A.3) with 
the coefficients 

E= E, + Ec4’ + E@‘+ E@) + . . . 

s = ~(4’ + $6’ + $8 + . . . 

Q=O, 
p = ~(4) + ~(6’ + p@’ + . . . 

(B.4) 

written in the form of an expansion in such a way that Eck), Sk’, and Pck) corre- 
spond to the term Hck). 
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Consider at first the precession of the vector J around the z axis for J and .I,. 
Straightforward calculations yield the following expressions for the coefficients of 
the Hczl Hamiltonian, 

~‘4’ = ~‘6’ = . . = 0 

96’= --a 
3 (B-5) 

p(4)= b,-b2(J- 1) 
J2 J4 

J@zq, 

p(6) = g) 3 
( > 

7 2 Jm, . . . . 

For the HC4” Hamiltonian Pck) = 0 and all the other coefficients are the same as 
those for Hclo. Thus the addition of the succeeding terms of the expansion (B. 1) to 
Hc4) modifies the results of the harmonic approximation by contributions not 
higher than J-l. The additional terms increase the anharmonicity of the precession 
motion which is essential only for higher states of the rotational multiplet. 
However, these terms are not important for the lowest levels of the rotational 
multipiet. 

The rotation of the body-fixed frame is necessary to describe the precession of the 
vector J around one of the equivalent axes whose direction differs from that of the 
z-axis (the region J> J,). The required transformation of the HCza and Hcdu 
Hamiltonians can be performed most easily by expressing them in terms of the 
spherical tensor operators (2.3) in the form 

ffc~=&(J) + f i A,T,,m (B-6) 
I=0 m=-I 

where according to (B. 1) 

A,m=A,-,= Aj;)+Aj;)+Ai;)+ . . . . (B-7) 

For the H,” Hamiltonian we have 

2J- 1 
A&‘= -- 

35 
a, +&2J- 1)(4J2+ l), 

(B.8) 
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A$)= - &(2J-1)(24J4+6J2+5), 

A$;)=- $;3 (8J4-8J3+ 10J2- lOJ+7), 

A$;‘= 2b3 &16J4-4J3- 16J2+ 13J- 177) 03.9) 

A$ = - 
2&a, 

385p (18J2- 15J+ 35), 

Ai;) = - 2b3 
11 ,/iJ” 

(16J2-65-41) 

Ai;‘= - $(10J2-J-38), 

We rotate the body-fixed frame by the angles ~1, j?, and y to align the z axis with 
one of the equivalent precession axes. The operator of this rotation 

R(a, B, Y) = ev(iyJ,) exp($J,) exp(iaJZ) (B.lO) 

transforms the effective Hamiltonian (B.6) into the form 

RHemR-l=&,(J)+ f 1 A,,,,,D;!,,r(-ci, -/I?, -7) T,,,, 
I=0 m,m’ 

=pL, (B.ll) 
m 

where Di!,,, is the Wigner function in the definition by Edmonds [26]. The 
operators H,,, can be expressed in terms of linear combinatins of the spherical ten- 
sors T2,, T4,,,, etc. In the harmonic approximation the rotation of the body-fixed 
frame is eqivalent to translation of the origin. Thus, one must reduce to zero the 
expression HP 1 = HT , proportional b +, to describe the precession around one of 
the equivalent axes. This requirement enables us to define the rotation angles j?, N, 
y. From the remaining terms it is sufficient to take into account the terms H, with 
m = 0, +2 which yield the Hamiltonian (A.3) with the coefficients (B.4). To study 
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the convergence properties of the series for E, S, and P, we calculate two initial 
terms for each of them. For the Hamiltonian Hc2, the results are 

E14’=(2J-1) -&(q+Zh,)+$(2J-1)+$-l) 
i 

+-& (a2 + 2b, + 2c,)(J-- 1)(25- 3) sin* p sin* fi, 

SC4’=(2J-1) $+$(2J--l)+$(a,+2b,)sinZfl 
i 

+& (25- 5)[a2(4J- 3) + 6b,(J- l)] sin* b 

--$ (a2 + 2b, + 2c,)(J- 1)(25- 3) sin4 B , 

(B.12) 

-& [a,(4J2- 125+7)+26,(5- 1)(65- ll)+ 12c,(J- 1)(23-3)] sin*B 

+-&(U2+2bz+2c,)(J-1)(2J-3)sin’B 

E@‘=(2J-1) -$(2J-l)2-$(J-2) 
i 

--$(5-1)(2J-3)[a~(6J-5)+2b,(6J-ll)+8c2(J-2)]sin2~ 

-$(J--l)(J-2)(25-3)(25-5)(a,+2b,+2c2+2d,)sin4j3 

96’=2J-1 56 -n,(2J-1)2-~(48J3-172J2+184J-63)sin2j? 

-3b,(12J3-605*+89J-77)sin2B-(J- 1)(25-3) (B.13) 

x 2(3J--20)(6J-7)+b3(8f-66J+95)+ie2(.I-2)(U-13) 
[ 1 sin4fl 

+y (a3 + 26, + 2c, + 2d,)(J- l)(J-2)(25- 3)(25- 5) sin6 /I 
I 

, 
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P(“l=-&hm 86,J(J-2)+; [a,(24J3-84J2+90J-31) 
i 

+8b3(36J3 - 164J* + 2355-99) + 48c,(J- l)(J-2)(2J- 3)] sin* fi 

+; (J- 1)(2J- 3)[3a3(2J2 - 15J+ 15) + b3( 14J2 - 99J+ 136) 

+15d,(J- 2)(2J- 5)] sin4 fi 

-~(4~3+b3+c2+~I)(J-1)(J-2)(2J-3)(2J-5)sin6/I . 
I 

The angle /? of the body-fixed frame rotation included in the above formulae can be 
found from the equation 

-&+2hI)-$(2J-I)-F(J-1)+$(2J-l)+F(J-2) 

-$(J- 1)(2J-3) { 0,+26,+2~,-~(6J-5)-$(6J+ll) 

x(J-l)(J-2)(2J-1)(2J-3)sin4/?+ ... =O. (B.14) 

The two other rotation angles equal c1= -y = n/2. Similar expressions may be 
obtained for the H,c Hamiltonian. 

The analysis of the expressions (B.12), (B.13), and (B.14) shows that there are 
two small parameters Jp ’ and sin2 fl a (J- J,)/J, in the series (B.4) for J > J,. The 
terms leading in these parameters are present only in EC4), P4), and SC4). Thus, the 
term Hc4) in the expansion (B. 1) is sufficient for the description of the lowest energy 
levels of the rotational multiplet close to the critical point J,. Strictly speaking, the 
harmonic approximation used above to prove universal character is not valuable in 
the vicinity of the critical point. Nevertheless, the parameter (J- J,)/J, is small in 
this region and the contribution from the terms Hck) with k>6 into the effective 
rotational Hamiltonian is negligible. 
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