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Monodromy is the simplest obstruction to the existence of global
action–angle variables in integrable Hamiltonian dynamical sys-
tems. We consider one of the simplest possible systems with
monodromy: a particle in a circular box containing a cylindrically
symmetric potential-energy barrier. Systems with monodromy
have nontrivial smooth connections between their regular Liouville
tori. We consider a dynamical connection produced by an appro-
priate time-dependent perturbation of our system. This turns
studying monodromy into studying a physical process. We explain
what aspects of this process are to be looked upon in order to
uncover the interesting and somewhat unexpected dynamical
behavior resulting from the nontrivial properties of the connection.
We compute and analyze this behavior.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The system we examine [1] is a classical particle of mass l moving in two dimensions q ¼ ðx; yÞ
without friction inside a circular box of radius qmax on a cylindrically symmetric potential-energy
barrier
VðqÞ ¼ �1
2

aq2 when q � jqj 6 qmax ð1aÞ

¼ 1 when q > qmax ð1bÞ
with a > 0. The particle will be subjected to additional perturbations; its unperturbed Hamiltonian is
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H0ðq;pÞ ¼
1

2l
ðp2

x þ p2
yÞ þ VðqÞ ð2Þ
where q ¼ ðx; yÞ and p ¼ ðpx; pyÞ are canonically conjugate Cartesian coordinates and momenta of the
particle. Throughout this paper, we will assume [2]
l ¼ a ¼ 1 ð3aÞ
and unless noted explicitly otherwise, we will use
qmax ¼ 3 ð3bÞ
for all numerical examples.
The unperturbed motion under H0 is simple: between specular reflections from the hard wall at

q ¼ qmax which reverse the radial component pq of momentum p, the particle travels up, scatters
off, and descends the potential-energy hill. Between bounces, the trajectory t # ðqðtÞ;pðtÞÞ is de-
scribed by linear equations. A typical unperturbed trajectory is shown in Fig. 1. Energy H0 qðtÞ;pðtÞð Þ
and angular momentum
M ¼ qðtÞ � pðtÞ ¼ xðtÞpyðtÞ � yðtÞpxðtÞ ð4Þ
of the particle are conserved:
Mðq;pÞ ¼ m; H0ðq;pÞ ¼ E P
m2

2lq2
max
� a

2
q2

max ¼: EminðmÞ ð5Þ
where ðm; EÞ are constants. Throughout this paper, the letter E and the word ‘energy’ refer to the value
of the unperturbed Hamiltonian H0ðq;pÞ. Also, following conventions that have arisen in this field,
angular momentum is simply called ‘momentum’. Since this system with two degrees of freedom
has two conservation laws (5) and the motion is bounded in the phase space R4 with coordinates
ðx; y; px; pyÞ, we expect (by the Liouville–Arnol’d theorem [3]) that the trajectories formed at each fixed
regular value ðm; EÞ fill typically a ‘torus’ Kðm;EÞ [23], and the family of such tori in the neighborhood of
Kðm;EÞ can be described by local action–angle variables. The origin ðm; EÞ ¼ ð0;0Þ is a critical value
which represents the unstable equilibrium together with its stable and unstable manifolds, so that
the full preimage of (0,0) is a singular two-dimensional variety Kð0;0Þ called a pinched torus [23].

The full dynamical flow u of the perturbed system is generated by the vector field
X ¼ XH0 þ X1 ð6Þ
Left: The ðx; yÞ-trace of a reference orbit with angular momentum m > 0 (bold line), its pericenter (empty circle), and
onding rotation angle h (small shaded sector at the origin). Right: A trajectory bouncing around the cylindrical barrier:
rdinate image of the trajectory with m ¼ 0:1; E ¼ �0:1, and initial position on the wall just below the negative x axis.
haded sector at the origin indicates the total swept polar angle modulo 2p. Axes x and y are scaled in units of qmax ¼

ffiffiffi
2
p

;
1.



Fig. 2. Left: A monodromy circuit C (bold red) defined by (7) within the set of the regular values (shaded area) of the EM map of
the system with Hamiltonian H0 in (2). Right: Zoomed part near the monodromy center (0,0) with C (bold black) and ‘placebo
circuit’ (bold gray); points on C are marked counterclockwise in ‘minutes’, 00 . . . 600 , starting with m ¼ 0 and E < 0. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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where XH0 is the linear vector field defined by H0 in (2) and the perturbing field X1 will be described
in more detail later. Its main required property [1] is that it causes the particle to change its
energy and angular momentum continuously in time, so that if we monitor EðtÞ and mðtÞ, we find that
they go counterclockwise around a circuit C in the ðm; EÞ plane encircling the origin (0,0) as shown in
Fig. 2.

The unperturbed system described by Hamiltonian H0 in (2) is one of the simplest examples of sys-
tems with nontrivial monodromy [4]. In such a system, as will be explained in more detail later, if we
relate continuously the coordinates on the neighboring regular tori with energy E and angular
momentum m while ðm; EÞ follow a closed directed path C encircling (0,0), and then compare final
and initial coordinates after completing one tour and returning to the same torus, we will find that
the final and initial coordinates do not match.

In this paper, we analyze the dynamical consequence of this phenomenon, which we called ‘‘dynam-
ical monodromy” [1]. In our case, the tori are connected dynamically by a (time-dependent) perturbation
of the system. This turns studying topological monodromy into studying a physical process, i.e., a time
evolution of a physical system whose (unperturbed) energy and angular momentum change and then
return to their original values. Given that the underlying unperturbed system described by H0ðq;pÞ
has interesting topological properties, the question is: what should we study in order to observe them?
The answer to this question is our main objective. We show that monodromy of the unperturbed system
leads to unexpected and nontrivial dynamical behavior of the perturbed system.

The paper is organized as follows. We begin in Section 2 by describing what happens to a certain
family of trajectories if it is subjected to certain chosen perturbations. The family of trajectories begins
and ends at a negative energy so that the allowed region of configuration space is an annulus. The set
of initial conditions of the particles forms a loop in phase space which projects to a ‘trivial’ loop in the
annulus. We show by computations that a passage around the monodromy circuit C carries particles
to unexpected locations, so that the topology of the final loop in configuration space is different from
that of the initial loop: the loop wraps around the forbidden region. In a previous short paper [1] we
showed this behavior in a movie, and we urge the reader to read that reference and watch that movie
before digging into the mathematical theory presented here. The purpose of this paper is to give a full
analysis of this behavior.

In Section 3.1 we connect with quantum monodromy (which at present might be more familiar to
some readers), and we give a brief discussion of different possible choices of classical actions and cor-
responding quantum numbers often used in systems with axial symmetry. Further in Section 3.2, we
explain the monodromy of the ‘static’ system with Hamiltonian (2), and then in Section 3.3, we for-
mulate the Hamiltonian monodromy theorem.

In Section 4 we return to the behavior of the perturbed classical system described in Section 2. We
analyze how this behavior is related to changes of angle and action variables and to the monodromy of
the unperturbed system. Subsequently, in Section 5, we turn to other possibilities to reveal monodr-
omy in the perturbed system. Notation is defined in Table 1.



Table 1
Notation used throughout the paper.

q ¼ ðx; yÞ Cartesian coordinates in the configuration space
p ¼ ðpx; pyÞ Conjugate momenta
q ¼ jqj Radius in the configuration space
qmax Fixed radius of the wall of the circular box
qminðm; EÞ Radial position of the inner turning point
/ ¼ tan�1 y

x Polar angle
a > 0 Potential force constant (later set to 1 [2])
l > 0 Mass (later set to 1 [2])
M ¼ Mðq;pÞ Angular momentum (or simply momentum)
m Value of M
H0ðq;pÞ Unperturbed Hamiltonian (2)
E The value of H0 called energy
XH0 ðq;pÞ Vector field defined by H0

ut
0ðq;pÞ Linear flow defined by XH0

EM Energy–momentum map with value ðm; EÞ
s ¼ ðm; EÞ Point in the energy–momentum plane R2

Kðm;EÞ Fiber of the EM map in R4

K0;0 Singular fiber (pinched torus)
C Monodromy circuit in the ðm; EÞ-plane
sðm; EÞ Period of first return
hðm; EÞ Rotation angle
J ¼ ðJ1; J2Þ Local action with values j ¼ ðj1; j2Þ [5]
W ¼ ðW1;W2Þ Conjugate local angles with values w ¼ ðw1;w2Þ
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2. The main result

Two ideas are central to this work [1]: (i) we define the perturbation implicitly by the resulting
evolution of s ¼ ðm; EÞ and resulting perturbed trajectories and (ii) we study a family of trajectories,
which we call ‘particles’, starting on a fundamental loop ~cð0Þ of a regular torus Kðm;EÞ.

Specifically we assume that under this perturbation, energy–momentum values s follow along cir-
cuit C (Fig. 2) which we choose here as
C : ½0;60� ! R2 : t # sðtÞ ¼
sin Xt

� cos Xt

� �
ð7Þ
with X ¼ 2p=60. The concrete choice of C is not important as long as it encircles the origin s ¼ 0 and
lies entirely in the set of regular EM values; for Eq. (7) this can be verified using Fig. 2. Furthermore,
we assume that at any instant t, all particles have the same value sðtÞ, i.e., all particles are located on
the same torus KsðtÞ of the unperturbed system. So at the initial time t ¼ 0 they begin on Ksð0Þ with
m ¼ 0 and E ¼ �1 and then they come back to this torus at t ¼ 60.

On regular tori Kðm;EÞ, we have two basic closed directed paths c1 and c2, which represent two clas-
ses ½c1� and ½c2� of the fundamental group p1 of Kðm;EÞ [6]. They are given explicitly in [1] and we will
return to this construction later in Section 4.1.5. One path, c1 is fixed on all tori as an orbit of the Ham-
iltonian flow of the vector field XM generated by the Hamiltonian function Mðq;pÞ; it can be specified
as the loop 0 6 / 6 2p; q ¼ qmax. The other path c2 ¼ c2ðtÞ � KsðtÞ must be defined smoothly as sðtÞ
follows C. Initially it can be defined to be a loop where the torus intersects y ¼ 0 with the restriction
x > 0.

In [1], particles were started on ~cð0Þ ¼ c2ð0Þ with y ¼ py ¼ 0 and with variables x and px consistent
with ðm; EÞ ¼ ð0;0Þ. The perturbation was assumed such that particles followed unperturbed trajecto-
ries t # qðt; m; EÞ;pðt; m; EÞð Þ whose parameters ðm; EÞ varied along C. Here we start particles in the
same way, but instead of working in the (q,p) phase space R4 we consider the flow of our system
in local action–angle coordinates (J,W) [5], which exist in a sufficiently small open neighborhood of
any regular torus Kðm;EÞ. In these coordinates, trajectories of the unperturbed system with Hamiltonian
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H0 in (2) are described as follows. Starting at some initial point w(0) on Kðm;EÞ (see Fig. 8), they evolve
linearly and wind around the torus according to
Fig. 3.
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wðtÞ ¼ wð0Þ þ mðm; EÞt ð8Þ
where mðm; EÞ are characteristic frequencies on Kðm;EÞ. Furthermore, functions
J ðm; EÞ ¼ J 1ðm; EÞ;J 2ðm; EÞð Þ ¼ 2pm;J 2ðm; EÞð Þ
which relate the values j of J to the energy and momentum, [7] and which are given by integrating pdq
along c1 and c2, respectively, are locally smooth real single-valued functions.

Let us assume here that our perturbation causes the values of local actions J to vary in time so that
corresponding ðm; EÞ follow C while the values of local angles w evolve in the same way as for the
unperturbed system, i.e., according to Eq. (8) with varying ðm; EÞ. We call this perturbation ideal. Under
such a perturbation, what is the evolution of the loop ~cðtÞ which represents the phase space positions
of particles at time t? We observe in Fig. 3 the evolution of ~cðtÞ. We have
Snapshots of the evolution of a closed continuous loop (bold line) in the ðx; yÞ-plane representing the ðx; yÞ-projection of
aneous phase-space positions of noninteracting particles which form a continuous one-parameter family and whose
is governed by the vector field (6) with perturbing term X1 so that their unperturbed energy E and momentum m evolve
e t ¼ 0 . . . 60 according to the monodromy circuit in Fig. 2 and Eq. (7). Current time t (in s) is indicated in the upper right

of each plot. At all times, particles have the same ðm; EÞ and lie at different points n on a particular cycle c2 defined in
ecifically, at t ¼ 00 (upper left plot), particles have ðm; EÞ ¼ ð0;�1Þ and lie on the cycle c2ð0

0Þ which projects on the
t ½qmin;qmax� of the positive semiaxis x; at t ¼ 600 all particles regain ðm; EÞ ¼ ð0;�1Þ. Gray central circle marks the
lly forbidden region for each t. Small empty circles and circles-with-a-dot mark instantaneous coordinates of particles I
tarted at t ¼ 00 with x ¼ qmax (at the wall, n ¼ 1

2) and x ¼ qmin (at the pericenter, n ¼ 0), respectively. Also shown is the
rojection (thin solid line) of the trajectory of particle I followed to the current time; the part of the trajectory added since
e of the preceding snapshot is highlighted.
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Result 1. Under an ideal realization of the monodromy circuit C beginning in sðtiÞ with m ¼ 0 and
E < 0 and ending in sðtf Þ ¼ sðtiÞ, the loop ~cðtiÞ ¼ c2ð0Þ evolves into a topologically different loop on the
same torus Ksðtf Þ at time t ¼ tf . The final loop at ~cðtf Þ combines c2ð0Þ with c1 as ~cðtf Þ ¼ c2ð0Þ � c1. Its
projection into the configuration space goes around the classically forbidden region surrounding the
origin. This phenomenon is topological. It persists for a large class of realizations of C, called
admissible, and for any loop of initial conditions which remains in a sufficiently small open regular
neighborhood of KsðtiÞ and is homotopic to c2ð0Þ within this neighborhood.

The most striking aspect of the resulting evolution of our loop is that for the initial–final
sð0Þ ¼ sð60Þ ¼ ð0;�1Þ, there is a large classically forbidden region, a disk fjqj < qminðm; EÞg whose
boundary is shown by a circle in the center of each snapshot in Fig. 3. This region vanishes only when
the instantaneous energy–momentum sðtÞ crosses the semiaxis fm ¼ 0; E > 0g, and for all other EM-
values, unperturbed particles cannot enter it. Their allowed configuration space is an annulus
½qmin;qmax� � S1 in the q plane. Yet the initial loop is entirely on one side of the forbidden disk, while
the final loop encircles it. In other words, these loops belong to different elements of the fundamental
group of the annulus, i.e., different homotopy classes of closed paths in the allowed configuration
space. The purpose of this paper is to explain this phenomenon.

3. Hamiltonian monodromy

Monodromy as a topological property of classical integrable Hamiltonian systems was introduced
in [8]; its manifestations in corresponding quantum systems were described in [9–14]. Several simple
mechanical systems [15], as well as a growing number of real fundamental physical systems, notably
the hydrogen atom in external fields [16], the CO2 molecule [17], the H2O molecule [18], rotating dipo-
lar molecules in an external electric field [19,20]—to name a few, are known to possess this property.

3.1. Smooth actions and corresponding quantum numbers

We begin by examining an even simpler system described by Hamiltonian H0 in (2) with barrier
parameter a ¼ 0, i.e., a particle in a ‘flat’ circular box. We examine it first in quantum mechanics,
and then we connect its quantum properties to properties of action variables.

The quantum energies Enqm̂ and related values of the radial wave vector knqm̂ are labeled by integer
quantum numbers m̂ and nq. Fig. 4a (left) shows the joint spectrum of discrete values ðm; EÞ of angular
momentum (4) and energy (2), conventionally called the energy–momentum spectrum. It can be
approximated as
Fig. 4.
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where nq ¼ 1;2; . . . corresponds to what might be regarded as the ‘‘most natural” way to label the
eigenfunctions. This nq counts the number of radial nodes (including the one at qmax) while m̂ char-
acterizes the angular behavior of the wavefunction.

In Fig. 4b (left) curves are drawn that go through points of fixed nq. The slope of these lines is, obvi-
ously, discontinuous at m̂ ¼ 0. Can we find a way to define the quantum numbers such that the con-
necting curves are smooth over the whole region of the spectrum? As illustrated in Fig. 4c–e (left),
if we define quantum numbers
nþ ¼ nq m̂ P 0 ð10aÞ
nþ ¼ nq � m̂ m̂ 6 0 ð10bÞ
or
Comparison of a circular box system (left column) to a circular barrier system (right column), both with l ¼ 1 and
1
4. Dots show quantum joint ðm; EÞ-spectra for �h ¼ 1=40; lines indicate constant level sets of classical action J 2ðm; EÞ for
t choices of J2 (rows b–e). For the circular barrier (right), any path encircling once counterclockwise the monodromy
t the origin ðm; EÞ ¼ 0 represents the monodromy circuit C. Also shown (top right) is the result of the transport of a unit
he lattice of quantum states along C; the unit cell does not come back to itself.
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n� ¼ nq þ m̂ m̂ P 0 ð10cÞ
n� ¼ nq m̂ 6 0 ð10dÞ
or
ns ¼ 2nq þ jm̂j ð10eÞ
and construct curves connecting either states of fixed nþ (Fig. 4c, left) or n� (Fig. 4d, left) or ns (Fig. 4e,
left), then those curves are globally smooth. So it follows that the discontinuity or ‘kink’ of the curves in
Fig. 4b, left, is related to our particular choice of quantum numbers.

The curves drawn in Fig. 4b–e correspond to quantized values of classical action variables, and the
different structure of the curves follows from the fact that those action variables can be defined in sev-
eral different ways. Because of the axial symmetry, one of them, J1 :¼ 2pM can be chosen naturally
using the (angular) momentum M in (4). Its conserved value 2pm is quantized as 2pm̂�h, with m̂ integer.
The second action variable may be defined in a number of ways. These choices can be explained by
considering the values J 2ðm; EÞ of this variable as function of ðm; EÞ [7].

A seemingly natural (and most usual) choice would be to define the second action variable J2 by a
radial action integral
J 2 : ¼? J 0
qðm; EÞ ¼ 2

Z qmax

qminðm;EÞ
Pqðq; m; EÞdq ð11aÞ
where Pqðq; m; EÞ is defined as the positive square root
Pqðq; m; EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l½E� VðqÞ � 1

2
m2=ðlq2Þ�

r
> 0 ð11bÞ
and qminðm; EÞ is the inner turning point of the radial motion. Contours (or constant level sets) of
J 0

qðm; EÞ corresponding to its quantized values 2p�hðn0
q þ 3

4Þ;n0
q P 0 are the curves shown in Fig. 4b

(left). Definition (11) makes J 2 an even function of m. This is a natural choice from the perspective
of time-reversal symmetry of the system with Hamiltonian (2) which acts as m! �m. However, such
a choice forces contours of J 2 to have a kink at m ¼ 0 where @J 0

q=@m is discontinuous [21].
Several other choices of the second action J2 are available. We could take it to be either Jþ, or J�, or

Js, where
Jþ ¼ J0
q J� ¼ J0

q þ 2pM M P 0 ð12aÞ
Jþ ¼ J0

q � 2pM J� ¼ J0
q M 6 0 ð12bÞ

Js ¼ 2J0
q þ 2pjMj ð12cÞ
Quantizing the values of these action variables as
J 	 ¼ 2p�h n	 þ
3
4

� �
and J s ¼ 2p�h ns þ

3
4

� �
with integer n	 P 0 and ns P 0 satisfying (10), and plotting contours in the ðm; EÞ plane leads to the
curves shown in Fig. 4c–d (left) and Fig. 4e (left), respectively. Note that J s is an obvious alternative to
J 0

q which is both even in m and smooth.
Is there a ‘‘best” definition of action variables and quantum numbers? That depends on the physical

process being considered. So long as we are only interested in ‘static’ properties of individual eigen-
states, J0

q and n0
q are a good choice, because they preserve the m! �m symmetry, and they count

the radial nodes in the eigenfunctions. However, if we are concerned about dynamical processes, other
choices might be better.

Let us consider transitions induced by radiation that is ð	Þ circularly polarized in the plane of the
box. Of course such radiation perturbs the system and breaks its m! �m symmetry. Since quantum
selection rules for ð	Þ radiation are Dm̂ ¼ 	1 for absorption and Dm̂ ¼ 
1 for emission, a sequence of
such transitions may preserve either nþ or n�. Such a sequence would follow the contours of J 	 as
illustrated in Fig. 4 but not those of J 0

q. So the numbers n	 may give a simpler description.
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The circular box system does not have monodromy, but it has some properties in common with other
axially symmetric systems that do. It is perhaps the simplest system in which one naturally raises ques-
tions about how to define smooth actions and appropriate quantum numbers. Also it is structurally
unstable. A small deformation with a > 0 converts it into a system that does have monodromy, and
for which no smooth choice of actions and quantum numbers can be made globally. (A small deformation
into the opposite direction a < 0 yields a structurally stable oscillator system without monodromy.)

3.2. Monodromy of the circular barrier system

Let us now examine briefly the quantum system with Hamiltonian in (2) and a > 0. Its spectrum is
shown in Fig. 4, top right, followed by level plots for different possible choices of classical actions
which are analogous to the one we discussed above (Section 3.1 and Fig. 4, left column).

Comparing to the circular box system, the first difference we note is that the origin (0,0) is now an
isolated critical energy–momentum value surrounded by regular values ðm; EÞ (gray shaded area) [22].
In the circular box system, (0,0) represented a particle at rest at any point of the box, i.e., an open disk
fq < qmax;p ¼ 0g of equilibrium positions in the phase space R4. After the deformation into the circu-
lar barrier system, it represents an isolated singular fiber in R4 called a pinched torus, which is sur-
rounded by regular tori [23].

The presence of such a critical value at (0,0) changes qualitatively the level sets of actions. In the
case of the traditional choice in Fig. 4b, the action J is smooth for E < 0, but it has a ‘‘kink” at m ¼ 0
when E > 0. On the other hand, the ‘‘left” and ‘‘right” actions J	 are both smooth when E > 0, but they
have a discontinuous derivative on the half-line fm ¼ 0; E < 0g. These singularities of actions reflect a
real nontrivial physical property of the system—its monodromy. The critical value at (0,0) makes find-
ing a globally smooth single-valued action impossible.

In general, actions J and corresponding action integrals J in systems with monodromy are multi-
valued. In our system, J 1 ¼ 2pm is defined globally and is single valued. However (as pointed out by
Vũ Ngo_c [24,10]) the multivalued part of the second action J 2ðm; EÞ near (0,0) can be approximated as
m argðEþ imÞ ð13Þ
Using different leaves of this function results in different J 2. Since for any such choice, the values of
arg have to sweep a full circle around (0,0), any such action is not C1-smooth in the regular open
neighborhood of the singularity at (0,0). Thus in particular, if we choose to start the leaf on the
half-line fm ¼ 0; E < 0g and continue it smoothly around (0,0) while increasing the value of arg, we
come back with the same value j2 but with a different @J 2=@m. One can verify that the level sets of such
J 2 near (0,0) are qualitatively equivalent to those in Fig. 4e, right. These sets are smooth for E > 0 and
have a kink on fm ¼ 0; E < 0g. Alternatively, we can start the leaf on fm ¼ 0; E > 0g, and have level sets
with a kink on this half-line (Fig. 4b). Two more possibilities with discontinuous first derivative
@J 2=@m are represented in Fig. 4c and d. On the other hand, in all other cases, J 2ðm; EÞ itself is dis-
continuous [25].

The corresponding joint ðm; EÞ eigenvalue lattice of quantum states has a defect at (0,0). The best
way to characterize this defect is by choosing an elementary cell of this lattice and transporting it
in small steps along a circuit around (0,0). As can be seen in Fig. 4, top right, the deformation of
the cell at each step is unambiguously defined by the two basis vectors of the cell. As we come back
after completing a tour, the cell does not come back to itself. For any such lattice of quantum eigen-
values, neither n, nor n	 or any other second quantum number is well defined globally.

As we will see in Section 3.3, this process of following a unit cell of a lattice of quantum eigenvalues
corresponds to following smooth connections of action variables on classical tori.

3.3. Monodromy theorem

We summarize the preceding discussion in a more formal way. The first integrals ðM;H0Þ in (2) and
(4) define the energy–momentum map
EM : R4 ! R2 : ðq;pÞ ! Mðq;pÞ;H0ðq;pÞð Þ ¼ ðm; EÞ
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Regular values ðm; EÞ of the EM map are those for which the rank of the Jacobi matrix @ðM;H0Þ=@ðq;pÞ
is 2 [22]; the corresponding regular fibers Kðm;EÞ, i.e., inverse images EM�1ðm; EÞ are tori [23]. The fiber
K0;0 is a pinched torus [23]: its pinch point p ¼ q ¼ 0 is the critical point of the EM map at which the
rank drops to 0; other points of K0;0 are regular. Such an isolated critical fiber causes monodromy [26].

The set D� of all regular EM values is an open domain in R2, shown as a gray shaded area in Fig. 4a,
right. We can see that it is a punctured disk D n ð0;0Þ which is not simply connected. In particular, any
closed path C in D� that circles once around (0,0) is non-contractible. By convention, C is directed
counterclockwise, see Fig. 2. We call C a monodromy circuit, and we call (0,0) the monodromy center.
Any contractible circuit in D�, i.e., any circuit homotopic to a point, will be called a placebo circuit.
Monodromy and placebo circuits represent two different elements of the fundamental group p1ðD�Þ
[27].

In the neighborhood of any regular torus Kðm;EÞ we can define local action and angle variables Jk and
Wk with k ¼ 1;2, which we will denote by capital letters when we consider them as functions on the
phase space. The numerical values of Jk and Wk are denoted by lower-case letters jk and wk. Boldface
letters will refer to pairs, such as J ¼ ðJ1; J2Þ; j ¼ ðj1; j2Þ [5].

Consider now a bundle of regular tori Kðm;EÞ over C. Action and angle variables can be defined for
each Kðm;EÞ, and as we follow C and go continuously from a point on one torus to a point on another,
the values j, w of these variables change continuously [28]. For each fixed regular ðm; EÞ and fixed
ðw1;w2Þ, the relationships W1 ¼ w1 or W2 ¼ w2 define on Kðm;EÞ two closed curves c2 and c1, respec-
tively—the two fundamental loops of this torus. Directing them according to increasing angles
ðw1;w2Þ we obtain a cycle basis ðc1; c2Þðm;EÞ of the first homology group of Kðm;EÞ,—basically, a coordi-
nate system on this torus. Furthermore, using the continuity properties of local actions and extending
this definition to the neighboring tori, we obtain a continuous connection between them which relates
their cycle bases continuously.

Let us begin building our connection at some initial point Ci of the monodromy circuit. There we
have basis cycles ðc1; c2Þi. After one tour we arrive at Cf ¼ Ci with a new basis ðc1; c2Þf . Furthermore, let
us choose J1 ¼ 2pM and c1 as the trajectory cM of the system with Hamiltonian M, the generator of the
axial symmetry. Then a general monodromy theorem [8,26,9,15,29] tells us that the initial and final
cycle bases will not be the same. For our choice of cycle basis
c1

c2

� �
f

¼
1 0
�1 1

� � c1

c2

� �
i

ð14Þ
The monodromy matrix defining this transformation is a matrix in SLð2;ZÞ. On the other hand, starting
at the same regular torus KCi

and following any placebo circuit (such as shown by the gray path in
Fig. 2), we will obtain a trivial cycle basis bundle with ðc1; c2Þf ¼ ðc1; c2Þi.

This result is independent of any particular choice of the monodromy circuit within the class of
homotopic paths in D�. Neither does it depend on the initial–final point, nor on a particular construc-
tion of the cycle bases and connections: the monodromy matrix in (14) remains the same up to a con-
jugation within SLð2;ZÞ. Furthermore, since actions and cycles change in the same way (the values of
actions are integrals along the cycles)
J1

J2

� �
f

¼
1 0
�1 1

� �
J1

J2

� �
i

ð15Þ
and consequently, J2 cannot be defined globally on EM�1ðD�Þ as a real smooth single-valued function.
At the same time, pulling back Jk with k ¼ 1;2 by EM�1 and considering locally smooth single-val-

ued real functions J k of ðm; EÞ on D� [7], we observe that the Jacobian matrix
DJ ðm; EÞ ¼
@J 1
@m

@J 1
@E

@J 2
@m

@J 2
@E

0
@

1
A
ðm;EÞ
transforms as
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DJ f ¼
1 0
�1 1

� �
DJ i ð16Þ
[use the covector transformation property for gradients].
Quantum energy–momentum values correspond (within the semiclassical approximation) to

quantized values of ðJ 1;J 2Þ and it can be seen that the inverse transpose of DJ ðm; EÞ defines the ele-
mentary cell of the locally regular two-dimensional quantum lattice at point ðm; EÞ in D� [30]. Further-
more, it can be verified by a computation [9,10,31,32] that the respective transformation of the two
basis vectors ðv1; v2Þ defining the elementary cell at ðm; EÞf ¼ ðm; EÞi, is given by the inverse transpose
monodromy matrix
v1

v2

� �
f

¼
1 1
0 1

� �
v1

v2

� �
i

ð17Þ
Finally, if the transformation in (15) is a symplectomorphism, conjugate angles ðW1;W2Þ should also
change like vectors ðv1; v2Þ in (17)
W1

W2

� �
f

¼
1 1
0 1

� �
W1

W2

� �
i

ð18Þ
The latter should be restated in both ‘passive’ and ‘active’ form. If we take a given point ðqi;piÞ on the
initial torus Ki, having values of angle variables (defined in the initial angle coordinate system) equal
to wi ¼ ðw1;w2Þi, then, upon traversing once around the monodromy circuit, the coordinate functions
W change so that the same point on the torus ðqi;piÞ is identified in the final coordinates by values
wfinal ¼
1 1
0 1

� �
wi ð19aÞ
Correspondingly, if we traverse a monodromy circuit, moving from one torus to another with the
numerical values w of angle variables W held fixed, w ¼ wi, then we do not come back to the original
point on the torus. The new point to which we return is defined in the old coordinates as
wnew ¼
1 1
0 1

� ��1

wi ¼
1 �1
0 1

� �
wi ð19bÞ
The above results are proven in various ways in a number of mathematical articles [8,9,15,29,10]. In
the next section we explain how these properties of angle and action variables of the tori associated
with H0 lead to the dynamical behavior of the perturbed time-dependent system that was displayed in
Fig. 3.

4. Dynamical monodromy

All of the discussion above in Section 3 deals with ‘static’ connections (continuous mappings of lo-
cal angle variables) on a bundle of Liouville tori of the system with the time-independent Hamiltonian
H0ðq;pÞ in (2). What are the implications of this ‘static’ monodromy for the dynamical behavior of the
system? We observed in the calculations (Fig. 3 and Result 1) that the initial loop is equivalent to
c2ð0Þ, and that the final loop is homotopic to c2ð0Þ � c1; Eq. (14) indicates that this latter loop is
c2ð60Þ. More generally, we will see that the loop generated dynamically by our chosen perturbing vec-
tor field X1 follows a smoothly evolving loop of the static system c2ðtÞ at all t.

To explain this, we now allow the static system to be perturbed by an additional vector field X1 in
(6). After a brief review of the dynamics of the unperturbed system in Section 4.1 (which is later ex-
tended in Section 4.3.2), we consider in Section 4.2 certain general requirements on admissible pertur-
bations X1, and then we define a particular perturbation which we use later in calculations and which
we call ideal. We then choose an ensemble of trajectories, which we may imagine to be a collection of
noninteracting particles, and follow the evolution of this ensemble under a perturbed flow ut . This idea
of observing an ensemble of particles is central to our approach. By following the ensemble through time,
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we find several distinct but closely related dynamical manifestations of the monodromy of the static
system with Hamiltonian H0ðq;pÞ.

4.1. Unperturbed motion

4.1.1. Pericenter and reference orbit
A typical path of the particle between bounces is shown in Fig. 1. The point of this trajectory where

both jqj and jpj attain their respective smallest possible values qmin and pmin (for given m and E) is
called the pericenter. Notice that unless m ¼ 0 and E > 0 (on the positive-E semiaxis) the pericenter
is a turning point of the radial motion. (It is a ‘fly through’ point if m ¼ 0 and E > 0.) Assuming
l ¼ a ¼ 1 [2], we obtain
Fig. 5.
circles
(gray).
qmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEþ imj � E

q
ð20aÞ

pmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEþ imj þ E

q
ð20bÞ
for given m and E, see Fig. 1, left.
For each ðm; EÞ, we define a reference orbit on the torus Kðm;EÞ as follows. The reference orbit extends

from one bounce off the outer wall to the next one and either (i) if m ¼ 0 and E < 0 it remains always
in the plane fy ¼ py ¼ 0g or (ii) in all other cases it crosses the hyperplane fy ¼ 0g � R4 at t ¼ 0 at its
pericenter. The latter is defined as the four vector
u0ðm; EÞ ¼ x0ðm; EÞ; 0;0;p0ðm; EÞð ÞT ð21Þ
where x0 and p0 satisfy
x0p0 ¼ m and p2
0 � x2

0 ¼ 2E
so that jx0j ¼ qmin and jp0j ¼ pmin. The signs of x0 and p0 will be chosen later (see Section 4.1.4). Defin-
ing the linear flow of the system with Hamiltonian H0 by the 4� 4 matrix
St
H0
¼

cosh t 0 sinh t 0
0 cosh t 0 sinh t

sinh t 0 cosh t 0
0 sinh t 0 cosh t

0
BBB@

1
CCCA ð22Þ
the reference orbit is
�1
2
;þ1

2

� �
! R4 : n # Sns

H0
u0ðm; EÞ ð23Þ
Left: The ðx; yÞ-trace of a family of reference orbits (bold) with ðm; EÞ following the monodromy circuit C in Fig. 2; empty
mark pericenters. Right: The ðx; yÞ-trace of a family of cycles c2 (black) obtained from the respective reference orbits
Axes x and y are scaled in units of qmax ¼

ffiffiffi
2
p

; l ¼ a ¼ 1.
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where s ¼ sðm; EÞ is computed in the next section and n ¼ 	 1
2 represent points on the wall, see Figs. 1

and 5, left.

4.1.2. Period of first return and rotation angle
The time sðm; EÞ between the bounces of the unperturbed motion under H0 is called the period of

first return. It is a single-valued smooth function R2 n 0! R with a logarithmic singularity at the origin
of the ðm; EÞ plane,
Fig. 6.
monod
sðm; EÞ ¼ cosh�1 q2
max þ E

s
ð24aÞ
with
sðm; EÞ :¼ jsðm; EÞj ¼ jEþ imj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2

q
P 0
Near the origin when 0 < sðm; EÞ � 1
2 q2

max
sðm; EÞ � log 2q2
max � log jEþ imj þ 
 
 
 ð24bÞ
The polar angle hðm; EÞ swept in the q-plane during sðm; EÞ (Fig. 1) is called the rotation angle and is a
multivalued function
hðm; EÞ ¼ 2 tan�1 Eþ s
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

max þ E� s
q2

max þ Eþ s

s !
ð25aÞ
which for 0 < sðm; EÞ � 1
2 q2

max has an asymptotic form
hðm; EÞ � p� argðEþ imÞ þ 
 
 
 ð25bÞ
These quantities are central to the construction of the second action variable and to the analysis of
‘static’ monodromy.

For the monodromy circuit C in (7), we verify that s � C and h � C are smooth functions of param-
eter t illustrated in Fig. 6. Furthermore, from (24b) and (25b) we obtain
sðsðtÞÞ � log 2q2
max; hðsðtÞÞ � Xt; sðtÞ 2 C ð26Þ
To assess these asymptotic expressions note that for physical parameters in (3), the circuit C in (7) lies
well inside the domain of regular EM-values while encircling closely the critical value s ¼ 0, as shown
Fig. 2, left. As a consequence, the simple approximations in (26) are quite accurate, see Fig. 6, left.

4.1.3. Tracing integral curves for arbitrary time
When the particle bounces off the wall at q ¼ qmax, the radial component pq of its momentum p

changes sign, while the polar component and the angular momentum are conserved. So it can be seen
Variation of the period of first return s, the rotation angle h, and the pericenter position ðq0; p0Þ in (27) along the
romy circuit C in (7) and Fig. 2.
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that after the kth bounce, with k ¼ 1;2;3; . . ., the trajectory begins with the same initial conditions ex-
cept for the polar angle / advanced by khðm; EÞ. Therefore, an ðx; yÞ image of the complete trajectory
can be constructed by projecting the phase curve followed for one period sðm; EÞ and then repeating
the resulting curve by rotating it by angle khðm; EÞ about the origin, see Fig. 1, right.

4.1.4. Continuous parameterization of integral curves
For the purposes of our further study, we should be able to parametrize integral curves of the sys-

tem with Hamiltonian H0 in (2) on each fiber Kðm;EÞ by the values ðm; EÞ and two additional dimension-
less angle-like parameters. As s ¼ ðm; EÞ follows a continuous path in the ðm; EÞ-plane, such as any
open segment of the monodromy circuit C in Fig. 2, the corresponding parametric family of integral
curves should be continuous.

We first define using (23) a continuous family of reference orbits for different ðm; EÞ. To this end we
define appropriately the signs of the components x0 and p0 of u0 in (21): when passing through
fm ¼ 0; E > 0g we change the sign of x0, when passing through fm ¼ 0; E < 0g we change the sign
of p0. This makes u0ðm; EÞ smooth everywhere. For a single tour on monodromy circuit C in (7), i.e.,
for t ¼ ½0;60�, it is sufficient to take
p0 ¼ pminðm; EÞP 0 ð27aÞ
x0 ¼ signðmÞqminðm; EÞ; for m – 0 ð27bÞ
x0 ¼ 	qminðm; EÞ; for m ¼ 0 ð27cÞ
From these equations and (7), we obtain
x0ðsðtÞÞ ¼ cos
1
2

Xt and p0ðsðtÞÞ ¼ sin
1
2

Xt ð27dÞ
as smooth functions of parameter t, see Fig. 6, right [33]. The resulting family of reference orbits is
illustrated in Fig. 5, left. The exceptional reference orbits with m ¼ 0 and E < 0 are closed at the wall
[23]; all other reference orbits are open.

To parametrize all other orbits of the flow of the unperturbed system with Hamiltonian H0, we use
two phases t0 and /0 in order to move the initial conditions u0ðm; EÞ to a different point on the torus
Kðm;EÞ. Using t0 2 � 1

2 s;
1
2 s

� �
we shift along the reference orbit, and using /0 we move this orbit along

the S1 orbits of the flow of the system with Hamiltonian M, i.e., we rotate it in R4 by matrix
S/
M ¼

cos / � sin / 0 0
sin / cos / 0 0

0 0 cos / � sin /

0 0 sin / cos /

0
BBB@

1
CCCA ð28Þ
with / ¼ /0. So the general orbit is given by
uðtÞ ¼ St�t0
H0

S/0
M u0ðm; EÞ ð29Þ
Since the respective first integrals are in involution, St
H0

and S/
M commute. Furthermore we note that

initial conditions of the integral curve in (29) are given by four parameters ðt0;/0Þ and ðm; EÞ so that
all dependency on ðm; EÞ is contained in the pericenter position u0ðm; EÞ.

4.1.5. Continuous choice of cycles
Each regular torus Kðm;EÞ [23] has two fundamental directed loops c1 and c2 which represent basis

cycles ½c1� and ½c2� [34]. The loops c1 can be uniformly chosen on all Kðm;EÞ as orbits of the action of the
axial symmetry SOð2Þ induced in R4 by the Hamiltonian flow of angular momentum M. Projected on
the ðx; yÞ plane, c1 become circles of constant q, which are directed counterclockwise by XM . Let us call
them /-loops.

The loop c2 can be constructed using reference orbits in (23), and we can define a continuous family
t # c2ðtÞ with t 2 ½0;60� using the continuous family of reference orbits defined by (27). As c2ð0Þ we
can take the respective exceptional reference orbit.
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The family of cycles ½c2ðtÞ� is obtained by combining the flow of the vector field XM of momentum
M, together with the vector field XH0 of the unperturbed Hamiltonian H0,
Fig. 7.
R3 with
qðnÞ;pðnÞð ÞT ¼ S�nh
M Sns

H0
ðx0; 0;0; p0Þ

T ð30aÞ
with ðx0; p0Þ defined in (27) and
n 2 �1
2
;
1
2

� �
ð30bÞ
a dimensionless variable along the orbit. (If t is the time of the flow of the system with Hamiltonian H0,
then n ¼ t=s.) By this construction, the resulting closed curve c2 � R4 is the orbit of the flow which is
defined on the regular fibers Kðm;EÞ of our system by the vector field XJ2

of the local action J2, and n cor-
responds to the canonical angle variable w2 [35]. For sðtÞ ¼ ðmðtÞ; EðtÞÞ in any open segment of C in
Fig. 2, for example if 00 < t < 600, the resulting curves
c2ðtÞ : �1
2
;
1
2

� �
! KðmðtÞ;EðtÞÞ � R4 : n # qðnÞ;pðnÞð ÞT
form a continuous family of curves in R4 parameterized by one parameter t. This can be verified
explicitly for C in (7) using (26) and (27d).

Projections of the resulting family of curves c2ðtÞ on the q plane R2
x;y are shown in Fig. 5. We can see

from this figure that c2ð0Þ projects to a radial segment of axis x with 0 < qmin 6 q 6 qmax, while all
other projections are directed S1 loops in R2

x;y with one singular point or ‘‘tip” at the apocenter
q ¼ qmax. The loops are symmetric with respect to the radial line passing through their tips. Further-
more, the distance between the tip and the pericenter (empty circles in Fig. 5) increases monotonically
with t 2 ½0;60�. So in particular, all projections of c2ðtÞ with t > 30 encircle the origin q ¼ 0 in R2

x;y.
These orbits c2 in Fig. 5, right, represent the second basis cycle ½c2� of the first homology of Kðm;EÞ.

Since, as was already mentioned, the orbit c2ð0Þ (for m ¼ 0 and E < 0) projects as a segment ½qmin;qmax�
of the positive semiaxis x in the q-plane, we can call c2ð0Þ a radial orbit or q-loop; for all other c2 orbits
such terminology is misleading.

The cycle bases f½c1�; ½c2�g form a continuous bundle of first homologies H1 [36] over the circuit
C � S1 in Fig. 2. This bundle is locally trivial, but [since the static system with Hamiltonian H0 has
monodromy and C goes around the isolated critical EM-value (0,0) and is therefore not homotopic
to 0] it is globally nontrivial. Specifically, while the globally defined cycle c1 remains unchanged,
c1ð60Þ ¼ c1ð0Þ ð31aÞ
the initial cycle c2ð0Þ and the final cycle c2ð60Þ are related by (14),
Initial and final cycles c2ð0Þ and c2ð60Þ defined by (30), (7), and (26) on the torus Kðm;EÞ with ðm; EÞ ¼ ð0;�1Þ immersed in
coordinates x; y, and K ¼ 1

2 ðxpx þ ypyÞ.
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c2ð60Þ ¼ c2ð0Þ � c1ð0Þ ð31bÞ
To see the latter, note that for any ðm; E > EminðmÞÞ, i.e., for any allowed EM-value in the shaded do-
main in Fig. 2 (left), and any t, an orbit c1 projects to a circle in the q-plane which goes counterclock-
wise and parallel to the wall, while c2ð60Þ is directed clockwise and intersects the wall at one point as
shown in Fig. 5. Finally, the three-dimensional representation of the initial–final torus Kðm;EÞ [37] in
Fig. 7 can also help to understand better the relation of c2ð0Þ and c2ð60Þ. This representation clearly
shows that the two cycles are not homotopic to each other.

4.1.6. Description of motion on tori
The coordinates on regular tori Kðm;EÞ [23] in R4 are defined by values w of local angle variables

W ¼ ðW1;W2Þ [5] which give Liouville lengths along the basis cycle representatives c1 and c2 of
Kðm;EÞ. The origin w ¼ 0 of the coordinates can be fixed uniformly using u0ðm; EÞ.

Under the unperturbed flow of XH0 ¼ X0, the angles wðtÞ evolve linearly with time according to (8)
as illustrated in Fig. 8. The frequencies of this motion are
mðm; EÞ ¼ ðm1; m2Þ ¼
hðm; EÞ
sðm; EÞ ;

2p
sðm; EÞ

� �
1

2p
ð32Þ
Note that m2 ¼ 1=s is the frequency of the radial motion.

4.2. Choosing admissible perturbing terms

In the perturbed system with full flow ut given by the vector field X in (6), there are many concrete
ways to accomplish changes in the values of angular momentum m and energy E, which are defined to
be the instantaneous values of M in (4) and H0 in (2). We begin with certain simple general require-
ments for admissible perturbing vector fields X1 in (6) which can be used to exhibit monodromy
dynamically.

Let s denote points (values of the EM map) in the image of the EM map in R2 with coordinates
ðm; EÞ. As before (Fig. 2), the monodromy circuit C is a closed directed path going around the monodr-
omy center s ¼ ð0;0Þ; both C and its sufficiently small open neighborhood RC consist of regular EM

values. The preimage (the fiber) EM�1s of any regular EM value s is a single regular torus Ks [23].
For points s on C, we consider their small open regular neighborhoods rs # RC containing regular
EM values s0; s00, etc. We also consider the corresponding small open neighborhoods Rs ¼ EM�1rs

of regular tori Ks containing regular tori Ks0 ;Ks00 , etc. Finally, we consider trajectories in the extended
phase space R4 � R1 with coordinates ððq;pÞ; tÞ evolving under the flow ut , and we describe how these
trajectories evolve through the extended subspaces ðKs; tÞ; EM�1ðrsÞ; t

	 

, etc.
Trajectory of the flow of the unperturbed system (bold black) on the regular fiber Kðm;EÞ with local angle coordinates
Þ; empty circle marks t ¼ 0, numbers refer to consecutive segments.
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(1) An admissible perturbing vector field X1ðq;pÞ acts during the time t in ðti; tf Þ � R with
�1 < ti < tf <1 and vanishes for times outside this interval. The resulting admissible full flow
ut defines a continuous mapping, and furthermore, for all (q, p) in EM�1ðRCÞ n fq ¼ qmaxg this
mapping is piecewise smooth in t and locally smooth in (q, p).

(2) Under the flow ut , the trajectories starting in EM�1ðRCÞ are continuous (except for the bounces
at q ¼ qmax [23]) and are nonintersecting curves in R4 � R1 which depend continuously on the
initial conditions.

(3) In order to make E and/or m evolve, X1 should be transversal to regular tori Ks, i.e., to both vec-
tor fields XH0 and XM . We will assume for simplicity that this holds at all times in ðti; tf Þ for all s
in RC � C.

(4) Under utðq;pÞ, any s0ðtÞ starting at t ¼ ti in a neighborhood rsi
of si ¼ sðtiÞ 2 C, evolves contin-

uously (and piecewise smoothly) through RC so that s0ðtÞ ¼ s0mðtÞ; s0EðtÞ
	 


2 rsðtÞ of some sðtÞ 2 C
that traverses C continuously and counterclockwise, and comes back to sf ¼ sðtf Þ ¼ si at time
t ¼ tf .
Two consequences of the above conditions follow.

(5) Points s0ðtiÞ and s0ðtfÞ lie in the same small open neighborhood rsi ¼ rsf
. So connecting s0ðtf Þ and

s0ðtiÞ inside that neighborhood, we obtain a closed curve C0 � RC homotopic to C.
(6) Under utðq;pÞ, a loop ci � Rsi evolves continuously in R4 � R1 so that cðtÞ ¼ utðciÞ � RsðtÞ

remains a loop that returns to Rsi
at t ¼ tf . In Rsi

, this defines a bijective map ci ! cf . At the
same time, the image EMðcðtÞÞ � rsðtÞ of cðtÞ stays a connected set which comes back to rsi .

To have an example of an admissible perturbation, consider local angle–action variables (J, W) of
the unperturbed system (Section 4.1.6) which are well defined locally (smooth, real, and in case of lo-
cal actions—single valued) functions of (q, p). So rewriting X in (6) as
Xðj;w; tÞ ¼ X0ðjÞ þ X1ðj;w; tÞ ð33aÞ
equations of motion for the values (j, w) of (J, W) are
d
dt

j
w

� �
¼

0
mðjÞ

� �
þ X1ðj;w; tÞ ð33bÞ
with frequencies m from (8).
If we now restrict X1 so that
X1ðj;w; tÞ ¼
cðtÞ

0

� �
ð34Þ
where functions c ¼ ðc1; c2Þ are piecewise smooth in t, then angles w evolve under the full flow ut just
as they would evolve under the unperturbed ut

0 in (8), i.e.,
dw=dt ¼ mðjÞ ð35Þ
The perturbing vector field X1 in (34) and the resulting total flow ut will be called ideal. It has impor-
tant special properties. Specifically, the rate of change of action values jðtÞ equals cðtÞ for any particle
within the domain of definition of the local action–angle variables (J,W). Hence (within this domain)
particles will move synchronously from one torus to another so that if all particles begin at t ¼ ti on
one torus Ksi , then at every instant t they will all remain on a single torus KsðtÞ [38]. Until Section 6, we
will discuss only ideal flows ut . The following lemma follows.

Lemma 1. local evolutionUnder the ideal flow ut defined locally in a sufficiently small open regular
neighborhood Rs0 of a regular fiber Ks0 , the values j ¼ jðtÞ of local actions can be made to vary so that the
energy–momentum values sðjðtÞÞ 2 rs0 follow a portion dCs0 ¼ rs0 \ C of the path C. At the same time, the
evolution of local angles w is obtained by integrating mðjðtÞÞ. Specifically
w1ðtÞ ¼
1

2p

Z t

0

hðmðtÞ; EðtÞÞ
sðmðtÞ; EðtÞÞ dt þw1ð0Þ
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w2ðtÞ ¼
Z t

0

1
sðmðtÞ; EðtÞÞ dt þw2ð0Þ
Furthermore the perturbation X1 is well defined both as X1ðq;p; t0Þ and X1ðj;w; t0Þ.

Indeed, by the theorem assuring the existence of local action–angle variables [3], the map
rs0 ! R2 : s # jðsÞ
relating (the values of) energy–momentum and local actions is a local diffeomorphism. (Note that
while j1 � 2pm, the locally single-valued function j2ðm; EÞ is globally multivalued.) So the first state-
ment of the lemma is obtained after choosing an appropriate cðtÞ in (34). By the same theorem, there is
a diffeomorphism (J,W) relating the neighborhoods Rs0 in the (q,p)-space and in the (j,w)-space.
Therefore X1 is well defined in either space. The second statement follows from (35) and (32).

Lemma 1 gives us a tool to construct a perturbation which produces a desired change of m and E in
a sufficiently small open neighborhood rs of any regular EM-value s ¼ ðm; EÞ, i.e., locally. What we
really want is a perturbation that causes sðtÞ to traverse the whole monodromy circuit C. We call
any concrete perturbation X1 a realization of the monodromy circuit C if under such perturbation sðtÞ
completes a tour on C.

Theorem 1. global realization). Ideal realizations X1ðq;p; tÞ or X1ðj;w; tÞ of the monodromy circuit C
exist. They are defined on EM�1ðRCÞ � ½ti; tf � and are smooth in (q, p) or (j, w) and piecewise smooth in t.

A constructive proof of Theorem 1 relies on Lemma 1. It can be sketched as follows. Consider inter-
mediate times ti ¼ t0 < t1 < t2 < 
 
 
 < tN�1 < tN ¼ tf with N finite, which divide ½ti; tf � into adjacent
segments ½tk; tkþ1�, and let sk 2 C be the ðm; EÞ-value at time tk. Let open overlapping neighborhoods
rsk

cover C so that RC is a union
SN

k¼0rsk
. Within the neighborhood Rsk

¼ EM�1rsk
of any regular torus

Ksk
we can use well defined local action–angle variables ðJ;WÞðkÞ [3] and therefore by Lemma 1 we can

traverse the part C \ rsk
of the monodromy circuit using an appropriately chosen perturbation XðkÞ1 in

(34) during the time in ½tk; tkþ1�. This locally defined XðkÞ1 is a smooth function of ðj;w; tÞ and therefore of
ðq;p; tÞ. The local action–angles ðJ;WÞðkÞ defined in Rsk

can be redefined smoothly (or at least contin-
uously) as we go along C by the choice of the specific smooth (or continuous) family of basis cycles ½c2�
and the corresponding action J2 and angle W2. This will define local diffeomorphisms between ðJ;WÞðkÞ

and ðJ;WÞðkþ1Þ, exploiting which in the overlap domains Rsk
\ Rskþ1

and the freedoms of the concrete
choices of local action–angle variables, we can match the ‘junction values’ XðkÞ1 ðj;w; t0Þ and
Xðkþ1Þ

1 ðj;w; t0Þ for some t0 2 ½tk; tkþ1� and thus make X1 (at least) continuous on ½ti; tf �. Note that in prin-
ciple to cover the whole of EM�1ðRCÞ, two neighborhoods R are sufficient, and likewise RC can be cov-
ered by a union of two r.

4.3. The main result: observing cycle change by tracking motion in space and time

At last we can explain the main result illustrated in Fig. 3. We ask now what physical phenomena
will be observed when a realization X1 in (6) and (34) of the monodromy circuit is set to work [using in
our case the parameter values in (3)]. To this end, Lemma 1 and Theorem 1 together with the explicit
construction of cycle c2 in Section 4.1.5 are sufficient. We construct the ideal realization X1 of the
monodromy circuit C in Fig. 2 parameterized by (7) so that sðtiÞ ¼ sðtf Þ ¼ ð0;�1Þ with ti ¼ 0 and
tf ¼ 60.

We analyze the q-space projections t # ðxðtÞ; yðtÞÞ of the trajectories of the perturbed system
which follow the vector field in (6). At the initial time 0, we begin with a continuous one-parameter
family of particles which constitute a q-loop on the initial torus Ksð0Þ. We let this family of trajectories
evolve under our ideal time-dependent perturbation. What happens to the initial loop? We have our
main Result 1 which is illustrated in Fig. 3. The particles start on the q-cycle c2ð0Þ and evolve locally
according to Lemma 1; by Theorem 1, our explicit construction of the smooth family of cycles c2 (see
Section 4.3.2) defines X1 globally and allows us to take the particles around the whole of C.
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4.3.1. Relation to monodromy
Result 1 is now the natural consequence of the ideal time-dependent perturbation X1. Recall that

the initial q-loop is both a particular closed orbit (exceptional reference orbit in Section 4.1.1) of the
flow of the unperturbed system and also a representative of the cycle c2ð0Þ in the first homology
group of Ksð0Þ. Under X1, particles stay on the loop c2ðtÞ which evolves smoothly so that at all times
the curve c2ðtÞ belongs to fiber KsðtÞ with sðtÞ ¼ ðmðtÞ; EðtÞÞ which follows C as described by (7). Con-
sidering c2ðtÞ for t 2 ½0 . . . 60� gives, therefore, a dynamical connection on tori KsðtÞ swept by our real-
ization of the monodromy circuit. This fulfills the conditions of the monodromy theorem in Section
3.3. So the /-cycle c1 is unchanged, while any q-loop c2ð0Þ evolves into a combination of a q-loop
and a /-loop specified in (31). We come to our Result 1 which is, therefore, a dynamical conse-
quence, observable in real time, of the monodromy of the underlying unperturbed (or ‘‘static”)
system.

4.3.2. Details of computation of loop evolution
Under the ideal perturbation X1 defined by the family of cycles c2 in (30), particle trajectories are

computed as follows. In the phase space R4, our particles start on the q-loop c2ð0Þ for which the rota-
tion angle hð0Þ is 0. So at t ¼ 0 the particles lie in the plane fy ¼ py ¼ 0g and their initial position x and
momentum px are parameterized by
�1
2
;þ1

2

� �
! R4 : n # qðnÞ;pðnÞð ÞT ¼ Sns

H0
ðx0;0;0;0ÞT
where x0 is the inner turning point of the initial loop on the initial torus. In the local angle coordinates
w ¼ ðw1;w2Þ, these initial conditions correspond to w1ð0Þ ¼ 0 and w2ð0Þ ¼ n0;i for particle i ¼ 1;2;3; . . .

By Lemma 1, local angles w evolve under XH0 þ X1 just as they would evolve under XH0 , i.e., accord-
ing to linear Eq. (8) albeit with frequencies mðm; EÞ changing as ðm; EÞ follows C and the particles go
from torus to torus. Local action–angle variables define a local isomorphism of the tori which allows
us to view the latter projected to a single abstract Z2 lattice whose basis cell is represented in Fig. 8. So
we can observe the evolution of c2 in this cell, bearing in mind that at different times, the actual phase
space image of c2 is different and is given by (30) where h; s; x0 and p0 in (25b), (24b), and (27) are
functions of ðm; EÞ ¼ ðmðtÞ; EðtÞÞ illustrated in Fig. 6.

In the coordinates w ¼ ðw1;w2Þ, the flow of the ideal perturbation is linear. Two things happen: at
all times t, all particles move along the curve c2 by the same amount Dw2ðtÞ, while c2 as a whole is
translated parallel to axis w1 by Dw1ðtÞ. The quantities Dw1 and Dw2 are given by the integrals in Lem-
ma 1, and since w1ð0Þ ¼ 0 we have Dw1ðtÞ ¼ w1ðtÞ.

To compute the time evolution of the whole initial loop, we only need to compute the loop called
c2ðtÞ as given in (30) and shown in Fig. 5, and then rotate it clockwise by the angle
/1ðtÞ ¼ 2pDw1 ¼ 2pw1ðtÞ.

To find the instantaneous phase-space coordinates of a particular particle at time t, we define
nðtÞ ¼Mod1 n0 þ Dw2ðtÞð Þ
where the function Mod1 subtracts the necessary integer to place nðtÞ in the interval � 1
2 ;þ 1

2

� 


Mod1 : R! �1

2
;þ1

2

� �
: x # x�maxfn 2 Z jxþ 1

2
P ng
Then the phase space position of the particle that began with initial value of n equal to n0 is
qðtÞ;pðtÞð ÞT ¼ S/1ðtÞ�nðtÞh
M SnðtÞs

H0
ðx0ðtÞ; 0;0; p0ðtÞÞ

T ð36Þ
where, as always, x0ðtÞ; p0ðtÞ satisfy (27).
The integrals in Lemma 1 can be pretty well approximated as
/1 �
1
2

t2Xs�1 and /2 � 2pðn0 þ ts�1Þ ð37Þ



Fig. 9. Evolution of the local angle variables /1ðtÞ (left) and /2ðtÞ (right) under the ideal perturbation associated with the
monodromy circuit C in (7) and Fig. 2 and the continuous family of cycles ½c2� in (30); top plots show the difference from the
values based on asymptotic expressions in (24b) and (25b).
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(see Fig. 9), but these approximations are not adequate for accurate computation of the location of the
loop or of an individual particle. The snapshots in Fig. 3 are computed using numerically integrated
exact expressions for hðm; EÞ and sðm; EÞ.

In the consecutive snapshots in Fig. 3, where the current time t is indicated in the upper right cor-
ner of each fragment, the family of particles on c2 is followed using the approach detailed above. We
display c2 (bold solid line) after equal intervals Dt ¼ 50. At t > ti ¼ 0 c2ð0Þ, or the initial q-loop, be-
comes a loop S

1 in the q-space with one singular point at which this loop is constantly ‘attached’
to the wall. These loops are rotated images of the curves c2 in Fig. 5, right, and at each particular time
t, their singular point corresponds to a different particle bouncing off the wall. As time increases and
individual particles move around and bounce off the wall, the loop as a whole can be obtained by
interpolating between the instantaneous q-space positions of adjacent particles. We can see that this
loop ‘inflates’ and its singular point moves counterclockwise for t ¼ 00 . . . 300, i.e., until we reach m ¼ 0
and E ¼ 1 (cf. Figs. 2 and 3). During this period, the radius of the classically forbidden region in con-
figuration space shrinks, so that at t ¼ 30, when mðtÞ ¼ 0 and EðtÞ > 0, the region vanishes. At that
very instant, one point of the loop ‘slips’ through q ¼ 0 and moves to the ‘other side’. Because the loop
remains continuous, this point ‘‘carries the loop with it”. We can see in Fig. 3 that the loop reaches, and
an instant later—embraces q ¼ 0. Then as mðtÞ becomes negative, the classically forbidden region con-
tinuously grows again, but this time inside the loop. Meanwhile, the individual particles on the loop
begin moving clockwise; on the other hand, the tip of the loop continues moving counterclockwise
at an increasing rate, while the loop as a whole continues inflating ever further. When we stop the
movie on ðKð0;�1Þ; tf ¼ 60Þ, we see a loop that starts at the wall, goes clockwise once around
ðx; yÞ ¼ 0 and closes back at the wall.

5. Further manifestations of dynamical monodromy

Result 1 is of a topological nature and as such it remains valid for a large class of admissible real-
izations of the monodromy circuit, for other initial conditions etc. In this section we consider other
possibilities to observe dynamical monodromy (Results 2 and 3) which are more sensitive to the real-
ization of the monodromy circuit.

5.1. Observing changes of angle variables

We now consider the motion of individual members of the family of particles considered previ-
ously. To this end we study the evolution of the value w2ðtÞ of the second angle variable which deter-
mines the instantaneous position nðtÞ of the particle on c2ðtÞ, cf. Eq. (36). In Fig. 3 we traced the path of
the particle which started at the wall (xð0Þ ¼ qmax and nð0Þ ¼ 	 1

2). In each snapshot, the most recent
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part of the trajectory during the time in ðt � Dt; tÞ is highlighted by a bolder line beginning at the end-
point of the preceding fragment.

Our particle first oscillates along the x-axis (t ¼ 0 . . . 50 in Fig. 3). As its angular momentum m and
energy E increase ðt ¼ 50 . . . 150Þ, it begins moving around counterclockwise in ever larger leaps be-
tween subsequent bounces against the wall. When E goes towards its maximum value 1 and m drops
back to 0 ðt ¼ 150 . . . 300Þ, the leaps of the particle keep increasing and become nearly p so that the par-
ticle moves on nearly a straight line close to the origin. After m becomes negative ðt ¼ 300 . . . 450Þ, the
particle begins bouncing clockwise in decreasing leaps. And finally, as E goes down back to �1 and m
increases to 0, it ends up again bouncing along a radial line. Other particles have similar trajectories.

The final azimuthal angle /f ¼ /ð60Þ of the particle depends on its initial azimuthal angle
/i ¼ /ð0Þ ¼ 0 and on the rate of change of / along the trajectory. It can be computed using (36) for
t ¼ 60 [note that /ð0Þ ¼ /1ð0Þ and hð60Þ ¼ 2p]. Suppose we start two particles, I as described above
and II with the same qð0Þ ¼ qmax and sð0Þ, but at a different initial angle /IIð0Þ – 0. Due to the axial
symmetry, the trajectory of II is just a rotation of that of I, and the angle difference remains always
unchanged:
D/f ¼ /IIð60Þ � /Ið60Þ ¼ /IIð0Þ � /Ið0Þ ¼ D/i
Now suppose instead that particle II starts at the same azimuthal angle /IIð0Þ ¼ 0, i.e., both particles
start on c2ð0Þ with yð0Þ ¼ 0, but with xIIð0Þ ¼ qmin, i.e., at the inner turning point or pericenter with
n ¼ 0, half a q-cycle away from particle I. In Fig. 3, the trajectory of this particle is not shown but
its position on c2ðtÞ is indicated along with the position of particle I. Averaging d/=dt over each leap
of the particles, we may expect naively that their trajectories would subtend nearly the same total azi-
muthal angle, and we may expect to find a small D/f . This turns out to be not true; instead we arrive at

Result 2. For ideal realizations of the monodromy circuit C, similar to the one illustrated in Figs. 2 and 3,
D/i ¼ 0 and D/f ¼ /IIð60Þ � /Ið60Þ ¼ 	p ð38Þ
For many admissible realizations, D/f deviates substantially from D/i ¼ 0 and is close to 	p.

Thus in Fig. 3, particles I and II started on the torus with s ¼ ð0;�1Þ, at the same polar (azimuthal)
angle /, and precisely half-cycle apart in their q motion. After an ideal realization of the monodromy
circuit, they were still a half-cycle apart in their q motion, but they were also half a circle apart in /.

With the knowledge of the system that we have acquired already, Result 2 can be explained easily.
The angle variables w evolve linearly and at the same rate for each particle. This means that for any
t ¼ 0 . . . 60
DnðtÞ ¼ w2;IIðtÞ �w2;IðtÞ ¼ 

1
2

with the sign 
 depending on whether we consider the particle I at the outer wall started with
n ¼ w2 ¼ þ 1

2 (before impact) or � 1
2 (after impact). In particular, the particles are a half-cycle apart

on c2ð60Þ. [The latter is defined by Eq. (36) and is the loop defined by (30) rotated by 2pDw1ð60Þ.] Then
by (31b), the final particles should be a half-cycle apart on the q-cycle c2ð0Þ and a half-cycle apart on
the minus /-cycle �c1ð0Þ ¼ �c1. More formally, at t ¼ 0 we have
Dwð0Þ ¼ wIIð0Þ �wIð0Þ ¼ 0;
1
2

� �
ð39Þ
Upon return to the original torus at t ¼ 60, the angle variables W have changed according to (18), and
so, applying Eq. (19b), the distance between the new points, to which the particles return, is defined in
the old coordinates as
Dwð60Þ ¼ wII;new �wI;new ¼ 	1
2
;
1

2

� �
ð40Þ
Since for m ¼ 0 and E < 0, the value w1 of the canonical angle W1 times 2p equals the polar angle /
representing the location of the particle, we get immediately that our particles arrive 	p apart in /.



Fig. 10. Evolution of particles I (bold solid line) and II (fine solid line) starting at t ¼ ti ¼ 0 with the same energy EðtiÞ ¼ �1 and
slightly different angular momenta mIðtiÞ ¼ 0 and mIIðtiÞ ¼ dm ¼ 0:1 along the placebo circuit (left) and monodromy circuit
C ¼ fjEþ imj ¼ 1g (right) for the system with parameters in (3); both plots have the same EM scale as in Fig. 2, right.
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5.2. Tracking motion in time and energy and observing changes of action variables

We consider now our monodromy circuit C along with a placebo circuit mentioned in Section 3.3
and let ð0; Eð0ÞÞ with Eð0Þ < 0 be the initial–final point of both circuits (see Fig. 2). We take the ideal
realization of the monodromy circuit C with perturbing vector field XC

1 that we used previously, and an
ideal perturbation Xplacebo

1 which makes ðm; EÞ traverse the placebo circuit (by Theorem 1). At t ¼ ti ¼ 0,
we place particles I and II at neighboring initial regular tori KðIÞi and KðIIÞi with the same energy
Eð0Þ ¼ Ei < 0 but slightly different momenta mI;i ¼ 0 and mII;i ¼ dm. We let the system evolve under
XC

1 or Xplacebo
1 until the ‘reference’ particle I comes back to KðIÞf ¼ KðIÞi ¼ K0;Ei

at time t ¼ tf ¼ 60. For
dm sufficiently small, the energy–momentum of particle II will follow nearly the same circuit as par-
ticle I (see Fig. 10). What are the final energy–momentum of particle II? We observe

Result 3. Under any ideal Xplacebo
1 , particle II comes back to its initial torus KðIIÞi . However for any ideal

XC
1 , it does not come back to its original torus KðIIÞi , but to a torus KðIIÞf with the same original

momentum mII;f ¼ mII;i ¼ dm but with energy EII;f shifted by ð2p=sÞdm, where s > 0 is the period of first
return of the flow of XH0 on the torus KðIÞi .

To understand Result 3, consider actions Jk as functions J kðm; EÞ [7] which define the map
J ¼ ðJ 1;J 2Þ : D� ! R2 : ðm; EÞ# ð2pm; j2Þ ¼ j
on the set D� of regular EM-values. (D� is a disk D 3 0 punctured at 0.) As the energy and momentum
of the particles evolve smoothly with time following a smooth circuit, the values of J ðm; EÞ should
also change smoothly.

In a sufficiently small regular neighborhood rs � D� of any s in D�, the map J is a diffeomorphism
with linearization
J ðmþ dm; Eþ dEÞ � J ðsÞ þ DJ ðsÞ
dm

dE

� �
where the Jacobian matrix [see Section 3.3 and Eq. (16)]
DJ ðsÞ ¼
2p 0
@J 2
@m

��
s

@J 2
@E

��
s

 !
¼

2p 0
�hðsÞ sðsÞ

� �
(with s and h, respectively, the period of first return and the rotation angle introduced in Section 4.1.2)
is a matrix in GLð2Þ. Its inverse
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ðDJ Þ�1 ¼ @ðM;H0Þ
@ðJ1; J2Þ

¼ 1
2ps

s 0
h 2p

� �
¼ ð2pÞ�1 0

m1 m2

 !
is of prime interest to us here: if action values j correspond to the regular torus Ks, i.e., if ðm; EÞ ¼ s
equals J �1ðjÞ, then ðDJ Þ�1ðjÞ determines the difference in energy–momentum for the neighboring
torus which corresponds to the action value jþ dj.

When the realization of the monodromy circuit begins at time ti , the action values jI;i and jII;i of par-
ticles I and II are such that
jI;i ¼ J i sI;i
	 


¼ J i ðm; EÞI;i
� 


jII;i � jI;i ¼ dji ¼ DJ i
dm

0

� �
¼

2p
@J 2
@m

 !
dm
Here and later we imply that derivative DJ is computed in sI;i for the map J ¼ J i defined at time ti .
Under ideal perturbations XC

1 and Xplacebo
1 , action values j for I and II evolve at the same rate and there-

fore djf ¼ dji ¼ dj. At time tf , they reach their final values jI;f and jII;f ¼ jI;f þ djf such that
J �1
f jI;f

	 

¼ ðm; EÞI;f ¼ ðm; EÞI;i
while at the same time
ðm; EÞII;f ¼ ðm; EÞI;f þ DJ �1
f dj
and therefore
DsII ¼ ðm; EÞII;f � ðm; EÞII;i ¼ DJ �1
f dj� DJ �1

i dj
Note that here we are careful to distinguish the initial J i and final J f definitions of local actions as
well as their respective values ji and jf because J is multivalued. As we return to sI;i, local actions
do not come back to their initial definition and their final values do not necessarily equal the initial
values (cf. Section 3.1). More specifically, J 1 � 2pm is defined globally on D� and is single valued,
while J 2ðm; EÞ can be approximated near s ¼ 0 [24] as
J 2ðm; EÞ � Eþ Esðm; EÞ �mhðm; EÞ þ 
 
 
 ð41Þ
where s and h are given in Eqs. (24b) and (25b), respectively, and 0 < jEþ imj � q2
max=2. Using differ-

ent leaves of the multivalued part m argðEþ imÞ of this function results in different choices of J 2.
For a placebo circuit which does not encircle s ¼ 0 (Fig. 10, left), smooth actions J can be chosen

globally as real single-valued functions so that the whole placebo circuit remains within one leaf of
J 2 in (41). Then, obviously, J f ¼ J i and sII;f ¼ sII;i, i.e., II also returns back to its initial torus. Note
that the choice of the leaf is dictated by the smooth continuation of the value of J 2 and can be best
seen when particle II passes close to s ¼ 0 where J 2 varies steeply with m and other leaves come
close.

On the other hand, J f and J i will differ for the monodromy circuit C. From (16) we deduce that the
respective inverse Jacobian matrices at ðm; EÞI;i transform as
DJ �1
i ¼ DJ �1

f

1 0
�1 1

� �
and therefore
DJ �1
f ¼ DJ �1

i

1 0
�1 1

� ��1

¼ DJ �1
i

1 0
1 1

� �
Then the final shift in the energy–momentum for II is
DsII ¼ DJ �1
i

1 0
1 1

� �
� 1

� �
dji ¼ DJ �1

i

0
dj1

� �
¼ 2pDJ �1

i

0
dm

� �
¼ 2p

s
0
dm

� �
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This explains why the trajectory II does not return to the same torus, but ends up on a torus with the
same momentum mII;f ¼ mII;i and with energy EII;f shifted up by 2pdm=sðsI;iÞ.

6. Conclusion

In [1], considering a very simple system with two degrees of freedom which has monodromy, we
asked how this monodromy can be observed in a dynamical process. This question has two parts: (i)
what perturbation of the system is required and (ii) what observations and measurements should be
made. In [1], we gave the answer to (ii) and presented our major Result 1. The result concerns collec-
tive dynamical behavior of a family of trajectories (or ‘particles’).

We consider a situation in which the initial and final energetically allowed region of configuration
space is an annulus. The family of trajectories forms at all times a loop c in phase space. Initially c
projects into the annulus as a homotopically ‘trivial’ loop. Under a certain time-dependent perturba-
tion, this loop evolves continuously in time into a topologically different nontrivial final loop that
wraps around the forbidden region. (The idea of observing an ensemble of particles is central in this
result.)

In this paper we give a more detailed answer to (ii), and we give a complete answer to (i). Spe-
cifically, in Section 4.2, we define an perturbation X1 which we call ‘‘ideal” and we characterize a
large class of admissible perturbations which are deformations of that ideal perturbing vector field.
We prove constructively that such perturbations exist. In particular we show in Appendix A that
the perturbation we proposed in [1] was admissible and that in the limit of slowly changing
ðm; EÞ it approached our ideal X1. We demonstrate that for the ideal perturbation, the phenomenon
observed in Result 1 is directly related to Hamiltonian monodromy, because the connection realized
dynamically by the perturbed particles is equivalent to that used for computing monodromy. Fur-
thermore, our Results 2 and 3 present alternative possibilities to observe phenomena related to
monodromy.

The main attractive feature of Result 1 is its topological nature. Evolution of ‘particles’ under admis-
sible perturbations X1 may differ substantially from the ideal case. Some particles may go astray, they
will not belong all to the same torus at the same time and may not come back to the same torus even-
tually. In spite of these differences, the qualitative transformation of the projected image of the loop
will persist.

We hope it is obvious that the phenomena we describe are not limited to the system described by
Eq. (1). Sufficiently close to an isolated critical EM-value that represents a focus–focus equilibrium,
and is at the origin of monodromy, any system behaves in the same way. Therefore this paper opens
the way for practical implementation of admissible realizations of monodromy circuits C.

To apply these ideas to an atomic or molecular system, two issues need to be addressed. The loop c
is a Lagrangian manifold, and so it can be part of the framework for semiclassical construction of a
wave function. Alternatively, we may think of the initial ensemble of particles as representing an ini-
tial quantum wavepacket (cf. [39]). The perturbation X1 would presumably arise from an electromag-
netic field, and then we would be making use of resonances between the light frequency and the
frequencies of the motion. Thus, for example, circularly polarized radiation can change the angular
momentum, while linearly polarized radiation in resonance with a particular transition might change
the energy without changing the component of angular momentum.

We leave to future papers discussion of the precise means of implementing a monodromy circuit
for atomic or molecular systems.
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Appendix A. A different realization of the monodromy circuit

This Appendix describes a different realization of the monodromy circuit based on an alternative
time-dependent perturbation. This method was used in a previous paper [1], and it illustrates the fact
that the essential results do not require use of an ideal perturbation.

Consider the vector field which we will call XmE:
d
dt

M

H0

Qm

Q e

0
BBB@

1
CCCA ¼

fmðtÞ
feðtÞ

0
1

0
BBB@

1
CCCA ðA:1Þ
where Qe and Q m are canonical variables conjugate to energy H0 in (2) and momentum M in (4),
respectively. The advantage of using variables ðM;H0;Q m;QeÞ in (A.1) is in the simple immediate evo-
lution equations
_M ¼ fmðtÞ and _H0 ¼ feðtÞ ðA:2aÞ
while, obviously, Q m and Qe change in the same way as for the unperturbed system, i.e.,
_Q m ¼ 0 and _Q e ¼ 1 ðA:2bÞ
Wherever the symplectic map
N : ðx; y;px; pyÞ# ðM;H0;Q m;Q eÞ ðA:3Þ
is a local diffeomorphism, we can obtain Cartesian phase space trajectories as
t # N�1 mðtÞ; EðtÞ;Q 0
m; t þ Q0

e

� 


It can be seen that this is simply a trajectory of the unperturbed system whose dynamical parameters
ðm; EÞ change with time according to (A.2a).

As usual, nothing comes without a price, and the disadvantage of ðM;H0;Q m;QeÞ is serious. These
variables are defined with respect to the trajectories of the Hamiltonian vector field XH0 which are,
typically, not closed. So as a particular unperturbed trajectory coils infinitely around Km;E, the origin
of ðQm; QeÞ coordinates on Km;E jumps discontinuously every time the particle encounters the wall
at q ¼ qmax. This jump is not related to the hard wall; it is an intrinsic property of these coordinates
that would occur also for a soft wall. This makes reconstruction of the geometry of a continuous
loop that a family of particles form at any given time t more difficult than the method given in
the main text (Eq. (36)). However, trajectories of individual particles perturbed by XmE in Eq. (A.1)
can be computed quite easily numerically by taking unperturbed trajectories with certain initial
conditions and letting parameters ðm; EÞ vary. While running such ‘perturbed’ trajectories, we detect
the encounters with the wall, reverse the radial momentum, and use Eq. (A.3) to find new values of
Q 0

m; Q0
e , and then continue the trajectory to the next bounce. This process is necessarily numerical,

so it is not easy to anticipate what happens to the initial loop of particles. However, since the change
shown in Fig. 3 is topological, and since there is everywhere (except at the outer wall) a local dif-
feomorphism between j; w and ðM;H0;Qm;Q eÞ we expect that the same topological change must oc-
cur using the flow XmE.

This is the method that we used in [1]. In the rest of this appendix, we show in detail the relation-
ship between these two methods.

Any phase-space point on any torus Km;E can be identified by noncanonical coordinates ðm; E;/0; n0Þ
as
u ¼ S/0

M Sn0sðm;EÞ
H0 u0ðm; EÞ ðA:4aÞ
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Fig. A.1
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and 0 6 /0 < 2p ðA:4bÞ
Unperturbed evolution of any such point between bounces is given by
uðtÞ ¼ S/0

M Stþn0sðm;EÞ
H0 u0ðm; EÞ ðA:5aÞ
with the restriction on t
jt þ n0sðm; EÞj < 1
2
sðm; EÞ ðA:5bÞ
For /0 ¼ 0; n0 ¼ 0, and jtj < sðm; EÞ=2, Eqs. (A.5) define on each torus the set of reference orbits illus-
trated (for E > 0) in Fig. 5 left.

Initial conditions are obtained by setting /0 ¼ 0; t ¼ 0; m ¼ mi ¼ 0; E ¼ Ei, and
u0ðm ¼ 0; EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
�2Ei

p
;0; 0;0

� 
T
ðA:6Þ
and selecting a collection of (for example equally spaced) values n0
n restricted by (A.4b). The perturbed

evolution of the nth trajectory up to its first bounce is given by
unðtÞ ¼ Stþn0
nsð0;EiÞ

H0
u0ðm; EÞ ðA:7Þ
Bounce conditions are implemented as follows. On the nth trajectory we monitor the value of qðtÞ, and
when it reaches qmax for the kth time, we record the time t, the azimuthal position of the particle /k

n,
and the instantaneous values ðmk

n; E
k
nÞ; from these we compute the corresponding values of the period

of first return sk
n ¼ sðmk

n; E
k
nÞ, and the rotation angle hk

n ¼ hðmk
n; E

k
nÞ. Then the nth trajectory continues

up to bounce kþ 1 as
unðtÞ ¼ S/k
nþhk

n=2
M St�ðtk

nþsk
n=2Þ

H0
u0ðmðtÞ; EðtÞÞ ðA:8Þ
Between bounces, the particle moves along its instantaneous torus according to SH0 , but simulta-
neously it slips from one torus to another according to the change in u0ðmðtÞ; EðtÞÞ.

To understand this, it is helpful to consider the function
unðt; t0Þ ¼ SU
MSt�T

H0 u0ðmðt0Þ; Eðt0ÞÞ ðA:9Þ
Here the unperturbed evolution along each torus is contained in variable t, while the travel from one
torus to another is contained in variable t0. If we hold t0 fixed, and allow t to vary, then the parameter T
is the time t at which the pericenter is reached, and the parameter U is the angular location of the
point at that time, i.e. the argument of the pericenter. If we hold t fixed and allow t0 to evolve, then
the particle moves from a point on one torus to points on other tori in such a way that the argument
. Monodromy circuit C defined by Eq. (A.10) in the set of regular ðm; EÞ-values of the ‘static’ system described by the
nian H0 in (2) with parameters in (3) (left).



Fig. A.2. The ðx; yÞ plane projection of the trajectory of a particle whose motion is governed by the Hamiltonian in (6) and (A.1)
according to propagation Eq. (A.8), and whose unperturbed energy E and momentum m evolve with time t ¼ 00 . . . 600 according
to the monodromy circuit in Fig. A.1 and Eq. (A.10). At time t ¼ 00 , the particle starts with ðm; EÞ ¼ ð0;�1Þ on the half-line
fx > 0; y ¼ 0g at the outer turning point (with x ¼ q ¼ qmax); at time t ¼ 600 it regains ðm; EÞ ¼ ð0;�1Þ. Dashed central circle
marks the classically forbidden region for this initial–final ðm; EÞ. Organization of the figure is similar to that of Fig. 3.
Instantaneous positions of other particles in the same family started with the same mð0Þ ¼ 0 and Eð0Þ ¼ �1 at different places
on fx > 0; y ¼ 0g are displayed for each t ¼ 00;50; . . . ;600 by empty circles which are joined in the continuous loop (bold line).
Also shown (solid closed loop without circle marks) is the evolution along the same circuit C of cycle c2ðtÞ defined in Section 4.3.

J.B. Delos et al. / Annals of Physics 324 (2009) 1953–1982 1979
of the pericenter and the time required to reach the pericenter do not change. With t ¼ t0 in (A.9), the
particle moves along the tori by its evolution under H0, and across the continuum of tori subject to the
above restriction: between bounces, the argument of the pericenter and the time required to reach the
pericenter do not change.

In Figs. A.1–A.3, we compare this method to the one in the main body of the paper. Similar to Sec-
tion 4.2, we set ti ¼ 0; tf ¼ 60; X ¼ 2p=60, and sðtiÞ ¼ sðtfÞ ¼ ð0;�1Þ, and fix other parameters (2) by
Eq. (3). However, we use a slightly different parameterization
C : ½0;60� ! R2 : t # sðtÞ ¼
2 sin Xt

� cos Xt

� �
ðA:10Þ
for our computations in this appendix. The difference from the monodromy circuit used before (see (7)
and Fig. 2) is due to historical reasons and is not essential.

Fig. A.1 shows that similar to the circuit in Fig. 2, the circuit defined in (A.10) is situated well within
the set of regular EM-values while encircling the origin ðm; EÞ ¼ 0. Comparing to (A.2a), we can see
that
fmðtÞ ¼ 2X cos Xt and f eðtÞ ¼ X sin Xt



Fig. A.3. Numerical data (empty circles) on the azimuthal angle / of the singular tip of the loop of the instantaneous positions
of a family of particles evolving under the realization of the monodromy circuit C in Eq. (A.10) and Fig. A.1 based on XmE in (A.1)
(cf. Fig. A.2). Evolution of the local angle variable /1ðtÞ for the ideal realization of the same circuit based on the continuous
family of cycles ½c2� in (30); exact values of /1ðtÞ and those based on asymptotic expressions (24b) and (25b) are shown by bold
and fine solid lines, respectively. The top plot shows the difference between /1ðtÞ, its approximation, and numerical data for the
XmE evolution.
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Since the monodromy circuit C in (A.10) and Fig. A.1 differs from that in Section 4.3 [see (7) and
Fig. 2], and quantitative comparison to Fig. 3 is not possible, we used the propagation (36) to com-
pute and plot in Fig. A.2 the q-space image of c2ðtÞ (solid line without circle marks) obtained for C in
(A.10) and Fig. A.1 under the ideal perturbation X1 defined by the continuous family of cycles ½c2�
(30).

As one can expect, since the two realizations differ, the shape and position of the loops pro-
duced in q-space by different propagators are not the same. However, they are close enough. The
main point to observe is that our Result 1 holds perfectly. The initial q-loop evolves into a topo-
logically different loop which belongs clearly to the class ½c2ð0

0Þ � c1�. Furthermore, Result 2 can
be confirmed as well. This means that the realization which is based on XmE is admissible. In-
deed, the perturbing vector field XmE generates a ‘‘near ideal” flow in the sense that at each in-
stant t, all particles are on one torus KmðtÞ;EðtÞ. However, the evolution of angles from one torus to
another differs in the two methods. This example illustrates that many different evolutions will
give the same topological result.
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of any such H1: the value of H is not conserved, and is not important. What matters is that at the instantaneous phase
space location of any particle, the flow is similar to that produced by (34) at that location. In other words, only local
phase-space gradients of H1 (i.e., the vector field X1) matter.
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