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Fractional Hamiltonian Monodromy

Nikolaíı N. Nekhoroshev, Dmitríı A. Sadovskíı and Boris I. Zhilinskíı

Abstract. We introduce fractional monodromy in order to characterize certain
non-isolated critical values of the energy–momentum map of integrable Hamil-
tonian dynamical systems represented by nonlinear resonant two-dimensional
oscillators. We give the formal mathematical definition of fractional mon-
odromy, which is a generalization of the definition of monodromy used by
other authors before. We prove that the 1:(−2) resonant oscillator system has
monodromy matrix with half-integer coefficients and discuss manifestations
of this monodromy in quantum systems.

1. Introduction

Qualitative understanding of the dynamics of classical mechanical systems is
largely based on the study of simple completely or partially integrable approx-
imations. Analysis of the corresponding quantum systems also relies on such ap-
proximations. Typically, we begin by uncovering universal qualitative features or
phenomena in the dynamics of our simple models and then find which of these
aspects are stable under transformation to the original complex system and how
they can possibly be deformed. Such qualitative characteristics orient our phys-
ical intuition and form a basis of understanding, classifying and predicting the
behavior of the original complex system.

In this paper we present fractional monodromy which is a generalization of
“usual” or “integer” monodromy introduced earlier by Duistermaat [22] as the
simplest topological obstruction to the existence of global action–angle variables.
To our knowledge, we give the first description of this important new qualita-
tive characteristics of classical integrable systems and their quantum analogues.
In the announcement of our work [56] we suggested that fractional monodromy
occurred in nonlinear resonant oscillators. Here we focus on the detailed mathe-
matical definition of generalized monodromy, and then prove that the phenomenon
of fractional monodromy does indeed occur in this important class of classical and
quantum mechanical systems.
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1.1. Review of related work

Most qualitative characteristics of an integrable Hamiltonian dynamical system
are related to the geometry of the integral fibration defined by the first integrals
of the system in involution. For a large class of integrable Hamiltonian dynamical
systems, the Liouville–Arnol’d theorem [1, 51] says that the fibers are regular tori
and the fibration is locally trivial. However, integral fibrations of many important
physical systems have singular fibers and their topology is highly nontrivial. This
makes the general study of the geometry of certain singular fibrations [61, 52, 44]
an important part of the qualitative theory of Hamiltonian dynamical systems.
Global topological description of integral fibrations in a general formal way was the
subject of many publications by Fomenko and coworkers, see [8, 9] and references
therein. A more concrete approach combines geometry and analytical methods and
makes broad use of action–angle variables and their generalizations.

The Liouville–Arnol’d integrability leads generically to the existence of local
action–angle variables [1, 2, 53, 54] which define period lattices on neighboring
regular tori. Global action–angle variables do not always exist. Conditions for the
existence of global action–angle variables and their generalizations were formu-
lated in 1972 by Nekhoroshev [53, 54]. In 1980 Duistermaat asked the reciprocal
question: what are obstructions to the existence of such variables? He introduced
monodromy as the simplest topological obstruction [22]. Detailed analysis of mon-
odromy and the corresponding singularities of toric fibrations followed [20, 73, 17],
see [15] for more references.

The first concrete example of a simple classical Hamiltonian system with mon-
odromy was the spherical pendulum, whose monodromy was studied by Cushman
[14, 15]. Quantum monodromy, or the manifestation of monodromy of a classical
system in the corresponding quantum system, was analyzed for the first time on
the example of quantized spherical pendulum by Cushman and Duistermaat [16].

Subsequently, a number of other examples of classical integrable systems with
monodromy was described [6, 37, 7], in particular the Champagne bottle potential
and the Lagrange top [15], and more recently – the swinging spring [24]. Some
particular examples of singularities, related to model two-degrees-of-freedom Ha-
miltonian systems with monodromy, i.e., systems with focus–focus singularity, were
suggested and analyzed by Lerman [43], Matveev [45, 10, 46] and Zung [73, 74].
Nevertheless, in spite of this series of concrete studies, monodromy remained rela-
tively unnoticed among many other topological properties of integrable dynamical
systems. The broader mathematical community considers Hamiltonian dynamical
systems with monodromy as a rather specific example of a general case of singular
fibrations [9, 61, 52, 44].

Importance of monodromy became apparent to physicists in the mid-90’s,
when several fundamental systems, such as the hydrogen atom (an atomic Kepler
system) perturbed by orthogonal electric and magnetic fields [18], diatomic molec-
ular ion H+

2 [67], symmetric top dipolar molecules rotating in electric field (molec-
ular analogue of the Lagrange top) [41], rotating quasi-linear molecules, notably
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the water molecule near the barrier to linearity [12], systems with several coupled
(spin, orbital, vibrational, rotational, etc) angular momenta [60, 31] were shown
to have monodromy. These concrete applications were in many ways inspired by
Cushman, who made a great effort of introducing and explaining monodromy to
physicists.

Of course, all atomic and molecular applications deal with quantum systems,
and their monodromy should be analyzed on the basis of the quantum-classical
correspondence principle and Einstein–Brillouin–Keller (EBK) quantization the-
ory [64]. Another aspect is that these real physical systems are not integrable
and their monodromy and quantization should be studied in the framework of the
KAM theory [18, 58].

Manifestation of monodromy in quantum systems can be quite spectacular
and simple at the same time. So it often happens that quantum monodromy of
simple model quantum mechanical systems [60, 31, 66, 56] helps understanding
and analyzing classical monodromy. Integer quantum monodromy is related pri-
marily to point defects in the lattice of points in the image of the classical integral
map (energy–momentum map) which correspond to regular integer values of local
actions. In fact the idea of fractional monodromy [56] was initiated by a general-
ization of possible defects of such lattices [71].

It was shown more recently in [60, 31] that quantum monodromy is related
intrinsically to the qualitative phenomenon of redistribution of the energy levels
between quantum energy bands (branches, multiplets) which happens when some
physical parameters of the system, such as strict or approximate integrals of mo-
tion, or simply, some constants in the potential, are varied. For further examples
and analysis of this interesting phenomenon, which is observed frequently in atomic
and molecular spectra, see [57, 59, 72, 11, 21, 27, 28, 29].

With our present paper, we hope to give a fresh impulse to the study of
Hamiltonian monodromy and its manifestations in physics.

1.2. Organization of the paper

We begin in Sec. 2 by setting up a conceptual framework within which both the
“standard” integer monodromy and the generalized fractional monodromy of inte-
grable classical Hamiltonian systems can be naturally defined. Recall that Duister-
maat [22] introduced monodromy to characterize a locally regular 2-torus bundle
over a closed path (= loop) Γ in the base space of the integrable fibration F
defined by two Hamiltonian functions (F1, F2) in involution. Thus integer mon-
odromy of F is defined as a mapping between the space of regular closed loops Γ
in the base space and the authomorphisms of the first homology group H1 of
regular fibers Λ ∼ T2. Note that for regular fibers T2 instead of first homology
group one can equivalently think about the fundamental group. Generalization to
fractional monodromy arises when we allow this mapping to be defined for some
subgroup of finite index of the homology group rather than for the entire homology
group itself and at the same time extend in some special way the class of admissi-
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ble closed paths Γ. We conclude by defining admissible integral fibrations F which
have fractional monodromy.

In Sec. 3 we introduce concrete nonlinear resonant oscillator systems with
two degrees of freedom which can have many applications in classical and quantum
mechanics and which demonstrate that our requirements for admissible fibrations
are quite natural and can be met in many Hamiltonian dynamical systems. We
study the integral fibrations defined by the first integrals of our example systems,
describe briefly the stratification of the image of the integral map (or the energy–
momentum map EM), and determine the topology of all singular fibers. The
latter are further described in Appendix A. A more general description of EM and
relevant details of reduction of the dynamical symmetry group S1 and geometry of
corresponding orbit spaces and reduced phase spaces are relegated to Appendix B.

Section 4 gives parallel statements about the standard (integer) monodromy
of the 1:(−1) resonant oscillator and the fractional (half-integer) monodromy of the
1:(−2) resonant oscillator. We reproduce the known results about the monodromy
of the 1:(−1) oscillator in order to compare it to the general case of the m1:(−m2)
resonance and to demonstrate our technique in the simplest case. Monodromy
in the 1:(−2) case was not, up to our knowledge, studied prior to [56], and not
computed explicitly before [25, 26] and our present work. This computation is the
main result of our paper.

To our knowledge, there exist several different ways of computing monodromy
in Hamiltonian systems with two degrees of freedom. The most “traditional” ap-
proach consists of a purely analytical study of the flow of the Hamiltonian vector
fields (XF1 , XF2) [15]. Such study results in an explicit construction of the period
lattice on the regular tori. The period lattice is then continued along Γ in order to
compute monodromy. In this way fractional monodromy of the 1:(−2) system has
been computed recently in [25] after appropriate adaptations. At the same time
it has been suggested on several occasions [10, 45, 46, 73, 74] that monodromy
of systems with the isolated singular fiber Λ0 was defined solely by the topology
of Λ0. This was formulated more rigorously in [17] in a form of the geometric
monodromy theorem. As a consequence, all we have to do in order to find mon-
odromy is to characterize Λ0. This theorem does not apply in the 1:(−2) system
because there Λ0 is not isolated. Standard monodromy can be equally computed
using the affine structure of the Lagrangian fibration which is closely related to
Duistermaat-Heckman measure [23, 74]. But this approach was not yet applied to
the case of fractional monodromy.

Our proof of the statements in Sec. 4 is of a different kind. It relies on
the geometric (as opposed to dynamical) definition and continuation of cycles
representing elements of the first homology group of fibers. Similar proofs are
used in the theory of complex monodromy [5, 63]. Section 5 gives the idea of our
proof relying on geometry and some intuition. We visualize directly the evolution
of cycles representing basis elements of the first homology group H1(Λ) as we
move along Γ. Appendices C and D detail the argument and present a number
of technical analytical lemmas, which are needed to complete the mathematical
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proof of the statements in Sec. 4. Therefore, the formal mathematical part of the
paper which gives the proof of the existence of fractional monodromy consists
of Secs. 2–5 and Appendices A, C, D. Section 5 gives a general picture of the
evolution of cycles using internal charts on toric fibers of the integrable fibration
in R4. A rigorous proof is given in Appendices C, D. It is based on the analysis of
the geometry of the embedding of tori Λ in R4. This geometry is studied in detail
using intersections of Λ with the hyper-plane σ ⊂ R4 which plays the role of the
global non-regular Poincaré section.

Section 6 discusses monodromy of the corresponding quantum systems, i.e.,
resonant quantum oscillators, where monodromy manifests as a defect of the lattice
of quantum states formed by the joint spectrum of quantum operators (F̂1, F̂2) in
the image of the energy–momentum map. The key point here is the correspondence
between the transformation of basis elements of the homology group H1(Λ) and
the associated transformation of vectors (or elementary cells) which characterize
locally the lattice of quantum states.

Further in Sec. 7, we consider briefly and less formally the more general
question of the relation between the lattice defects, which are widely studied in
solid state physics [39, 47, 48, 42], and the presence of singular fibers in toric
fibrations. On the basis of this relation we suggest a simple geometric interpretation
of the lattice defects which correspond to the singular toric fibrations with integer
and fractional monodromy.

2. Generalized definition of monodromy

In this section we introduce an ensemble of definitions which serves as a foundation
of our mathematical analysis of fractional (or rational) monodromy. Consider1 a
Hamiltonian dynamical system with Hamiltonian H defined on a 2n-dimensional
symplectic manifold M. Consider also its open 2n-dimensional subset M̃ ⊆ M.
Regular integrability of this system on M̃ means that the following conditions are
met.

Conditions 2.1.

i. There exists a set F = (F1, . . . , Fn) : M → R of Hamiltonian functions in
involution on M that are functionally independent on M̃ ⊆ M. Specifically,
at each point x ∈ M̃ the differentials (dF1, . . . , dFn) are linearly independent
and {Fi, Fj} = 0 for all i, j = 1 . . . n.

ii. The Hamiltonian H can be locally represented on M̃ as H = H(F1, . . . , Fn)
where H is any smooth function Rn → R, or, equivalently, all functions
(F1, . . . , Fn) are integrals of the system {H,Fi} = 0, i = 1, . . . , n.

Many important properties of regular and non-regular integrable systems
depend only on the set F and on the fibration of the phase space M into common

1Unless the contrary is noted explicitly, everywhere below in this paper we assume that all

manifolds, functions, and vector fields are C∞-differentiable.
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levels of functions Fi. Consequently, we can forget the concrete form of H and
study just F . Note that in this article we mean by fibration the decomposition
of the manifold into connected components of common levels of functions Fi. To
describe and analyze such fibrations we consider the mapping

F : M→ Rn,

defined by functions F , where M and its image F (M) ⊆ Rn are the definition
domain and the range of F respectively. With some abuse of language, we will
call the mapping F an integrable map or in some cases a (generalized) energy–
momentum map EM. Recall also that the critical point of map F is a point x ∈ M
where the differentials (dF1, . . . , dFn) are linearly dependent; the critical value
of F is the image f = F (x) ∈ Rn.

2.1. Integrable fibrations

Consider again the manifolds M and M̃ ⊆ M, the set of functions F , and the
corresponding mapping F discussed above.

Definition 2.1. We call the fibration of M into connected components of the inverse
images F−1(f) of points f ∈ F (M) ⊆ Rn an integrable fibration defined by F . Note
that for further convenience, we call each connected component of F−1(f), rather
than the total inverse image F−1(f) itself, a fiber of this fibration. If functions F
satisfy Condition i) of 2.1 on M̃ we call this fibration regular integrable fibration
of M̃. Moreover, if all fibers are compact, we call it regular and toric.

Note that the manifold M and the range B = F (M) of the integrable map F are
the total space and the base of the integrable fibration F respectively.

Regular toric fibrations were studied from a slightly more general point of
view in [54, 22] where, in particular, an arbitrary n-manifold B, rather than
B ⊆ Rn, was considered as a base. In this paper we consider only the case B ⊆ Rn

which is sufficient for our purposes. All our definitions given below can be trivially
adapted to the more general situation in [54, 22].

Certain singular fibrations were also studied, see for example a series of pa-
pers by Gross [32, 33, 34]. However, restrictions imposed on these fibrations, such
as the requirement for the singular sets to be of dimension n − 2, are too strong
for our purposes. Below we define a class of admissible generally non-regular in-
tegrable fibrations. These fibrations are both relatively simple and quite natural
and important from the point of view of possible applications.

2.2. Cellular structure of the phase space

Consider the set σ ⊂ F (M) ⊆ Rn of all critical values of map F and the set
M′ := M \ F−1(σ) of inverse images of all non-critical values of this map.

Definition 2.2. The closure K of each connected component K0 of the set M′ is an
upper cell of fibration F with regular inner part K0 and boundary ∂K0 := K \K0.
The image F (K) of the upper cell K is the lower cell.
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Note that upper cells lie in M and intersect only on their boundaries, while lower
cells lie in Rn and can be superimposed.

We suppose that the union ∪i∂K0
i of all boundaries of all upper cells has the

form ∪i∂K0
i =

(∪jWj

)∪S with sets Wi and S satisfying the following conditions:

Conditions 2.2.

i. S is a subset of the union of smooth manifolds Nk of dimension at most 2n−2
with piecewise smooth boundary: S ⊆ ∪Nk, dimNk ≤ 2n− 2.

ii. Each set Wi is a (2n− 1)-dimensional connected closed manifold with piece-
wise smooth boundary ∂Wi.

iii. Hypersurfaces Wi can intersect only on ∂Wi, i.e., Wi ∩Wj = ∂Wi ∩ ∂Wj . If
some internal point of Wj belongs to the cell Ki, then the whole hypersur-
face Wj is part of Ki. There are at most two cells, which can contain the
same surface Wj .

iv. Each compact subspace of M intersects only a finite number of cells Ki, and
hypersurfaces Wj and Nk.

Definition 2.3. We call fibration F which satisfies Conditions 2.2 admissible and we
call the hypersurfaces Wi walls. Each wall either belongs to a common boundary
of two neighboring upper cells or lies inside one cell.

Note that cells, their regular inner parts, and their boundaries are unambiguously
defined by F . Furthermore, it is clear that the integrable fibration F is regular in
the inner part K0 of each cell K. In this work we will consider only toric cells, i.e.,
cells K for which F is toric on K0.
Trivial example of cellular structure. As an example of cellular structure and
walls, consider singular fibration F defined by constant level sets of one function
of two variables

F : R2 → R : (x, y)→ x4 + y4 − 52(x2 + y2), (2.1)

see Fig. 1, left. The total space R2
x,y of the corresponding fibration is decomposed

into six upper cells as shown in Fig. 1, center. The base B of this fibration is a
half-line B = {f ≥ −1

254} ⊂ R where the six lower cells are superimposed as
shown schematically in Fig. 1, right, in the form of a one-dimensional Reeb graph.

2.3. Admissible paths through walls

Consider two upper cells Kl and Kr, which we call “left” and “right” respectively,
and which are separated by wall W . Let us fix a piece-wise smooth “local” path
δ : [0, 1] → M which goes from Kl to Kr and intersects W transversally at some
inner point ξW of W . We suppose that ξW is the only point of δ which belongs
to a wall and consequently, one part of δ \ {ξW } belongs to the regular inner part
K0

l of Kl, whereas the other part belongs to K0
r . In particular let ξ0 := δ(0) ∈ K0

l

and ξ1 := δ(1) ∈ K0
r be the initial (left) and the final (right) point of the path δ,

respectively. For each ξ ∈ δ belonging to K0
l or K0

r , we denote by Tnξ � ξ the torus
of the left or the right regular toric fibration which the path δ crosses at point
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-4
-2

 0
 2

 4x -4
-2

 0
 2

 4

y

-40

-30

-20

-10

 0

F(x,y)

2

3 4

5

16

2345

6 1

Figure 1. Cellular structure in the case of the fibration of the
plane R2

x,y defined by the levels of function (2.1): the 3D-image of
the function and its 2D-contour plot (left), the system of upper
cells (center), the system of lower cells as a Reeb graph of the
base space (right).

ξ = Tnξ ∩ δ. We now consider a cycle2 γ0 on torus Tnξ0 and introduce a deformation
of γ0 along the path δ resulting in the cycle γ1 on torus Tnξ1 .

Definition 2.4. We call the deformation {γt ⊂ Tnδ(t), 0 ≤ t ≤ 1} of the cycle γ0

along the path δ admissible and the cycle γ0 itself passable, if

i. For each ξ �= ξW , all loops forming γt lie on torus Tnξ and vary smoothly and
independently from each other with ξ = δ(t).

ii. At point ξW the deformation γt should be at least continuous; splitting and
fusion of orientable loops are allowed.

For example, the cycle γ0 which consists of k loops can transform into the cycle γ1

with k′ loops. When γt passes across the wall W , the k loops forming cycle γt in
the left cell break into oriented fragments which are reassembled into new k′ loops
forming cycle γt in the right cell. The orientation of all fragments is conserved in
this process.

We remind that the classes of homologically equivalent cycles form the first
homology group H1 of the manifold M. The first homology group of the n-
dimensional torus Tn is isomorphic to the regular lattice Zn and coincides with
the fundamental group of Tn. With this isomorphism in mind, cycles γ0 and γ1,
which we introduced above, define elements g0 and g1 of groups Zn0 := H1(Tnξ0)
and Zn1 := H1(Tnξ1) respectively. The admissible deformation γt establishes the
correspondence between the elements g0 ∈ Zn0 and g1 ∈ Zn1 .

2We call loop any closed oriented path and we call cycle any finite set of loops.
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Definition 2.5. We call a piecewise smooth local path δ admissible if
i. All admissible deformations of cycles along δ define the map

μδ : ζn0 → ζn1 , (2.2)

which is the isomorphism of some subgroups ζn0 ⊆ Zn0 and ζn1 ⊆ Zn1 .
ii. The subgroups ζn0 and consequently ζn1 are complete subgroups, i.e., they are

themselves isomorphic to Zn.

Notice that δ in the above definition does not necessarily traverse a wall, but if it
does, the crossing of the wall is transversal.

Furthermore we like to remind that in a hamiltonian dynamical system, the
lattices Zn (and their complete sublattices ζn) are defined up to an orientation
preserving isomorphism which is given by conjugation with elements in SL(n,Z).
So unless specified otherwise, we will refer to such SL(n,Z) isomorphisms of Zn

lattices.
Example of non-admissible paths. We illustrate the notion of passable cycles and
admissible paths on our example of the singular fibration (2.1) presented in Fig. 1.
Consider a path δ12 which goes from the upper cell 1 to the upper cell 2 separated
by the wall W12. The path δ12 crosses W12 at ξW . With each regular point ξ �= ξW ,
ξ ∈ δ12 of upper cells 1 and 2 we associate a one-dimensional torus T1

ξ = S1
ξ of the

respective regular toric fibration. The path δ12 crosses T1
ξ at the point ξ = T1

ξ∩δ12.
On each such torus, there are contractible (i.e., homotopic to zero) and non-
contractible cycles. It is easy to see that only contractible cycles are passable
across W12 because any non-contractible cycle undergoes a discontinuous trans-
formation at ξW . This means that the subgroup formed by classes of homotopically
equivalent passable cycles is not complete and the path δ12 is not admissible.

2.4. Definition of monodromy

In order to introduce monodromy we associate mapping μδ in (2.2) with a closed
path δ.

Definition 2.6. We call a closed path δ in the phase space admissible if
i. It is piece-wise smooth.
ii. It can be split into fragments in such a way that each fragment is an admis-

sible local path which may or may not cross a wall.
iii. Each point of the intersection of δ with the union of boundaries of all upper

cells belongs to the inner part of one of the walls.

Notice that it is possible for some boundary points of a cell to be not part of any
wall.

We now consider an admissible closed path δ formed by s fragments δi and
denote regular points which separate δ into these fragments as ξ0, . . . , ξs−1 and
ξs = ξ0. Each fragment δi := [ξi−1, ξi] ⊂ ∪si=1δi = δ is an admissible path. We
denote the homology group H1(Tnξi

) for each i = 0, . . . , s−1 as Zni and we let
Zns ≡ Zn0 . Each fragment δi defines the map μi : ζi−1 → ζ ′i, where for each i =
0, . . . , s−1, groups ζi and ζ ′i are some complete subgroups of Zni while ζ0 and ζ ′s
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are some complete subgroups of Zn0 . Using the known fact that the intersection
of complete subgroups of Zn is again a complete subgroup, we can easily prove
that there exist two complete subgroups ζ ⊆ ζ0 and ζ ′ ⊆ ζ ′s of Zn0 such that
the composition of maps μ := μs ◦ μs−1 ◦ · · · ◦ μ1 is defined on ζ and maps ζ
to ζ ′. Moreover, the map μ : ζ → ζ ′ defines an isomorphism of these two complete
subgroups of Zn0 .

Definition 2.7. We call the constructed map μ : ζ → ζ ′ of a complete subgroup ζ
of the homology group H1(Tnξ0) to a complete subgroup ζ ′ of the same homology
group the monodromy map associated with the admissible closed path δ with
marked point ξ0.

Notice that the endpoints ξi of fragments δi are regular points of δ and the frag-
ments can be smoothly deformed if we move the endpoints on δ without crossing
any walls. Furthermore, we can take any such endpoint as ξ0 ≡ ξs to mark the
start on δ. In fact, the following property of the monodromy map μ can be easily
verified.

Proposition 2.1. The monodromy map μ depends on the orientation of the path δ,
but does not depend on the parameterization of δ or on the choice of the marked
endpoint ξ0 in the following sense. For any other regular endpoint ξ̃0 ∈ δ, which
we can choose instead of ξ0, the map μ remains the same up to the conjugation
given by an isomorphism of lattices H1(Tnξ0) and H1(Tnξ̃0).

2.4.1. Matrix of monodromy. Let δ be some admissible closed path with marked
point ξ0 and corresponding lattice Zn0 := H1(Tnξ0), and let μ(δ,ξ0) : ζ → ζ ′, where
ζ ⊆ Zn0 and ζ ′ ⊆ Zn0 are complete sublattices, be the corresponding monodromy
map. Let us consider a natural canonical inclusion of Zn0 into a linear space Rn

where Zn0 becomes a subgroup of Rn. Since ζ and ζ ′ are complete, the map μ(δ,ξ0)

can be extended to a non-degenerate linear operator μ : Rn → Rn defined on the
whole Rn. By taking an arbitrary basis on Zn0 we can construct the matrix M of
the map μ.

Definition 2.8. We call M generalized or extended monodromy matrix. It represents
the monodromy map μ(δ,ξ0) in a given basis of the group H1(Tnξ0).

Let Q denote the field of rational numbers. It is not hard to prove

Proposition 2.2. Monodromy matrix M has rational coefficients: M ∈ GL(n,Q).

Using Proposition 2.1 we obtain

Proposition 2.3. For a different basis on Zn0 , or the endpoint ξ0 on δ, the mon-
odromy matrix M remains the same up to conjugation A−1MA with matrices A ∈
SL(n,Z).

We will define different kinds of monodromy using certain properties of mon-
odromy map μ and corresponding matrix M . Let GL(n,Z) denote a group of
n-dimensional matrices over integers with determinant ±1.



Vol. 7 (2006) Fractional Hamiltonian Monodromy 1109

Definition 2.9. We call matrices from GL(n,Z) and GL(n,Q)\GL(n,Z) integer
and fractional matrices respectively.

The following simple facts about integer and fractional matrices are useful in order
to distinguish integer and fractional monodromy.

Proposition 2.4. If M is fractional, then either M itself or its inverse M−1 has
at least one non-integer coefficient. If M is integer (fractional) and A is integer
then any conjugated matrix A−1MA is also integer (fractional).

Definition 2.10. We call the monodromy map μ(δ,ξ0) trivial, integer, or fractional,
if in some (and consequently in any) basis of the homology group H1(Tnξ0) it
is represented by the identity matrix, an integer matrix, or a fractional matrix,
respectively.

Notice that being integer or fractional is property of the map μ(δ,ξ0) rather than of
the monodromy matrix M . This property depends neither on the parameterization
or the orientation of the path δ, nor on the choice of the basis in H1(Tnξ0) and of
the point ξ0 ∈ δ (see Propositions 2.1, 2.3, and 2.4). Thus we can give a basis-
independent definition of integer monodromy.

Definition 2.11. The monodromy map μ(δ,ξ0) is called integer if it can be extended
linearly to an automorphism of the whole lattice H1(Tnξ0) ∼ Zn onto itself.

Recall that in Definition 2.7 we have associated the monodromy map μ =
μδ,ξ0 (and the corresponding matrix M = Mδ,ξ0) with a particular admissible
closed path δ and a marked endpoint ξ0 on it. We then showed (Proposition 2.1)
that μ did not depend essentially, i.e., up to the usual conjugation with elements
in SL(n,Z), on the choice of ξ0 and on the fragmentation and parameterization
of δ. We assume now that μ also has the natural property to remain essentially
invariant under certain deformations of δ. To specify the class of such admissi-
ble deformations we first study deformations of open admissible local paths (see
Def. 2.5). Let δ : [0, 1] → M ⊆ R2n : t → δ(t) be such path which goes through a
wall W at an internal point ξW of W . We consider deformation δτ : [0, 1]→ M of
δ := δτ

∣∣
τ=0

, which depends continuously on τ when 0 ≤ τ ≤ 1, and we require the
path δτ to remain admissible for all 0 ≤ τ ≤ 1.

Definition 2.12. We call such deformation of the admissible local path δ W -con-
tinuous.

Notice that the local path δτ goes across W from the left cell to the right cell
at point ξW,τ . Since δτ depends continuously on τ , points ξW,τ for all 0 ≤ τ ≤ 1
belong to the interior of the same wall W .

Let γ ⊂ Tnδ(0) be a cycle which is passable through the wall W . By Defini-
tion 2.4, we can find an admissible deformation {γt, t ∈ [0, 1]} of γ = γ0 = γt

∣∣
t=0

along the path δ : [0, 1] → M : t → δ(t). Let us assume additionally that our de-
formation can be extended continuously in τ for any 0 ≤ τ ≤ 1 to the admissible
deformation {γ(t,τ); t ∈ [0, 1]} of the cycle γ(0,τ) along the path δτ . We thus ob-
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tain a two-parameter family
{{γ(t,τ); τ ∈ [0, 1]}; t ∈ [0, 1]

}
of cycles. The point

ξ = δτ (t) ∈ M and the cycle γ(t,τ) on the torus Tnξ � ξ change continuously when
(t, τ) varies within the region {τ ∈ [0, 1], t ∈ [0, 1]}.
Definition 2.13. We call such deformation of the admissible local path δ0 accept-
able.

Definition 2.14. We call the wall W semi-permeable if any W -continuous deforma-
tion of any admissible path through this wall is acceptable.

Notice that all walls in our example (2.1) are not semi-permeable. In fact, it is
quite likely that no semi-permeable walls exist in the case of one degree of freedom.

We now come back to the admissible closed path δ and corresponding mon-
odromy map μδ in Definitions 2.6 and 2.7.

Definition 2.15. Continuous deformation {δτ ; 0 ≤ τ ≤ 1} of the initial admissible
closed path δ = δτ

∣∣
τ=0

is acceptable if
i. The path δτ is an admissible closed path for each 0 ≤ τ ≤ 1.
ii. The path δ and, consequently, all its deformations δτ with 0 ≤ τ ≤ 1 can

cross cell boundaries only at internal points of semi-permeable walls.

Since cycles γ(t,τ) depend continuously on (t, τ) the following proposition is evident.

Proposition 2.5. The monodromy map μδ is conserved under given acceptable de-
formations of the admissible closed path δ.

From this and Proposition 2.2 we also obtain

Corollary 2.1. Under any acceptable deformations of δ, the monodromy matrix
M0 = Mδ0 transforms into a matrix Mτ = Mδτ

= B−1
τ M0Bτ conjugated with

matrices Bτ from SL(n,Z) for all 0 ≤ τ ≤ 1. In particular, the monodromy map μδ
persists to be either trivial, integer, or fractional.

2.4.2. Local monodromy. Let δ = δ0 be an admissible closed path. Suppose that
there exists such deformation {δτ ; 0 ≤ τ ≤ 1} of δ that the final path δ1 = {ξ0}
coincides with a point ξ0 ∈ M, and that for any κ ∈ [0, 1) deformation {δκτ ; 0 ≤
τ ≤ 1, κτ ∈ [0, 1)} is admissible.

Definition 2.16. In this case, we call the monodromy map μ = μδ corresponding
to the path δ local. We call ξ0 the central point of local monodromy.

It is easy to see that if at least one central point of a local monodromy map μ
belongs to the inner part W 0 of a wall W then μ is trivial. On the other hand,
if local monodromy map μδ is nontrivial, then the set X of all its central points
belongs to the union ∪∂Ki of boundaries of all upper cells of the fibration, but
does not belong to the union ∪W 0 of the inner parts of all walls: X ⊂ ∪∂Ki\∪W 0

j .
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3. Concrete example of integrable fibrations with monodromy

We consider a particular class of integrable Hamiltonian systems with two degrees
of freedom defined on the domain M of the linear symplectic space R4

p,q with
coordinates (p, q) = (p1, q1, p2, q2) and standard symplectic structure dq1 ∧ dp1 +
dq2 ∧ dp2. Let

F1 = m1
1
2 (p2

1 + q21)−m2
1
2 (p2

2 + q22) +R1(q, p), (3.1a)

F2 = Im
[
(q1 + ip1)m2(q2 + ip2)m1

]
+R2(q, p), (3.1b)

with values (f1, f2) ∈ R2 be the two first integrals of this system; (f1, f2) will be
also denoted as (m,h). Note that parameters m1 and m2 in (3.1a), and (3.1b)
are positive integers with largest common divisor equal 1. In what follows we
will limit ourselves mainly to two important cases, namely m1 = m2 = 1 and
m1 = 1,m2 = 2. Furthermore, the “vector function” R(p, q) =

(
R1(p, q), R2(p, q)

)
is chosen so that R(p, q) and F (p, q) =

(
F1(p, q), F2(p, q)

)
satisfy the following

conditions

Conditions 3.1.

1. The connected component Λ0 of F−1(0) contains 0 ∈ R4, is compact in R4,
and R is defined in some neighborhood U ⊆ R4 of Λ0 ⊂ U .

2. F1 and F2 are in involution in U , i.e., {F1, F2} = 0 in U .
3. All points ξ ∈ Λ0 \ 0 are regular, i.e., rankF (ξ) = 2 at any point ξ ∈ Λ0 \ 0;

point ξ = 0 is singular with rankF (0) = 0.
4. Compared to the first terms of F1 in (3.1a) and F2 in (3.1b) R1 and R2 are

small in U . More precisely, degR1 ≥ 3 and degR2 ≥ (m1 +m2 + 1) in their
respective Taylor series at 0.

We study the integral map F : R4
p,q → R2 : (p, q) → (m,h) defined by (3.1) and

the corresponding integral fibration F whose fibers F−1(m,h) are mutual common
level sets of functions (F1, F2) in (3.1). The following proposition can be easily
proven.

Proposition 3.1. When F satisfies Conditions 3.1, all connected components Λ ⊂ U
of F−1(m,h) which lie near Λ0 are compact.

It thus follows that the main purpose of the choice of R specified by Conditions
3.1 is to compactify the sets Λ.

Remark 3.1. The system with Hamiltonian F1 in (3.1a) which satisfies Conditions
3.1 represents a nonlinear perturbation of the harmonic 2-oscillator in m1:(−m2)
resonance. This is why we say that integrable maps defined by equations (3.1) and
Conditions 3.1 correspond to the m1:(−m2) resonant nonlinear oscillator systems.

3.1. Concrete choice of the compactifier R

We will consider a particular continuous family

R = R(τ,s) =
(
R

(τ)
1 , R

(τ,s)
2

)
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of functions satisfying Conditions 3.1 and choose its first member as

R
(0)
1 (p, q) ≡ 0, (3.2a)

R
(0,s)
2 (p, q) =

[
m1

1
2 (p2

1 + q21) +m2
1
2 (p2

2 + q22)
]s
, with s > 1

2 (m1 +m2). (3.2b)

It can be easily verified that R in (3.2) satisfies Conditions 3.1 in U ⊂ R4
p,q.

Furthermore, computing the phase flow of the system with Hamiltonian F1 gives
the following lemma.

Lemma 3.1. The phase flow gt
F

(0)
1

: R × R4
q,p → R4

q,p of the system with Hamilto-

nian F1 defined in (3.1a) with R1 = 0 is periodic. The point 0 ∈ R4
q,p is the only

fixed point of this flow; other points lie on S1 orbits.

Extended versions of this lemma for the concrete cases of resonances 1:(−1)
and 1:(−2) are proven, respectively, in Appendices C and D as Lemmas C.1
and D.1.

Corollary 3.1. The integrable map F (0) defined by (3.1) and (3.2) with R1 = 0 has
an S1 Lie symmetry whose action is defined by the flow gt

F
(0)
1

. The Hamiltonian

vector field X
F

(0)
1

is the infinitesimal generator of this S1 action.

Remark 3.2. The map F (0) : R4
p,q → R2 : (p, q)→ (m,h) defined by (3.1) and (3.2)

is a particular case of an integrable map which is often called the energy–momen-
tum map EM, and which can also be considered as an extension of the momentum
mapping defined by F (0)

1 , see Chap. B.3 in [15]. In our case one can interpret F (0)
1

as momentum and F (0)
2 as energy. In a general situation of eqs. (3.1) and (3.2) we

have no Lie symmetry S1 and neither of the two integrals (F1, F2) defining the
integrable fibration has a periodic flow and can be considered as momentum. At
the same time, any smooth function H(F1, F2) can be considered as energy.

3.2. Energy–momentum mapping EM(0)
m1:(−m2)

Before formulating in Sec. 4 the monodromy theorems for the two particular im-
portant cases with m1 = m2 = 1 and m1 = 1, m2 = 2 which constitute the main
topic of our work, we discuss briefly the structure of the energy–momentum map
EM(0)

m1:(−m2)
:= F (0) for these two cases, m1 = 1, m2 = 1, 2. We draw attention to

several rather evident and useful properties of this map and of the corresponding
integrable fibration in the neighborhood of the singular fiber Λ0 ∈ R4 and the
corresponding singular value 0 ∈ R2.

We recall that points ξ ∈ R4
q,p at which the rank of the Jacobian matrix

∂F/∂(q, p) is less than 2 are critical points of EM, and the corresponding values
c = EM(ξ) ∈ R2

m,h are critical values. The inverse images EM−1(c) of the critical
values c are singular fibers (in more general situation they are union of singular
and possibly regular fibers). Specific singular fibers of dimension 2, the pinched
torus and the curled torus, which occur in our example of integrable fibrations are
discussed in Appendix A. If (m,h) is a regular value then rank

(
∂F/∂(q, p)

)
= 2



Vol. 7 (2006) Fractional Hamiltonian Monodromy 1113

at all points (q, p) ∈ EM−1(m,h). We call c an isolated critical value if all values
in a sufficiently small neighborhood of c in R2 are regular.

Proposition 3.2. The point 0 ∈ Λ0 ⊂ R4 is the critical point of rank 0 of the map
EM = EM(0)

m1:(−m2)
both in the case m1 = m2 = 1 and in the case m1 = 1,

m2 = 2. In the case m1 = m2 = 1 it is the isolated critical point.

Proposition 3.3. When m1 = 1 and m2 = 2, the set Σ0 of all critical points
of EM in the small neighborhood U0 of 0 ∈ Λ0 ⊂ R4

q,p includes the intersection
of U0 with the two-dimensional plane {p1 = q1 = 0}. The intersection Λ0 ∩ Σ0

consists of one single point 0 ∈ R4. All points of the two-dimensional surface Σ0\0
⊂ U0 are critical points of rank 1 of the EM map. The surface Σ0 \ 0 is filled by
periodic trajectories γc of the system with Hamiltonian F (0)

1 . These trajectories γc
are singular orbits of the S1 group action where S1 is the group in Corollary 3.1.
Orbits γc have nontrivial discrete isotropy group Z2 ⊂ S1. Specifically, 2π being
the period of the regular orbit of the S1 action, orbits γc are of period π.

Proposition 3.4. The value EM(0) = 0 ∈ R2
m,h is the critical value of EM. In

the case of 1:(−1) resonance and only in this case the critical value 0 is isolated.
When m1 = 1,m2 = 2, there is a continuous family of other critical values C− =
{m < 0, h = h−(m)} of EM such that h−(0) = 0.

Definition 3.1. We call the set Σ0 ⊂ U0 ⊂ R4
q,p in Proposition 3.3 and the set

C− ⊂ R2
m,h in Proposition 3.4 plane of critical points and line of weak critical

values respectively.

Remark 3.3. The function h−(m) defining the line of critical values C− ⊂ R2
m,h

depends on the choice of “basic” functions {F1, F2}. In this work we will use
{F1, F2} with F2 defined in (3.1b) and R2 in (3.2b). In this case h−(m) = ms for
m < 0 with s = 2 in the case of 1:(−2) resonance, see Fig. 2 and Appendices B
and D. In the same situation the authors of [25] use F ′

1 = F1 and F ′
2 = F2 − F 2

1 ,
so that their critical line is part of {h = 0}.

Proposition 3.5. The fiber Λ0 � 0 of the integrable fibration defined by EM is a
singular 2D variety called pinched torus. This fiber coincides with EM−1(0), its
inner topological type is the same for m1 = m2 = 1 and m1 = 1,m2 = 2. The
fiber Λ0 has one single critical point 0 ∈ R4

q,p of rank 0.
All other fibers Λm,h which lie near Λ0 are connected and compact and co-

incide with EM−1(m,h). When m1 = m2 = 1, and only in this case, all such
fibers are regular 2-tori. When m1 = 1,m2 = 2, we find singular fibers Λ− =
EM−1(m,h) with (m,h) ∈ C− which lie arbitrarily close to Λ0. The topology of
each singular fiber Λm,h ⊂ Λ− is that of an 2-curled torus. Each fiber Λm,h ⊂ Λ−
has a circle Λm,h ∩ Σ0 of critical points of rank 1.

Propositions 3.2, 3.4, and 3.5 formulated above can be proven directly by
studying equations {F1 = m, F2 = h} which define the combined (m,h)-level sets
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Figure 2. Left to right. Images of the energy–momentum map
EM(0)

m1:(−m2)
for the 1:(−1) and 1:(−2) nonlinear resonant oscil-

lator systems near the critical value 0 ∈ R2
m,h shown by black

dot. Dashed line shows the critical value line which corresponds
to curled tori, shaded area represents regular values.

of F1 and F2 in R4 and the rank of the Jacobian matrix ∂F/∂(q, p). We prove
similar propositions in Appendices C and D in the form of more detailed technical
Lemmas C.1, C.3, D.1, and D.6. Discussion of singular fibers and their possible
graphical representations in R3 is relegated to Appendix A.

Alternatively, the above propositions can be easily proven within the frame-
work of the analysis and reduction of the action of the dynamical Lie symmetry
group gt

F
(0)
1
∼ S1 on R4

q,p introduced in Corollary 3.1. Such analysis is detailed in

Appendix B, where the orbit space of this group action is represented in terms
of invariant polynomials and is used for an explicit geometrical description of the
integrable fibrations defined by the map EM(0)

m1:(−m2)
.

We conclude with a conjecture which extends our description of basic prop-
erties of the integrable fibration F (0) defined by (3.1) and (3.2) to the general class
of integrals F in (3.1) with compactifier R satisfying Conditions 3.1.

Conjecture 0. Let R(1) be a function obtained from R(0) = R(0,s) in (3.2) by a
deformation {R(τ), 0 ≤ τ ≤ 1} which depends smoothly on τ while R(τ) satisfies
Conditions 3.1 for each τ ∈ [0, 1]. Then our Propositions 3.2, 3.4, and 3.5 can be
reformulated for R = R(1).

We believe that Conditions 3.1 should be sufficient for this conjecture to be true.

4. Main statements about classical monodromy

We now turn to the nontrivial property of integrable fibrations (F1, F2) intro-
duced in Sec. 3 [see (3.1), (3.2) and Conditions 3.1], namely to their monodromy.
The standard definition of Hamiltonian monodromy for two degree of freedom
integrable systems deals with toric fibrations whose integrable map possesses
only isolated critical values. Such definition can only be applied to the case with
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m1 = m2 = 1 introduced above. In the case with one or both (m1,m2) greater
than 1, we cannot choose a nontrivial closed loop in the base space of the fibration
which consists only of regular values of the EM map because by Proposition 3.4
the critical value 0 ∈ R2

m,h is not isolated. (See Proposition 3.4 in previous sec-
tion and Lemma D.6 in Appendix D.) Our generalized definition of monodromy
in Sec. 2 makes introducing monodromy possible in this latter case.

In this section we formulate our main statements and apply our general-
ized definition to the particular cases of integrable fibrations defined by functions
(F1, F2) in (3.1) with m1 = m2 = 1 and m1 = 1,m2 = 2, and with the simplest
choice of the compactifier R = R(0,s) in (3.2). Since monodromy of these fibrations
is of purely topological origin, we conjecture that an appropriate smooth deforma-
tion of R will not modify these statements as long as R satisfies Conditions 3.1.

We begin with the “standard” example of the m1 = m2 = 1 fibration for
which we reproduce the well-known results on Hamiltonian monodromy of systems
with “focus–focus” singularities. Using the same technique in the more general case
of the fibration with m1 = 1 and m2 = 2, we show that this latter has fractional
monodromy. We give the idea of the proof of our classical mechanics statements in
Sec. 5 and provide more technical details in Appendices C and D. Subsequently,
our results are interpreted for the corresponding quantum analogue systems in
Sec. 6 and 7, where we introduce fractional quantum monodromy.

4.1. Monodromy theorem for the 1:(−1) resonance

Consider the integrable fibration defined by F = (F1, F2) in (3.1) with m1 = m2

= 1 and choose the compactifier R to be equal R(0,s) in (3.2) with s = 2,

F1 = 1
2 (p2

1 + q21)− 1
2 (p2

2 + q22), (4.1a)

F2 = p1q2 + p2q1 + 1
4

(
p2
1 + q21 + p2

2 + q22
)2
. (4.1b)

Recall that by Proposition 3.5 the singular fiber Λ0 � 0 of the fibration F is com-
pact and connected, and coincides with F−1(0). All fibers Λ in the neighborhood
of Λ0 are regular 2-tori; Λ0 is a pinched torus (see Appendix A) with one singular
point of rank 0 at 0 ∈ R4.

Theorem 1. Fibration (4.1) has a nontrivial local integer monodromy map μ.
Specifically, for any regular fiber Λ ∼ T2 of this fibration we can find a basis
of the homology group H1(Λ) in which μ is defined by the matrix(

1 0
−1 1

)
. (4.2)

All and only points of Λ0 can be the central points of this local monodromy. Λ0 lies
inside the upper cell K � 0 and is an isolated component of the boundary ∂K.

Remark 4.1. Integrable fibration defined by the functions (4.1) is equivalent in
some sense to that of the 1:1 resonant oscillator system with the axially symmet-
ric “Champagne bottle” potential [6]. These systems are particular representatives
of the class of systems with isolated focus–focus singularities [43, 45, 46, 73, 74].
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Monodromy for many such systems has been computed analytically before. Fur-
thermore, according to the geometric monodromy theorem in [17], this monodromy
is defined entirely by the type of the singular fiber Λ0.

Taking into account the known results for monodromy in systems with iso-
lated focus–focus singularities we can formulate here without proofs the following
corollary to Theorem 1 which extends our statement to a much wider class of
integrable fibrations.

Conjecture 1 (corollary to Theorem 1). Let R(1) be any function which can be
obtained from R(0,s) in (3.2) with s = 2 by a deformation {R(τ), 0 ≤ τ ≤ 1} which
depends smoothly on τ and such that for each τ ∈ [0, 1] the function R(τ) satisfies
Conditions 3.1 formulated in Sec. 3. Then the statement of Theorem 1 remains
valid for F = (F1, F2) in (3.1) with m1 = m2 = 1 and compactifier R = R1.

We believe that Conditions 3.1 imposed on R are sufficient for this corollary to be
true.

4.2. Monodromy theorem for the 1:(−2) resonance

Consider now the integrable fibration F defined by functions (F1, F2) in (3.1a) and
(3.1b) with m1 = 1 and m2 = 2, and choose the compactifier R to be equal R(0,s)

in (3.2) with s = 2,

F1 = 1
2 (p2

1 + q21)− (p2
2 + q22), (4.3a)

F2 = 2p1q1q2 + q21p2 − p2
1p2 + 1

4

(
p2
1 + q21 + 2p2

2 + 2q22
)2
. (4.3b)

Note that by Proposition 3.5 the singular fiber Λ0 � 0 of the fibration F in (4.3)
is compact and connected, and coincides with F−1(0). All fibers Λm,h lying close
to Λ0 coincide with F−1(m,h) and are also compact and connected. Furthermore,
by Proposition 3.4 the image of the map F in the neighborhood of 0 ∈ R2 consists
of the critical value 0, the critical value line C−, and regular values, see Fig. 2.
For the particular choice H = F2 in (4.3) (see Remark 3.3) the critical line C− is
parameterized by the conditions

h = m2, m < 0, (4.4)

where m is sufficiently close to 0. Critical fibers Λ− = Λm,h with (m,h) ∈ C− are
curled tori while Λ0 is a curled pinched torus (see Appendix A) which has one
singular point of rank 0 at 0 ∈ R4. All other fibers Λ in the neighborhood of Λ0

are regular 2-tori. Finally recall that, by Proposition 3.2 (see also Lemma D.6)
the set Σ0 of critical points of F in the small neighborhood U0 of 0 ∈ R4 is a
two-dimensional critical point plane Σ0 = {p1 = q1 = 0} ∩ U0.

Theorem 2. Fibration (4.3) has nontrivial local fractional monodromy map μ.
Specifically, for any regular fiber Λ ∼ T2 of this fibration we can find a basis of the
homology group H1(Λ) in which the map μ is given by the matrix(

1 0
−1

2 1

)
. (4.5)
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All points of the fiber Λ0 and only those points are the central points of this local
fractional monodromy.

The upper cell which contains regular fibers Λm,h for (m,h) close to 0 ∈ R2

is simply connected. This cell has an internal wall W , which partly intersects the
inner part of the cell and includes the union W0 = Λ0 ∪ Λ− ⊂ W of Λ0 and all
non-regular fibers Λ− in the neighborhood of Λ0.

Like in the 1:(−1) case we believe that the monodromy Theorem 2 can be
extended to a more general class of integrable fibrations F whose compactifier R
satisfies some reasonable conditions, such as Conditions 3.1 formulated in Sec. 3.
By Conjecture 2, the corresponding integrable fibration near 0 ∈ R4 and the image
of the integrable map (which may no longer be an energy–momentum map) near
0 ∈ R2 will remain qualitatively the same as described in the beginning of this
section, though of course, the definition (4.4) of the critical value line C− will be
modified.

Conjecture 2 (corollary to Theorem 2). Let {R(τ), 0 ≤ τ ≤ 1} be a deformation
which depends smoothly on τ and such that for each τ ∈ [0, 1] the function R(τ)

satisfies Conditions 3.1. Let R(1) be any function which can be obtained by such
deformation from R(0,s) in (3.2) with s = 2. Then the statement of Theorem 2 can
be reformulated for F = (F1, F2) in (3.1) with m1 = 1, m2 = 2 and compactifier
R = R1.

We leave the proof of this corollary open.

5. Idea of the proof. Representation of cycles on torus charts

The proof of our two monodromy theorems formulated in Sec. 4 follows the general
discussion in Sec. 2.3 and 2.4. Computing monodromy of the integrable fibration F
begins with defining an admissible closed path δ in the phase space R4

q,p. We make
immediate use of the fact that each constant level set of the concrete integrable
map F in Sec. 3 consists of only one connected component (fiber) Λ. Due to this
simplifying property we can first fix the image Γ = F (δ) of δ in the base of the
integrable fibration F and then construct δ = δΓ.
Closed path Γ in R2. The map F : R4 → R2 with F = (F1, F2) introduces co-
ordinates on R2 which we denote by (m,h). Let us denote by Γ the boundary
of a sufficiently small rectangular region D in R2 = R2

m,h centered at the origin
(m,h) = (0, 0),

D := {(m,h), |m| ≤ mmax, |h| ≤ hmax, 0 < mmax � hmax � 1}.
We call Γ ⊂ R2

m,h a contour. We will go along Γ (see Fig. 3) in the counterclockwise
direction starting at the regular point Γ0 = (0,−hmax) ∈ Γ; other points on Γ will
be denoted Γ1, Γ2, etc. The points are placed so that the resulting pieces of Γ, such
as (Γ1,Γ2), are smooth. Alternatively, introducing parameter t ∈ [0, 1] along the
contour Γ we will refer to these points as Γ(t), in particular Γ0 = Γ(t)

∣∣
t=0

= Γ(t)

∣∣
t=1

.
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Figure 3. Choice of contour Γ in the base of the integrable fi-
bration F introduced in Sec. 3; case m1 = m2 = 1 (left) and
m1 = 1,m2 = 2 (right). Γ goes around the critical value (0, 0) of
the corresponding energy–momentum map (F1, F2).

Closed path δΓ in R4. Having chosen the contour Γ, we construct the correspond-
ing closed path δ = δΓ in R4

q,p. To this end we take a regular point ξ ∈ Λ0 \ {0} on
the singular fiber Λ0 = Λm,h

∣∣
m=h=0

and define the Poincaré section σξ at ξ. The
surface σξ is transversal to Λ0 and to all fibers Λ in a neighborhood U ⊃ Λ0 such
that F−1(D) ⊂ U . (Since these fibers are two-dimensional, the dimension of σξ is
two.) We define the restriction F = F

∣∣
σξ

of the map F on σξ. The map F : σξ → R2

is a diffeomorphism of the Poincaré section σξ on its image F (σξ) ⊂ R2. As the
closed path δΓ ⊂ R4

q,p we choose the inverse image δΓ = F−1(Γ) of the con-
tour Γ ⊂ R2

m,h. Since F−1 is a diffeomorphism, δΓ is piecewise smooth and going
along δΓ is equivalent to going along Γ. Furthermore, we will show that the path δΓ
is admissible in the sense of Definition 2.6 in Sec. 2.3 both in the 1:(−1) and the
1:(−2) case.
Representation of the basis elements of H1(ΛΓ0). Regular fibers Λm,h of F , and
in particular the initial fiber ΛΓ0 , are 2-tori (Sec. 3). Their first homology group
H1(T2) is isomorphic to Z2 and has two basis elements, which will be denoted (gf , e)
and will be represented by the cycles (γf , η). Since H1(T2) is abelian, we write the
composition of its elements (and their representatives) as a linear combination,
e.g., 2e0 + gf and 2η0 + γf . We will give the way to define (γf , η(t)) explicitly and
therefore to choose (gf , e(t)) independently in almost all points Γ(t). We begin
at the initial point Γ0 by constructing the basis (gf , e0) of the homology group
H1(ΛΓ0).

Remark 5.1. Both in the case 1:(−1) and 1:(−2) each regular fiber Λm,h ∼ T2 of the
integrable fibration F = (F1, F2) has one “fixed” element of H1, gf , which is always
represented by the 2π-periodic trajectories γf of the system with Hamiltonian F1

followed to time 2π, see Lemma 3.1 and Corollary 3.1. For all such fibers, gf
remains unchanged after a tour along any admissible closed path δ (Sec. 2.4) and in
particular along δΓ defined by the contour Γ in the base space of F . Consequently,
gf cannot be the origin of nontrivial monodromy.
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Following Remark 5.1 we represent the basic elements gf of H1(ΛΓ0) using a 2π-
periodic trajectory of the Hamiltonian flow ϕF1 of F1 with orientation induced
by ϕF1 .
Representation of the basis element e0 of H1(ΛΓ0). We choose the cycle η0, which
represents the second basis element e0 of H1(ΛΓ0), by intersecting ΛΓ0 by a fixed
three-dimensional hyperspace σ ⊂ R4. The latter is defined in R4 by the equation
F3(q, p) = 0 so that it is almost everywhere transversal to the flow ϕF1 , and in
particular σ is transversal to ϕF1 on ΛΓ0 . The concrete explicit form of F3 de-
pends on the concrete (F1, F2) under study and will be given in Secs. 5.1 and 5.2
for the 1:(−1) and 1:(−2) systems respectively. We can consider σ as a global non-
regular Poincaré section for the system with Hamiltonian F1 which is regular in
the neighborhood of ΛΓ0 . Then the intersection λ0 = ΛΓ0 ∩ σ is regular and con-
sists of several disconnected one-dimensional closed curves, which can be oriented
unambiguously as in the paragraph below. As the cycle η0, we take one oriented
connected component of λ0. Since by construction η0 and γf are transversal, the
respective elements e0 and gf of homology group represented by these cycles form
a basis for some complete subgroup of H1(ΛΓ0). In order to make sure that (gf , e0)
is a basis for the whole H1(ΛΓ0), we will show that (in both the 1:(−1) case and
the 1:(−2) case) η0 intersects any γf ⊂ ΛΓ0 only in one point.
Orientation of components of λ0 = ΛΓ0 ∩ σ. To define the orientation of the
components of λ0, we recall that regular fibers Λ of the integrable fibration F ,
and in particular ΛΓ0 , are tori T2, and are, therefore, orientable. Furthermore, we
can orient each ΛΓ(t) ∼ T2 consistently for all Γ(t) ∈ Γ by using the value of the
vector fields (XF1 , XF2) computed at the point ξδ = δΓ ∩ ΛΓ(t) . We also observe
that F3(q, p) defines a “height” function on R4, which induces a height function
F := F3|ΛΓ0

on ΛΓ0 with zeros on the smooth curve λ0. Then taking any point
ξ ∈ λ0, we consider the tangent plane TΛΓ0(ξ) at ξ spanned by the basis vectors
(v1, v2), which agree with the orientation of ΛΓ0 . We rotate (v1, v2) so that v1
becomes collinear with the vector ∇F(ξ) on TξΛΓ0 . (Recall that F(q, p) = F(ξ)
is given explicitly, and in particular, its sign and hence the direction of ∇F(ξ) is
fixed at all ξ.) Then the second vector v2 gives the orientation of the closed curve,
which passes through ξ and is a part of λ0.

In this way all components of the intersection λ0 are oriented consistently and
become oriented closed curves. All these closed curves together form a cycle, which
is homotopic to zero on ΛΓ0 , and which deforms continuously (without changing
its homotopy type) as we move along the contour Γ.
Intersections λ0 ∩ γf . The intersections of the thus oriented components of λ0

and the ϕF1 orbits γf can be classified further. Consider an orientable fiber Λ of
the integrable map F and an oriented curve (a path) κ ⊂ Λ, which intersects an
orbit γf ⊂ Λ transversally at a finite number of points {ξ1, ξ2, . . .} = κ ∩ γf . (For
example, take Λ = ΛΓ0 and κ ⊆ λ0.) At each ξi, consider Tξi

Λ, where the vectors
vf and vκ represent the respective directions of κ and γf at ξi. Take the considered
earlier vector basis (v1, v2) = (vf , v2) in Tξi

Λ, which defines the orientation of Λ.
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Compute

indξi
(κ ∩ γf) := sign(v2.vκ) = ±1 and ind(κ ∩ γf) :=

∑
ξi

indξi
(κ ∩ γf).

Definition 5.1. We call indξi
(κ∩γf) the local index of intersection κ∩γf at point ξi,

and we call ind(κ ∩ γf) the index of κ ∩ γf .

Note that if κ is a closed path (or a cycle consisting of several closed paths)
homotopic to zero, then the index of its intersection with γf is 0. Thus, ind(λ0∩γf)
= 0.
Representing basis elements ofH1(ΛΓ(t)). By Remark 5.1 the choice of the cycle to
represent one of the basis elements ofH1(ΛΓ(t)) is fixed: for all t we use as γf = γf(t)
an oriented 2π-periodic orbit of ϕF1 . The choice of the cycle η(t) representing the
other basis element e(t) can also be made almost at all t in a certain fashion related
to our choice of σ. Specifically, we call the intersection λ(t) = ΛΓ(t) ∩ σ and the
point Γ(t) ∈ Γ regular if

rank
∂(F1, F2, F3)

∂(q, p)
= 3 for all ξ ∈ λ(t) = ΛΓ(t) ∩ σ. (5.1)

For all regular Γ(t), we construct the cycle η(t) similarly to η0. We begin by taking
a cycle η̃ composed of one or several connected oriented components of λ(t). If – as
in the case of Γ0 – we find that ind(η̃∩γf) = 1, then we choose η(t) := η̃. Otherwise
we look for such η(t) that

η̃ + bγf + aη(t) = 0, where a, b ∈ Z and ind
(
η(t) ∩ γf

)
= 1.

Remark 5.2. In practice, to compute monodromy transformation μδ for a path δ,
we need to know the basis elements (gf , e(t)) only at the end points t = 0 and
t = 1 of δ. So, in the case of the closed path δΓ, we only have to know (gf , e0) for
H1(ΛΓ0). However, knowing basis elements of the homology group at other points
of Γ can be very helpful for constructing the continuous deformation γ(t) of the
cycle γ0 = e0 (see below), and, of course, is necessary for representing γ(t) on the
charts ΛΓ(t) → R2/Z2.

Nonregular points of intersections λ(t). Let us denote by Γ(t∗) and ξ∗ the non-
regular points of the contour Γ and the points of the corresponding nonregular
intersection λ(t∗) = ΛΓ(t∗) ∩ σ at which the rank (5.1) is less than 3. Such nonreg-
ular intersections can be described as sets of loops with common points ξ∗, e.g.,
a “figure eight”. To define unambiguously the orientation of all segments of the
nonregular intersections λ(t∗) which consist only of regular points ξ of the map
(F1, F2, F3) we will use the same technique we used above to orient γ0. Note that
nonregularity can arise either because at points ξ∗ the surface σ is not transversal
to a regular 2-torus Λ(t∗) (to the flow of ϕF1) or because ξ∗ = ξc is also a critical
point and Γ(tc) = Γ(t∗) is a critical value of F = (F1, F2). We will call the latter
case as critical nonregular. It occurs in the 1:(−2) system when we cross the line
of critical values (Proposition 3.4 and Remark 3.3) and ΛΓ(t∗) is a curled torus.
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Continuous deformation of the cycles. Following Sec. 2.4 in the 1:(−1) case we
should identify the homology groups H1(ΛΓ(t)) as Γ(t) moves along the contour Γ
and makes a complete tour. Specifically, for any regular t1 and t2, we define local
bases (gf , e(t1)) and (gf , e(t2)) and should find the matrix M = MδΓ ∈ SL(2,Z)
that relates these bases. By Remark 5.1 the cycle γf , represents after a complete
tour around contour Γ the same basis element gf of the homology group. The idea
of our proof is in the direct construction of the continuous deformation γ(t) of the
cycle

γ0 = γ(t)

∣∣
t=0

:= η0

representing the second basis element of H1(ΛΓ0).
Let us consider the automorphism of the group H1(ΛΓt

) induced by the
mapping of cycles γf �→ γf , γ(t) �→ η(t). Then the matrix μ(t) of this automorphism
in the basis (γf , γ(t)) is constant for any segment of Γ which consists only of regular
points.

It is clear that the map μ is represented by the identity matrix for any
segment of Γ which consists only of regular points. For example, let [0, t1] define
such a segment. Since different components of the intersection ΛΓ(t) ∩ σ remain
disconnected for all t ∈ [0, t1], we have γ(t) = η(t) for all t ∈ [0, t1]. In other words,
as long as the intersection remains regular, we continuously associate the second
basic element e(t) of the homology groups {H1(ΛΓ(t)); t ∈ [0, t1]} with the cycle
γ0 := η0 chosen at the initial point Γ0. The continuity of the deformation γ(t) for
t ∈ [0, t1] is assured by the use of the same fixed hypersurface σ to define the cycles
at all regular points Γ(t) ⊂ [Γ0,Γ(t1)]. Arriving at the point Γ(t1) we thus find that
μ(t1) is the identity matrix.

Consider now t1 < t∗ < t2 and a corresponding smooth segment [Γ(t1),Γ(t2)]
⊂ Γ which contains one nonregular point Γ(t∗). As we pass Γ(t∗), the number of
disconnected components of the intersection ΛΓ(t)∩σ changes and each component
varies discontinuously. When t = t∗ we cannot construct the second basis element
of the homology group using the intersection with σ as we normally do before for
t < t∗ and after for t > t∗. Fortunately, we do not need to construct the basis
of H1(Λ(t∗)). In fact, passing t∗ is similar to changing charts in an atlas: as we
go to t > t∗, we have to specify the relation between the charts. To obtain this
relation, we should find a way to continue our original cycle γ(t1) = η(t1) ⊂ σ
which represents the basic element e(t1) of H1(ΛΓ(t1)) through point Γ(t∗). This
continuation depends on the type of nonregularity at Γ(t∗).
Nonregular points on regular fibers. If ΛΓ(t∗) is a regular T2-fiber of the integrable
map F = (F1, F2) and ξ∗ are regular points of F at which σ and ΛΓ(t∗) are not
transversal, we can replace the cycle γ(t1) ⊂ σ for a homotopically equivalent cycle
γ̃(t1) �⊂ σ which can be smoothly continued through the point t∗ to γ̃(t2). We then
deform γ̃(t2) into homotopically equivalent cycle γ(t2), which consists of the oriented
component(s) of the regular intersection ΛΓ(t2) ∩ σ and (possibly) of 2π-periodic
orbits γf of ϕF1 , i.e., which is a composition of η(t2) and γf . The possibility for γf to
appear in γ(t2) comes from the necessity to involve parts of these orbits (transversal
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to σ in all points except ξ∗) in the homotopies γ(t1) → γ̃(t1) and γ̃(t2) → γ(t2) in
order to move out of σ and bring back to σ small parts of the cycles which would
otherwise come to intersect each other at the nonregular points ξ∗ of ΛΓ(t∗) ∩ σ.
Passing critical nonregular points. The specifics of the 1:(−2) case compared to
the 1:(−1) case is in the presence of the critical nonregular point Γ(t∗=tc). In this
case, there is no way in which individual oriented components of the intersection
ΛΓ(t1) ∩ σ can be deformed and continued through Γ(tc). However, a cycle con-
structed as an appropriate composition of these components can be passable as a
whole, just as outlined in Sec. 2.3. It follows that in the 1:(−2) case the subgroup
ζ ⊂ H1(ΛΓ0) and the cycle γ0 representing the second basis element of ζ at t = 0
should be chosen so that the cycle γ(tc) is passable.
Monodromy. If the cycle γ(t) representing element g(t) of the homology group does
indeed accumulate one or several ϕF1 components when we go around Γ and come
back to ΛΓ0 at t = 1, then the resulting cycle γ1 = γ(t)

∣∣
t=1

represents an element g1
of H1, which does not coincide with the initial element g0 but is a composition of g0
and gf . After constructing η(t), γ(t), and μ(t) explicitly, we compute the nontrivial
local monodromy μ(t)

∣∣
t=1

of the integrable fibration F stated in Theorems 1 and 2.
We can choose initial elements of the homology group (gf , g(t)) for t = 0 so that
they can be expressed as (

gf
g0

)
= B

(
gf
e0

)
, (5.2)

where B is a 2 × 2 matrix with integer coefficients and detB ≥ 1, and (gf , e0) is
the basis of H1(ΛΓ0). The monodromy transformation

μ(t)

∣∣
t=1

:
(
gf
g0

)
→
(
gf
g1

)
= M

(
gf
g0

)
, (5.3a)

is defined by a monodromy matrix M ∈ SL(2,Z). Notice that transformation
(5.3a) cannot be simply extended to the whole H1(ΛΓ0) if detB > 1 because in
that case the matrix B−1MB may have rational coefficients and

B−1MB

(
gf
e0

)
. (5.3b)

may not necessarily be a basis on H1(ΛΓ1). Thus if we use (5.3b) in the case
of monodromy 1

2 (Theorem 2), we would formally obtain 1
2gf + e0 which can,

obviously, only become an element of H1 after being repeated twice. Using the
isomorphism H1(ΛΓ0) ∼ Z2

0 we can illustrate such extension attempt as a formal
transformation of the square elementary cell of Z2

0 shown by shaded area below left

and compare it to the transformation of the double cell. It can be seen that the up-
per vertices of the transformed elementary cell (shaded area, right) do not match
lattice nodes of Z2

1 and therefore, this transformed cell does not define a basis
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in Z2
1. Consequently, it is more appropriate to think of the extension (5.3b) after

including Z2 canonically in a linear space R2 (see Def. 2.8 in Sec. 2.4.1) and to
consider B−1MB ∈ SL(2,Q) as a matrix of transformation of R2. It is in this
sense that we use such matrix in the statement of Theorem 2.
Representation in σ and on the charts of ΛΓ(t) . Construction and continuation
of cycles γ(t) can be either done directly in σ ⊂ R4 in natural initial coordinates
(q, p) or, alternatively, on the torus charts ΛΓ(t) → R2/Z2 with some specially
constructed local angle coordinates (φ1, φ) ∈ [0, 2π). The advantage of the charts
is in the possibility to represent more easily the homotopies involved in passing
nonregular points t∗ when parts of our cycle γ̃ remain outside σ. At the same time,
finding the image of cycles η(t) defined by intersections ΛΓ(t) ∩σ on the torus chart
of ΛΓ(t) presents an additional difficulty for a rigorous proof.

Note that we will use the charts where the angle φ1 (horizontal coordinate) is
the conjugate angle of the global action F1 that gives the coordinate on the fixed
element gf . The angle φ (vertical coordinate) is the conjugate angle of the second
locally constructed action I(F1, F2) whose vector field XI is a linear combination
of XF1 and XF2 with periodic flow on ΛΓ(t) . Both XI and the origin of the torus
map will be chosen specially for each particular (m,h) = Γ(t) in order to have the
clearest representation of ΛΓ(t) ∩ σ.

In the 1:(−1) case we work directly in σ (see Sec. C.2) and use torus charts in
Sec. 5.1 primarily for illustration and for comparison with the more complicated
1:(−2) case. In the latter case we formulate several additional lemmas in Sec. D.2
which define the exact correspondence between the cycles on σ and their images
on the torus charts. This enables us to analyze in parallel the deformation of cycles
on the torus charts and on σ and to represent this deformation in a much more
comprehensive way.

5.1. The m1 = m2 = 1 case

In the 1:(−1) case each point Γ(t) = (m,h) of the contour Γ ⊂ R2 (Fig. 3, left)
and the respective point ξ of the closed path δΓ ⊂ R4 is associated to a regular
2-torus fiber ΛΓ(t) = Λm,h. We define the hyperspace σ as a hyperplane

σ := {F3 = 0} ⊂ R4, F3 = p1 − q2. (5.4)

Intersections λm,h = Λm,h ∩ σ are classified by the following statements.

Lemma 5.1. For all sufficiently small |m| and |h| surfaces Λm,h are smooth ev-
erywhere except Λ0,0, which is not smooth in one point (p, q) = 0. All Λm,h
intersect the hyperplane σ transversally everywhere except points ξ∗ on the axis
σ ∩ {q1 = p2 = 0}. Moreover, at each point ξ∗ �= 0 the tangent 2-plane Tξ∗Λm,h
lies in σ.

Analytic proofs of this and related lemmas are given in Sec. C.1.

Corollary 5.1. The contour Γ has one nonregular point Γ2 = Γ(t∗) = (m = 0, h > 0)
⊂ Γ (see Fig. 4). The regular 2-torus ΛΓ2 intersects σ nontransversally in two
points ξ∗± with q2 = p1 = ±p(h) which lie on the same ϕF1 orbit γf ∈ σ.
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Figure 4. Contour Γ in the m1 = m2 = 1 case and the evolution
of the connected components of the intersection Λm,h∩σ which are
shown on the torus charts Λm,h → R2/Z2 computed numerically
for h = ±0.05 and m = ±0.02, 0.

Further description of λm,h is detailed in Sec. C.2. Images of oriented com-
ponents of λm,h on the torus charts Λm,h → R2/Z2 are shown in Fig. 4. We
see that any regular λm,h, (m,h) �= Γ2 is a union of two non-intersecting smooth
closed curves to which we assign opposite orientation. We use one of these oriented
curves to represent the second basis element e(m,h) of H1(Λm,h) for all (m,h) �= Γ2.
When we pass Γ2 the two disconnected components of λm,h fuse together in two
points and then separate forming two new components. This transformation is not
continuous for each of the components.

To compute the monodromy map μ, we construct the continuous family of
cycles γ(m,h) parameterized by (m,h) ∈ Γ starting from Γ0 = (m = 0, h < 0) ∈ Γ
where γ0 = γ(m,h)

∣∣
(m,h)=Γ0

:= η0 is chosen as one of the oriented connected com-
ponents of the intersection λΓ0 and coincides with the cycle η0 representing the
second basis element e0 of H1(ΛΓ0). By Corollary 5.1, γ(m,h) deforms continuously
(and piecewise smoothly) as we follow any segment of contour Γ (or δΓ) which does
not contain Γ2, and in particular the segment from Γ0 to Γ1. Hence up until Γ1

the map μt : H1(ΛΓ0) �→ H1(ΛΓ(t)) is trivial.
In order to continue the cycle γ(m,h) through the point Γ2 we replace γΓ1 ⊂ σ

defined as one oriented component of λΓ1 by a homotopic cycle γ̃Γ1 �⊂ σ. The new
cycle deforms smoothly into γ̃Γ3 as we move from Γ1 to Γ3 through point Γ2. We
then replace γ̃Γ3 for homotopically equivalent γΓ3 which is a composition of one
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Figure 5. Construction of homotopically equivalent cycles on
the regular tori Λm,h for (m,h) ∈ Γ near the nonregular point Γ2

of the 1:(−1) case, cf. Fig. 4. Bold dashed lines show the periodic
orbit γf of the flow ϕF1 . See text for detailed discussion.

oriented connected component of the intersection λΓ3 and the oriented periodic
orbit γf of the Hamiltonian flow ϕF1 .

The homotopies γΓ1 → γ̃Γ1 and γ̃Γ3 → γΓ3 are explained in Fig. 5, top
and bottom respectively. Realization of the same homotopic modification in σ is
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described in Sec. C.2, see Figs. C.4 and C.5, where the same notation is used for
corresponding points on σ. In Fig. 5, top left, the cycle γΓ1 = ηΓ1 is an oriented
connected component of the intersection λΓ1 labeled AaA. It is replaced by a
homotopically equivalent cycle γ̃Γ1 = Aα1α3β3β1(−γf)β1A (Fig. 5, top right).
The new cycle γ̃Γ1 is constructed from the fragments Aα1 and β1A of AaA, the
fragment α3β3 ⊂ BbB of the second oriented component of λΓ1 , and two small
fragments α1α3 and β3β1. The first three fragments belong to σ and inherit their
orientation, the last two fragments lie on the torus ΛΓ1 but do not belong to σ. The
orientation of these fragments is chosen to agree with other fragments they connect.
At last we add the trajectory of the system with Hamiltonian F1 as a fragment
β1(−γf)β1. It is easy to see that γ̃Γ1 is homotopic to AaA. The deformation of
γ̃(t) = Aα1α3β3β1(−γf)β1A for Γ(t) ∈ [Γ1Γ3] proceeds smoothly as we pass Γ2

(Fig. 5, second row). At point Γ3, the resulting cycle γ̃Γ3 (Fig. 5, third row, right)
is homotopic to the sum AbA + (−γf) = γΓ3 of two oriented loops (Fig. 5, third
row, left), where AbA = ηΓ3 is one of the oriented connected components of the
intersection λΓ3 , while −γf (bold dashed line in Fig. 5) is a closed trajectory
of ϕF1 representing element (−gf) of the homology group. Here note that cycles
ηΓ1 = AaA and ηΓ3 = AbA representing second basis elements eΓ1 and eΓ3 of
H1(ΛΓ1) and H1(ΛΓ3) are shown by bold lines in the top left and bottom left
charts of Fig. 5, respectively.

Further deformation of γ(t) = γ(m,h) as we go from Γ3 till Γ(t)

∣∣
t=1

= Γ0 is
continuous (and piecewise smooth) and does not anymore modify the homotopy
type of γ(t) in the chart of ΛΓ(t) which varies smoothly along with deformation of
this torus. Arriving at Γ0 we obtain the cycle γ1 = γ(t)

∣∣
t=1

, which represents an
element g1 of H1(ΛΓ0). Expressing g1 in the original basis (gf , e0) of H1(ΛΓ0) (this
basis corresponds to the angle coordinates of the bottom right torus chart of ΛΓ0

in Fig. 4) gives g1 = e0 − gf . Hence the monodromy map μ = μΓ = μδΓ is
μ : H1(ΛΓ0)→ H1(ΛΓ0) : (gf , e0)→ (gf , e0 − gf),
and the monodromy matrix is

(
1 0−1 1

)
.

5.2. The m1 = 1, m2 = 2 case

In the 1:(−2) case, the proof follows the same general outline. We take the same
contour Γ, see Fig. 3, right. The path δΓ is constructed as described at the begin-
ning of Sec. 5 and is an admissible closed path. We begin at the same point Γ0 ∈ Γ
with m = 0 and h < 0; the fiber ΛΓ0 is a regular 2-torus. The three-dimensional
hyperspace σ is now defined as a hyperplane

σ := {F3 = 0}, F3 = p1 −
√

2q2. (5.5)

We use (p1, q1, p2) as coordinate functions on σ. (These functions coincide with
the restriction on σ of the respective functions defined on the whole R4.)
Intersections λm,h = Λm,h ∩ σ. Oriented connected components of λm,h are rep-
resented in Fig. 6 on the charts Λm,h → R2/Z2. Direct representation of λm,h
in σ is discussed in detail in Sec. D.2. In particular, Lemma D.9 gives the exact
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Figure 6. Contour Γ in the 1:(−2) case together with evolu-
tion of the oriented connected components of intersections λm,h =
Λm,h ∩ σ for (m,h) ∈ Γ.

correspondence between the two representations of λm,h for m = 0. The following
statements provide the description of the nonregular points of λm,h.
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Lemma 5.2. For all sufficiently small |m| and |h|, the surfaces Λm,h are smooth
in all points except points in the plane {p1 = q1 = 0}. All Λm,h intersect the
hyperplane σ transversally everywhere except points

ξ∗ = (p1, q1, p2, q2) ∈ pσ1 ∪ pσ2 ∪ θσ ⊂ σ,
where

pσ1 = {p2 = q1 = 0} ∩ σ and pσ2 = {p1 = q1 = 0} ∩ σ
are coordinate axes on σ, and

θσ :=
{
− 3

10 ≤ p2 ≤ 0, q2 = ±1
2

√
−p2(3 + 10 p2), q1 = 2

√
2 p2, p1 =

√
2 q2
}

has the form of a planar ellipse. The tangent plane Tξ∗Λm,h to Λm,h at any point
ξ∗ ∈ pσ1 ∪ θσ \ {0 ∈ R4} belongs σ.

This and several auxiliary technical lemmas are proven in Sec. D.1.

Corollary 5.2. The images of pσ1 and pσ2 under the map F (4.3) are

F (pσ1 ) = {m = 0, h > 0} and F (pσ2 ) = {m < 0, h = m2} = C,
respectively; the image of θσ is a curve

F (θσ) : [− 3
10 , 0]→ R2, where s �→ (

3s2,−1
4s

2(9 + 28s)
)
.

For sufficiently small |m|, C is the line of the critical values of F (Proposition 3.4),
which represent the singular fibers called curled tori (Proposition 3.5).

Proof. Substitute into (4.3) the definitions of pσ1 , pσ2 , and θσ in Lemma 5.2; cf.
Lemma D.6 and Fig. D.2 in Sec. D.1. �
Corollary 5.3. In the 1:(−2) case, the contour Γ has three nonregular points Γ2 =
Γ ∩ F (θσ), Γ5 = Γ ∩ F (pσ1 ), and Γ8 = Γ ∩ C shown in Fig. 6. The first two points
are non-critical values of the (F1, F2) map; they correspond to regular fibers, whose
intersections with σ are nonregular. Γ8 is the critical value of the (F1, F2) map; it
lifts to the curled torus ΛΓ8 .

Evolution of intersections λm,h for (m,h) ∈ Γ \ Γ8. We now comment on how
the oriented components of the intersection λΓ(t) shown in Fig. 6 change as Γ(t) =
(m,h) moves along the contour Γ towards the critical point Γ8 starting at point Γ0.
The intersection λΓ0 has four connected components, which we denote O, A, B,
and C according to the order in which they are traversed by the trajectories γf ⊂
ΛΓ0 of the flow ϕF1 (see Lemma D.3 and Fig. 6, bottom). These four components
are oriented using the technique explained above in the introductory part of Sec. 5.
In particular, any two adjacent components have opposite orientation and the cycle
O +A+B + C is homotopic to zero.

While we go from Γ0 up to Γ2 via Γ1, each connected component deforms
continuously. Point Γ2 is nonregular: at this point, the loop O = OoO deforms
continuously, but the three other loops (A,B,C) form one connected component
with two branching points. Note, that, except at the branching points, the ori-
entation of all regular segments of λΓ2 remains well defined, and that the cycle



Vol. 7 (2006) Fractional Hamiltonian Monodromy 1129

formed by (A + B + C) is homotopic to a simple closed curve, whose orientation
is opposite to that of the loop OoO. After we pass Γ2, the intersection λΓ(t) with
Γ(t) ∈ (Γ2,Γ5) has two connected components OoO and ABCA. The orientation
of these two closed curves is opposite and the cycle OoO + ABCA is homotopic
to zero.

As illustrated at points Γ3 and Γ4, the two loops OoO and ABCA deform
continuously as we approach the second nonregular point Γ5, where they merge
together at two branching points α and β into a single connected component of λΓ5 .
This nonregular intersection splits into two new components OBO and oACo as
we pass Γ5 and move toward Γ6. (Here note that the origins of the charts of ΛΓ4

and ΛΓ5 in Fig. 6 are chosen differently.) Oriented properly, the loops OBO and
oACo form a cycle OBO + oACo on λΓ6 , which is again homotopic to zero. The
deformation (OoO,ABCA) → (OBO, oACo) for each of the loops involved is, of
course, discontinuous. Comparing to the 1:(−1) case (Sec. 5.1 and Fig. 4, top), we
observe a definite similarity of points Γ5 in the 1:(−2) case and Γ2 in the 1:(−1)
case.
Basis elements of H1. As before, we take the 2π-periodic trajectory γf of the
system with Hamiltonian F1 to represent the first basis element gf of H1(Λm,h) for
all (m,h) ∈ Γ\ΛΓ8 . For (m,h) on the open segment ΓI = (Γ8,Γ5) � Γ0, we choose
the oriented connected component OoO ⊂ λ(m,h)I as the cycle η(m,h)I , which
represents the second basis element e(m,h)I of H1(Λm,h). Note that by choosing
the particular component OoO we “bypass” the nonregular point Γ2, where OoO
continues smoothly (Fig. 6, right). We verify that the index of the intersection
OoO ∩ γf is 1, and that together with gf such e(m,h)I forms indeed the basis of
H1(Λ(m,h)I), and, in particular, of H1(ΛΓ0). At the same time, for (m,h) on the
open segment ΓII = (Γ5Γ6Γ7Γ8), the index of the intersection with γf for each
of the two oriented connected components OBO and oACo of λ(m,h)II equals 2.
This reflects the change of relation between γf and connected components of λm,h,
which occurs when we enter the region ΓII from region ΓI. As illustrated in Fig. 7,
right, the cycles γf coil “once” on the tori Λ(m,h)I , such as the “meager” torus ΛΓ9 ,
and “twice” on the tori Λ(m,h)II , such as the “fat” torus ΛΓ7 . As a result, the cycle
η(m,h)II , which represents the basis element e(m,h)II , cannot be just an oriented
component of λ(m,h)II . We can, however, choose η(m,h)II , which is related explicitly
to λ(m,h)II and γf . The particular choice

2η(m,h)II = OBO − γf

is used for the charts of Λ(m,h)II in Figs. 6 and 7, and is also shown on the three-
dimensional model of Λ7 in Fig. 7.
Charts ΛΓ8 → R2/Z2 of the curled torus. The curled torus ΛΓ8 is a variety with
one singular circle, which corresponds to the special π-periodic orbit γ∗f of ϕF1 .
(Recall from Proposition 3.3 that γ∗f lies in the plane {p1 = q1 = 0} and has the
isotropy group Z2.) All other ϕF1 orbits γf ⊂ ΛΓ8 are regular and have period 2π.
This means that in order to continue using gf for a chart m : ΛΓ8 → R2/Z2 we
should follow γ∗f twice to time 2π while all other γf ⊂ ΛΓ8 are naturally followed
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Figure 7. Evolution of the fiber ΛΓ(t) (right column) and the cor-
responding modification of the image of the intersection ΛΓ(t) ∩ σ
in the chart ΛΓ(t) → R2/Z2 (left column), which occur when Γ(t)

passes the critical nonregular point Γ8; cf. Fig. 6, left. (See text
for further explanations.)

once. If we do this, however, we should pairwise identify points in m (2γ∗f ) ⊂
R2/Z2, which are separated by π. Note also that the open set ΛΓ8 \ γ∗f is simply
connected and orientable, and that it can be oriented in the same way as any
regular fiber ΛΓ(t) ∼ T2. Furthermore, the intersection (ΛΓ8 \γ∗f )∩σ has four open
disconnected components, which can be oriented just as any part of any regular
intersection λΓ(t) .

In Fig. 7, we represent λΓ8 using two equivalent charts m of ΛΓ8 , chart (a),
which is also used in Fig. 6, and chart (b). On both charts, the horizontal line oo
in the middle represents (two copies of) γ∗f . On this line, points a and a + π are
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identical. In particular, the two kinds of identical points in the image m
(
ΛΓ8 ∩

σ ∩ 2γ∗f
)

are marked by empty and filled circles. We can obtain the (b) chart by
shifting the upper part of the (a) chart by π along γ∗f . The (a) chart is particularly
useful for comparing Γ8 to Γ7, while the (b) chart, together with the somewhat
unconventional torus chart ΛΓ9 → R2/Z2 used in Fig. 7 bottom, helps better
understanding the transformation of λΓ8 as we move towards Γ9. Namely, we have
skewed the fundamental region of the torus covering ΛΓ9 → R2/Z2 in such a way
that the identical points on the lower and upper boundary are shifted horizontally
by π with respect to one another. Such representation corresponds to the (b) chart.

Figure 8. Schematic R4 representation of the rearrangement of
the oriented components of the intersection ΛΓ(t) ∩σ ⊂ R4, which
occurs when Γ(t) passes the curled torus point Γ8. Ends labeled
by the same letter are connected.

Crossing the singular line at Γ8. We now consider the segment [Γ7,Γ8,Γ9], which
contains one critical nonregular point Γ8, and discuss what happens to the oriented
components OBO and oACo of λΓ7 when Γ(t) goes from Γ7 to Γ9 and passes Γ8.
As shown in Figs. 6 and 7, OBO and oACo deform independently and continu-
ously. On ΛΓ8 , each component becomes a figure eight (Fig. 7, center right), whose
singular point lies on γ∗f . (Notice that on the charts of ΛΓ8 , each connected compo-
nent of λΓ8 has one pair of identified points.) As we depart towards Γ9, each figure
eight separates into two disconnected loops. The orientation of all segments of
OBO and oACo is conserved during this continuous transformation: as we further
illustrate schematically in Fig. 8, the orientation of the parts of the intersection
λΓ8 agrees continuously with the one defined on the neighboring fibers, such as on
the preceding ΛΓ7 and the succeeding ΛΓ9 .
The choice of γ0. The presence of two qualitatively different regions ΓI and ΓII

in the case of the 1:(−2) resonance imposes restrictions on the type of cycles γ(t),
which can be deformed continuously when Γ(t) goes along the contour Γ. Indeed,
we observe that section λΓ0 has four “small” disconnected components, while
sections λ(m,h)II have only two “big” such components. Therefore, a cycle, which
contains just one single loop in the direction of the second basis element e0 of the
homology group, cannot pass between ΓI and ΓII. This can be seen most clearly,
if we enter ΓII at Γ8 by coming in reverse from Γ0 and Γ9; see Fig. 7. (Notice
that the sections λΓ0 and λΓ9 are qualitatively the same.) We realize that the only
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cycles which can pass this way (cf. Definition 2.4) are the ones, which represent
the elements of the homology group which belong to subset {2a e0+b gf , a, b ∈ Z}.
In other words, we need to have a double loop in the direction e0. In particular,
the cycle γ0 = 2η0 = 2 (OoO) is passable.

Going back to the statement of the 1:(−2) monodromy Theorem 2, recall
that the curled torus ΛΓ8 = Λ− is part of the internal wall W0 crossed by the
path δΓ. Any cycle which can pass through W0 represents an element of H1 in the
set {2a e0 + b gf , a, b ∈ Z}. Consider now the subgroup ζ0 ⊂ H1(ΛΓ0) generated
by the basis elements (gf , g0) = (gf , 2e0). Since ζ0 = H1(ΛΓ0)/Z2 ∼ Z2, it is
a complete subgroup of H1(ΛΓ0). Thus, one of the main requirements for the
admissibility of the path δΓ in Definition 2.6 is satisfied. Furthermore, ζ0 is the
lowest index subgroup of H1(ΛΓ0), for which the map μδΓ in (2.2) can be defined.
Continuous deformation of the cycle γ0 = 2η0. Now we explain the last technical
step in the proof of the monodromy Theorem 2. As the point Γ(t) starts at Γ(t)

∣∣
t=0

= Γ0 and moves counterclockwise along the contour Γ, we construct and analyze
the deformation γ(t) of the element γ0 = 2η0 = 2OoO of H1 chosen at Γ0 (see
Fig. 6). Compared to the 1:(−1) case, this deformation becomes more complicated
in the 1:(−2) case.

When Γ(t) passes the interval [Γ0,Γ5), the cycle γ(t) follows the cycle 2η(t) =
2OoO, whose continuous deformation is described above. The cycle OoO cannot
be continued past Γ5, where it gets involved into the rearrangement of the con-
nected components of the intersection λ(t). We replace γΓ4 = 2ηΓ4 by a homotopic
cycle γ̃Γ4 , which can be deformed smoothly till Γ(t) = Γ6. A detailed analysis of the
intersections λΓ(t) and of the homotopically equivalent cycles γ̃(t) for Γ(t) ∈ [Γ4,Γ6]
near Γ5 is central to the monodromy calculation. (This makes Γ5 similar to the
point Γ2 of the 1:(−1) case.) Below we explain the construction of γ̃(t) using the
torus charts in Fig. 9. The corresponding analysis on σ is presented in Appendix D.
In particular, see Figs. D.7, D.8, and D.9 of Sec. D.2, where the points on σ are
denoted by the same letters as the corresponding points on the torus charts.

As shown in Fig. 9, top right, the cycle γ̃Γ4 = Oβ1β3Bα3α1(−γf)α1O is built
of the following properly oriented fragments:

i. Fragments Oβ1 and α1O of the initial oriented connected component OoO
of the intersection λΓ4 = ΛΓ4 ∩ σ.

ii. Fragment β3Bα3 of the other connected component of λΓ4 .
iii. Fragments β1β3 and α3α1, which belong to the fiber ΛΓ4 but do not lie in σ.
iv. Fragment α1(−γf)α1, which is a ϕF1 trajectory taken backward.

The cycle γ̃Γ4 formed by all these fragments is homotopic to the double loop
2(OoO). As shown in Fig. 9, top center, the deformation γ̃(t) of γ̃Γ4 for Γ(t) ∈
[Γ4,Γ6] is smooth, because the two small fragments β1β3 and α3α1 bypass the
nonregular points α and β of the intersection λΓ5 and the discontinuity is avoided.
Arriving at point Γ6, we pull β1β3 and α3α1 back into λΓ6 ⊂ σ in order to
replace γ̃Γ6 by the homotopically equivalent cycle γΓ6 = Oβ4Bα4O − γf . The
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Figure 9. Continuous evolution of the cycle γ(t) homotopic to
γ0 = 2(OoO) as Γ(t) = Γm,h goes along the contour Γ from Γ4

to Γ6 and passes the nonregular point Γ5; compare to Figs. D.7,
D.8, and D.9 in Appendix D.2 and see text for detailed discussion.

latter cycle is formed by two loops: the reversed ϕF1 trajectory −γf and one “big”
connected component OBO = Oβ4Bα4O of λΓ6 .

Further deformation γ(t) of γΓ6 is smooth everywhere except at the critical
nonregular point Γ8, where it is only continuous. But this, of course, is sufficient
for our purpose. When we pass Γ8, the cycle γΓ7 = OBO − γf turns into γΓ9 =
OO+BB−γf formed by two oriented components OO and BB of the intersection
λΓ9 and the loop −γf . Then (OO + BB − γf) continuous smoothly as we move
along the final segment from Γ9 to Γ(t)

∣∣
t=1

= Γ0. So, after one counterclockwise
tour along the contour Γ, the cycle γ0 = 2(OO), which was chosen initially at Γ0,
becomes γ1 = γ(t)

∣∣
t=1

= (OO + BB − γf). Since on the torus ΛΓ0 , the loops OO
and BB are homotopically equivalent, γ1 is homotopic to γ0 − γf .
Computing monodromy. The cycle γ1 represents the element 2e0 − gf of the ho-
mology group H1(ΛΓ0). Consequently, the basis elements (gf , 2e0) of the index 2
complete subgroup ζ ⊂ H1(ΛΓ0) transform as follows(

gf
2e0

)
=
(
gf
g0

)
→
(
gf
g1

)
=
(

1 0
−1 1

)(
gf
g0

)
=
(

gf
g0 − gf

)
=
(

gf
2e0 − gf

)
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It turns out that in the basis (gf , g0), the matrix of the automorphism μ
1:(−2)
δΓ

:

ζ → ζ has the same form as we had for the automorphism μ
1:(−1)
δΓ

of the whole
homology group H1(ΛΓ0) in the case of the 1:(−1) resonance. We can formally
extend μ

1:(−2)
δΓ

from ζ to the whole space R2 ⊃ H1(Λ) ∼ Z2 using the linear
transformation of the basis (gf , 2 e0) → (gf , e0). Such extended monodromy map
has fractional matrix

(
1 0

− 1
2 1

)
. This completes the torus chart explanation of the

monodromy theorem for the integrable fibration (4.3). Further details of the proof
follow in Appendix D.

6. Quantum manifestation of monodromy

In this section, we consider quantum analogs of the classical integrable systems
defined by the integrable mapping (F1, F2), which we have studied up to now.
We will simplify the general situation (see Sec. 2.2), and imply that, like in our
concrete example systems in Sec. 4, each value (f1, f2) of (F1, F2) corresponds to
one fiber Λf1,f2 . We construct two quantum commuting differential operators F̂1

and F̂2, which in the classical limit become two classical Hamiltonian functions in
involution F1 and F2. The operator F̂1 can be regarded as the angular momentum
operator, and the operator F̂2 – as the quantum Hamiltonian.

6.1. Lattice representation of the joint quantum spectrum

Solving the above quantum problem means finding a common system of eigen-
functions of F̂1 and F̂2. Since we consider classical systems with compact constant
level sets of (F1, F2), in other words, since our system is bound and the classical
motion is finite, we should have a discrete set of eigenfunctions {ψ{k}(q)} labeled
by a finite set {k} of integer indexes. The corresponding discrete joint spectrum
of eigenvalues fi{k}, such that F̂iψ{k} = fi{k}ψ{k}, for i = 1, 2, can be represented
as a set L of points in the plane R2 with coordinates (f1, f2) and can be found
numerically.

The Einstein–Brillouin–Keller (EBK) quantization scheme of classical inte-
grable systems gives a way of finding the joint quantum spectrum of (F̂1, F̂2) in the
semiclassical limit. The underlying EBK correspondence principle is well suited to
relate our preceding classical study to this spectrum. Recall that in order to find
the semiclassical EBK energies, we look for the EBK tori, or such regular tori
ΛEBK
m,h of our classical system on which the values (i1, i2) of the two locally chosen

action integrals (I1, I2) equal

2π�(n1 + α1) = i1 =
∮
η1

pdq, 2π�(n2 + α2) = i2 =
∮
η2

pdq, (6.1a)

where integers (n1, n2) ∈ Z are called local quantum numbers. Near the classical
limit, (n1, n2) are large and the density of states is high. The quantities (α1, α2) in
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(6.1) are semiclassical corrections (typically multiples of 1
4 ), which are often called

Maslov’s indexes.
The integrals in (6.1) are taken along any cycle ηk representing the respective

element ek of the local basis (e1, e2) of H1(ΛEBK
m,h ). In our problem the “correcting

terms” (α1, α2) are the same for all ηk (for all cycles in the same homology class).
All operations on elements of H1 induce operations on actions or, equivalently, on
quantum numbers. For each element in H1(ΛEBK

m,h ) we obtain

ae1 + be2 →
∮
aη1+bη2

pdq = ai1 + bi2, a, b ∈ Z, (6.1b)

thus specifying the explicit isomorphism between the homology group H1 of the
regular 2-torus ΛEBK

m,h and the Z2 lattice of quantum numbers.
In the domain U ⊆ R4

q,p of their definition, the local actions (I1, I2) can be
expressed as C∞ smooth single valued real functions of the first integrals (F1, F2).
It can be proved [54] that F1 and F2 can be expressed locally (on U) as F1(I1, I2)
and F2(I1, I2). It can be shown equally that “correcting terms” α1,2 in our systems
remain the same for all tori Λ ∈ U . Then in the corresponding quantum system,
the eigenvalues f1 and f2 can be represented locally as f1(n1, n2) and f2(n1, n2).
These expressions have an unambiguous classical limit, in which they become
smooth single-valued real functions f1(i1, i2) and f2(i1, i2). Notice also that due
to their S1 symmetry, our example systems are simpler: the corresponding first
integral F1 is a global action and consequently, n1 ∈ {k} can serve as a global
quantum number of momentum F̂1. At the same time, monodromy makes the
global choice of n2 impossible.

Consider now the range D̃ of the local momentum map

I : U ⊂ R4 → D̃ ⊂ R2 : (q, p)→ (
I1(q, p), I2(q, p)

)
= (i1, i2).

Under this map, the images of ΛEBK
m,h ⊂ U form a square Z2 lattice in D̃ ⊂ R2

i1,i2
.

Using expressions F1(I1, I2) and F2(I1, I2) for the first integrals, we can map D̃

to a domain D in the range of the EM map in R2
f1,f2

. Since D̃ → D is a lo-
cal diffeomorphism, it maps locally the Z2 lattice of “integer points” (i1, i2) =(
2π�(n1 +α1), 2π�(n2 +α2)

)
in D̃ to a lattice of points (f1, f2) in D, as illustrated

below.

�

�

�

�

�

�

�

�

�

�̃v1
�
ṽ2

�
i2

�
i1

� �

�

�

�

�

�

�

�

�

���
v1

�v2
�

f2

�
f1 (6.2)

Notice that the thus obtained points (f1(n1, n2), f2(n1, n2)) of the semiclassical
lattice in D differ from the quantum points (f1{k}, f2{k}) by o(�), i.e., by a small
fraction of the typical distance between the vertices of our lattice. It follows that
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the joint spectrum of F̂1 and F̂2 has locally the structure of the regular Z2 lattice
which is slightly nonlinearly distorted.

Consider now the elementary cell of the quantum lattice in R2
i1,i2

. At a point
ã = (i1, i2), this cell is defined by a pair (ṽ1, ṽ2) of 2-vectors. Like the choice of
the basis elements of the homology group, the choice of the cell is ambiguous: all
that is required from (ṽ1, ṽ2) is to begin at (i1, i2) and define two translations,
which generate the complete Z2 group. Additionally, we can, of course, require
(ṽ1, ṽ2) to agree with the choice of the basis (e1, e2) for the EBK torus represented
by the node (i1, i2). Then we obtain a square elementary cell with sides 2π�. As
shown schematically in (6.2), this square cell becomes nonlinearly distorted when
mapped into D ⊂ R2

f1,f2
. The distorted cell at the corresponding node a = (f1, f2)

in D is a quadrilateral abcd

�

�

�

�

�����
v1

�v2

a =
(
f1(i1, i2), f2(i1, i2)

)
b =

(
f1(i1, i2 + δi2), f2(i1, i2 + δi2)

)

d =
(
f1(i1 + δi1, i2), f2(i1 + δi1, i2)

)
c =

(
f1(i1 + δi1, i2 + δi2), f2(i1 + δi1, i2 + δi2)

)

(6.3)

where δi1 = δi2 = 2π� are the sides of the cell of the Z2 lattice in D̃. Near the
classical limit �→ 0, we obtain

b = a+ 2π�

(
∂F1

∂I2
,
∂F2

∂I2

)
ã

+ o(�),

d = a+ 2π�

(
∂F1

∂I1
,
∂F2

∂I1

)
ã

+ o(�),

c = a+ 2π�

(
∂F1

∂I1
,
∂F2

∂I1

)
ã

+ 2π�

(
∂F1

∂I2
,
∂F2

∂I2

)
ã

+ o(�).

Then with an error of o(�), the distorted cell abcd can be approximated as a
parallelogram defined by the pair (v1, v2) of 2-vectors

v1 = 2π�
∂

∂I1

∣∣∣∣
ã

(
F1

F2

)
, v2 = 2π�

∂

∂I2

∣∣∣∣
ã

(
F1

F2

)
,

or, equivalently, by the matrix

(v1, v2) = 2π�

⎛
⎜⎜⎝
∂F1

∂I1

∂F1

∂I2
∂F2

∂I1

∂F2

∂I2

⎞
⎟⎟⎠ . (6.4a)
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Recall also that in our particular case (Sec. 3), F1 is a global action and we always
use I1 = F1 with value f1 = i1 = m. So, consequently,

(v1, v2) = 2π�

⎛
⎝ 1 0

∂F2

∂I1

∂F2

∂I2

⎞
⎠ . (6.4b)

Finally notice that (6.4) is a 2× 2 matrix whose columns are formed by column-
vectors v1 and v2. We will denote the transposed matrix as

(v1, v2)T =

(
vT1

vT2

)
:=
(
v1
v2

)
. (6.5)

Technically, the rows of this latter matrix are formed by the row-vectors vT1 and vT2 ,
but we drop the transposition symbols in the rightmost shorthand form in (6.5).

6.2. Transformation properties of elementary cells and of bases of homology group

Relation between the basis (e1, e2) of the homology group H1(Λ) and the corre-
sponding elementary cell (v1, v2) is similar to that of the vector x ∈ R2 and the
gradient ∇x. Recall that if we change coordinates in R2 so that x = Ay, where
A ∈ GL(2), then ∇y = AT∇x, i.e., ∇x transforms as a covector.

To uncover the transformation properties of elementary cells, consider again
the regular 2-torus fiber Λa represented by the value a = (f1, f2) of the integrable
map F = (F1, F2). Let (e1, e2) be a basis of the homology group H1(Λa) and
consider local actions (I1, I2), whose values ã = (i1, i2) correspond to (e1, e2)
as in (6.1). Finally, define the corresponding elementary cell (v1, v2) using (6.4).
Consider next a different basis (e′1, e

′
2) of H1(Λa), such that(

e′1
e′2

)
= A

(
e1
e2

)
, A ∈ SL(2,Z),

and corresponding new actions (J1, J2) and elementary cell (u1, u2).

Lemma 6.1. The relation between the new and the old elementary cell is

(u1, u2)T =
(
A−1

)T (v1, v2)T .

Proof. We can write the transposed cell matrix as

(v1, v2)T =
(∇IF1,∇IF2

)
, where ∇I =

⎛
⎜⎜⎝

∂

∂I1
∂

∂I2

⎞
⎟⎟⎠ .

Similarly, (u1, u2)T =
(∇JF1,∇JF2

)
. As shown in (6.1), actions and cycles trans-

form in the same way. Therefore(
J1

J2

)
= A

(
I1
I2

)
.

The lemma follows after a standard calculation of the gradient ∇J =
(
A−1

)T∇I .
�
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It is useful to extend the above lemma to a larger set K ⊂ GL(2,Q) of 2× 2
transformation matrices B with integer coefficients and determinant detB ≥ 1.
Unlike SL(2,Z) ⊂ K, the set K is not a group, because K �� B−1 for any B ∈ K
with detB > 1. At the same time, (detB)B−1 ∈ K and det

(
(detB)B−1

)
= detB.

Corollary 6.1. Let e = (e1, e2) and (v1, v2) be the initial basis of H1 and the re-
spective elementary cell of Lemma 6.1. Let matrix B ∈ K define a pair of elements
g = (g1, g2) of H1 as B e. Then the cell corresponding to g is

(w1, w2)T = detB
(
B−1

)T (v1, v2)T .

Definition 6.1. The cell (w1, w2) in Corollary 6.1 with detB > 1 is called multiple
cell defined by matrix B.

Let matrix B ∈ K with detB > 1 define a basis (g1, g2) of some complete
subgroup ζ ⊂ H1(Λa). In the open domain D � a of regular values of F in R2

f1,f2
,

where the “quantum” lattice L can be represented by (mapped to) a regular Z2

lattice L, the subgroup ζ corresponds to a Z2 sublattice lζ of L. The basis cell of lζ
is a multiple cell. Corollary 6.1 provides the exact relation between multiple and
elementary cells. In particular, the volume of (w1, w2) is detB times the volume
of (v1, v2).

As an example, recall the elements (gf , g0) = (gf , 2e0) of the homology group
H1(ΛΓ0) and their representatives (γf , γ0) introduced in Sec. 5.2. These elements
generate an order-two subgroup H1/Z2. Let (v1, v2) be an elementary cell which
corresponds to the basis (gf , e0) of H1(ΛΓ0). By Corollary 6.1, the multiple cell
(w1, w2) corresponding to (gf , g0) is the double cell (2v1, v2).

6.3. Quantum monodromy

Quantum-classical EM diagram. The global structure of the quantum lattice L
in the quasi-classical limit can be well uncovered if we superimpose the whole
joint spectrum, the range of the classical energy–momentum map EM, and the
image of the critical values of EM (the bifurcation diagram of the critical fibers)
in the plane R2 with coordinates (f1, f2). Such representation, which we will call
quantum-classical EM diagram, is very helpful in the analysis of global qualitative
features of the joint quantum spectrum and it will be used throughout this section
(cf. Figs. 10 and 12). EM diagrams have direct applications in attributing physi-
cally consistent quantum numbers to quantum states of concrete real systems, e.g.,
molecules or atoms. Clearly, the attribution becomes a problem if the quantum
lattice L is globally not a regular lattice Z2. We show that precisely this happens
when the classical analogue system has nontrivial monodromy.
Quantum analogue of Γ. We require that the size (area) of the local elementary
cells of L should be much smaller compared to the area encircled by the closed
path Γ in Fig. 3. Theoretically this is always achievable by transferring, if neces-
sary, to an equivalent quantum system with higher density of states (closer to the
classical limit). Formally we can use a sufficiently small value of �; in real systems,
we can instead change a combination of physical parameters, such as mass and
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size. Working with such equivalent system means introducing additional states,
which are fictitious, but which help to uncover monodromy.

Having made sure that the lattice L in the quantum-classical EM diagram
is sufficiently dense, we construct a small deformation Γ+ δΓ of the closed path Γ,
which passes through a finite discrete set Γquant = {Γquant

(t) }. To label members
of Γquant, we use the discrete parameter t ∈ [0, 1], whose values {0, t1, t2, . . . , 1}
represent nodes of L with some local quantum numbers (n1, n2). The set Γquant can
be made large enough for the distances between the neighboring nodes Γquant

(t) to
be small, i.e., of the order of �. Similarly to Sec. 5, we will also use simple indexes
k = 0, 1, 2, . . . , for some elements {Γquant

k } ⊆ Γquant. Again, since the lattice mesh
is 2π�-dense, we can make the distances ‖Γk,Γquant

k ‖ ≤ 2π�.
Atlas of local regular Z2 charts of L near Γ. To make use of the locally regular
Z2 structure of the quantum lattice L, we construct an atlas of L near Γ, which
covers Γ and Γquant by a finite number of overlapping charts Φs : Ds → D̃s ⊃ Ls,
s = 0, 1, . . .. Here Φs = Is ◦ F−1 is a map from an open simply connected domain
Ds ⊂ R2

f1,f2
to domain D̃s ⊂ R2

i1,i2
containing regular Z2 lattice Ls with basis

cell (ṽ1, ṽ2)s and Is = (I1, I2)s are local actions. Each Ds covers part of L and its
linear sizes are large compared to 2π�.

Definition 6.2. When the regular Z2 lattice Ls represents all nodes of L covered
by Ds, the chart Φs : Ds → D̃s ⊃ Ls is called full Z2-lattice chart ; otherwise it is
called Z2-sublattice chart.

For clarity, we mark sublattice charts and their basis cells by an asterisk.

Definition 6.3. For full lattice charts we call basis cells (v1, v2)s of Ls ⊂ Ds and
(ṽ1, ṽ2)s of Ls ⊂ D̃s elementary cells. For sublattice charts we call basis cells
(u1, u2)∗s and (ũ1, ũ2)∗s minimal cells. With respect to elementary cell (v1, v2), the
minimal cell (u1, u2)∗ is a multiple cell (see Definition 6.1).

To characterize each chart Φs : Ds → D̃s ⊃ Ls more completely, we can
specify a finite set of regular values Gs ⊂ Γ∩Ds of the integrable map F . If Φs is
a full lattice chart, then using (6.4) we can choose the elementary cell (v1, v2)s in
agreement with the bases of H1(ΛΓk

) for all Γk and the nearby Γquant
k in the set Gs

simultaneously. Similarly, the minimal cell of a sublattice chart Φ∗
s can be chosen

in agreement with the bases of a given subgroup ζ ⊂ H1(ΛΓk
) for all Γk ⊂ Gs.

Any two neighboring charts Φa and Φb in an atlas overlap on a common
sublattice CL(La, Lb). If both Φa and Φb are full charts, CL(La, Lb) ∼ La ∼ Lb;
if Φ∗

a is a sublattice chart and Φb is a full lattice chart, CL(L∗
a, Lb) ∼ L∗

a; if both
are sublattice charts, their CL(L∗

a, L
∗
b) is yet another sublattice corresponding

to ζa ∩ ζb. Elementary cells of the overlapping neighboring full lattice charts are
related by a linear map with matrix in SL(2,Z). In a more general case, when one
or both overlapping charts are sublattice charts, we define an SL(2,Z) map for the
minimal cells of their common sublattice.
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Definition 6.4. We call the sublattice CL which is common to all charts of atlas
{Φs} common sublattice of this atlas. The basis cell of CL is the minimal cell of
this atlas.

Notice that for an atlas with no sublattice charts the basis cell is an elementary
cell. In other cases, finding a common lattice and its basis cell might be less trivial.
Transporting lattice cells along Γ. Our approach to the semi-global characteri-
zation of the quantum lattice L is similar to the one we used to study classical
monodromy in Sec. 5. We choose the initial point Γquant

0 = Γquant
(t)

∣∣
t=0
∈ Γquant. In

the regular open neighborhood D0 of this point we have the part L0 of the quan-
tum lattice L together with a full lattice chart Φ0 : D0 → D̃0 ⊃ L0. We use the
elementary cell (v1, v2)0 of L0 which corresponds to the basis (gf , e0) of H1(ΛΓ0).

Next we define the cell (w1, w2)0, which corresponds to the basis (gf , g0) of a
subgroup of H1(ΛΓ0) chosen in such a way that these elements can pass along the
path δΓ. In the classical theory (Sec. 5), we construct a continuous deformation
(gf , g(t)) of (gf , g0). In the quantum theory, this corresponds to transporting the
cell (w1, w2)(t) along Γquant, which can be illustrated in the quantum-classical EM
diagram (see for example Fig. 10) as moving (w1, w2)(t) in small steps of order �.
At each such step, the lower left vertex of the cell moves from the node Γquant

(t1)
to

its neighbor Γquant
(t2)

in the counterclockwise direction along Γquant while the cell
undergoes a small deformation.

Transporting (w1, w2)0 relies on the atlas. Within each chart Φs : Ds → D̃s

⊃ Ls, the cell (w1, w2)(t) is transported straightforwardly: we map Ds → D̃s

⊂ R2
i1,i2

and (w1, w2)0 → (w̃1, w̃2)0, translate the cell (w̃1, w̃2)0 in D̃s using the
generators of the regular Z2 lattice Ls, and then return to Ds. We transfer the
cell between charts using the SL(2,Z) maps relating them. Notice that in order to
pass between a full lattice and a sublattice chart, our cell (w1, w2)(t) should be the
minimal cell of their common sublattice. Furthermore, in order to pass along the
whole contour Γ, our cell should be the minimal cell of the common sublattice of
the atlas.

Let now L be the joint eigenspectrum lattice of quantum analogs F̂1 and F̂2

of the concrete first integrals F1 and F2 defined in Sec. 3. Let δΓ and Γ be the
closed admissible path (recall Definition 2.6) and its image under the integrable
map F constructed in Sec. 5. Let {Γk} be a finite set of points on Γ, such that
all ΛΓk

are regular 2-torus fibers of F . Some of these points correspond to points
in Sec. 5. Let {Γquant

k } be the quantum approximation of {Γk}.
Proposition 6.1. The closed path Γ, the set Γquant, and their neighborhood can be
covered by an atlas {Φs : Ds → D̃s ⊃ Ls} of a finite number of charts; each chart is
further characterized by a segment Γ∩Ds or just by a set of reference points Γk of
this segment. This atlas has a nonempty common Z2 sublattice CL. All charts Φs,
which cover only regular values of F , are full Z2 lattice charts. The atlas can
include a finite number of Z2 sublattice charts Φ∗

s, which cover weakly nonregular
values c of F near and on Γ. Elementary cells (v1, v2)s of full lattice charts can
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be chosen to agree with the cycle bases of all H1(ΛΓk
) for Γk ∈ Ds; minimal cells

(v1, v2)∗s of sublattice charts can be chosen to agree with the bases of an appropriate
subgroup of H1(ΛΓk

). The minimal cell (w1, w2) of the common sublattice CL can
be transported along the whole contour Γ which is approximated by the nearby
discrete set Γquant. Starting in the domain D0 with cell (w1, w2)(t)

∣∣
t=0

this cell
returns to D0 as (w1, w2)(t)

∣∣
t=1

. Any acceptable deformation of Γquant does not
affect this final cell.

The concrete choice of elementary and minimal cells depends, obviously, on the
resonance condition. In the subsequent sections, we give more details for each
system separately.
Quantum monodromy matrix. Having transported (w1, w2)0 = (w1, w2)(t)

∣∣
t=0

along Γ, we relate the initial cell (w̃1, w̃2)0 and the final cell (w̃1, w̃2)1 =
(w̃1, w̃2)(t)

∣∣
t=1

of the regular Z2 lattice L0 in D̃0 ⊂ R2
i1,i2

using notation in (6.5)(
w̃1

w̃2

)
1

= Mquant

(
w̃1

w̃2

)
0

,

where Mquant ∈ SL(2,Z) is the quantum monodromy matrix defined with respect
to the chosen cell (w̃1, w̃2)0 of L0. Going to D0 ⊂ R2

f1,f2
we have(

w1

w2

)
1

= Mquant

(
w1

w2

)
0

+ o(�).

Recall that in our classical study in Sec. 5, we defined in (5.2) the two elements
(gf , g0) of the homology group H1(ΛΓ0) and deformed them continuously into two
other elements (gf , g1) of this group. The final transformation (5.3a) was given by
the matrix M ∈ SL(2,Z). By Lemma 6.1

Mquant =
(
M−1

)T
. (6.6)

The classical matrix M represents monodromy of the classical system for the
chosen basis (gf , g0) of H1(ΛΓ0), while Mquant describes quantum monodromy in
terms of the corresponding cell (w1, w2)0.

Notice that by our construction, the chart Φ0 : D0 → D̃0 ⊃ L0 near point Γ0

is a full lattice chart (because D0 covers only regular values of F ). The elementary
cell (v1, v2)0 corresponds to the basis (gf , e0) in (5.2), and the cell (w1, w2)0, which
corresponds to elements (gf , g0) of H1, is, in general, a multiple cell. Then, by
Corollary 6.1,

(w1, w2)Tk = B̄ (v1, v2)Tk = detB
(
B−1

)T (v1, v2)Tk , where k = 0, 1,

and B is the matrix in (5.2). Similarly to the classical Definition 2.8 in Sec. 2.4.1
and its matrix implementation (5.3b), we can define extended quantum monodromy
matrix

B̄−1MquantB̄ = BT
(
M−1

)T (
B−1

)T =
(
B−1M−1B

)T =
(
(B−1MB)−1

)T
,
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which extends the transformation formally to the elementary cell (v1, v2). Like
its classical counterpart B−1MB, this matrix belongs to SL(2,Q). Concrete mon-
odromy matrices for the two example systems studied in our work are given below.

system M B−1MB B Mquant B̄−1MquantB̄ B̄

1:(−1)
(

1 0
−1 1

)
same

(
1 0
0 1

) (
1 1
0 1

)
same

(
1 0
0 1

)

1:(−2)
(

1 0
−1 1

) (
1 0
−1

2 1

) (
1 0
0 2

) (
1 1
0 1

) (
1 1

2
0 1

) (
2 0
0 1

)

6.4. Quantum monodromy of the 1:(−1) system

Quantum-classical EM diagram of the 1:(−1) resonant oscillator system in the
neighborhood of the isolated critical value (F1, F2) = (0, 0) of the classical EM
map is shown in Fig. 10. We can see that in any simply connected domain D

Figure 10. Base of the integrable fibration F of the 1:(−1) res-
onant oscillator system and the corresponding quantum lattice
(black dots). Dark gray quadrangles show the evolution of the
elementary cell along the closed path Γ which goes around the
singular EM value (large opaque circle) as shown in Fig. 4.

of regular EM values in this neighborhood, the lattice L1:(−1) formed by the
joint eigenspectrum of the two commuting operators (F̂1, F̂2) of this system is
isomorphic to a regular Z2 lattice. For brevity, we will call such lattice L locally
regular.

The contour Γ and its possible quantum approximation Γquant are illustrated
in Fig. 11, center. To cover the L1:(−1) lattice in the neighborhood of Γ we need (a
minimum of) two charts shown in Fig. 11, left and right. Both charts cover only
regular EM values and are full lattice charts. The “right” and “left” charts, which
we label using Roman indexes I and II, cover the respective segments [Γ0Γ1Γ2]
and [Γ2Γ3Γ0] (see Figs. 4 and 11) of Γ.

The elementary cell (v1, v2)I in the domain DI agrees with our choice of
basis (gf , es) of the homology group H1 of the regular tori ΛΓs

which we made in
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Figure 11. Two-chart atlas (left and right panels) of the quan-
tum lattice L of the 1:(−1) resonant oscillator system. Open sim-
ply connected domains DI and DII are shaded grey; solid lines
within these domains join nodes of the corresponding full regu-
lar lattices LI and LII. Top plots show the choice of basis cells
(v1, v2)I and (v1, v2)II and the gluing maps between the charts;
bottom plots show the transport of the elementary cell (dark grey
quadrangles, compare to Fig. 10) in each chart. Central bottom
panel shows contour Γ as a bold solid rectangle and the set Γquant

as emphasized black dots, compare to Fig. 4.

Sec. 5.1 for both s = 0 and s = 1. The local actions (I1, I2)I are smooth single-
valued real functions of (F1, F2) on DI and of (p, q) on F−1(DI) ⊂ R4

p,q. Similarly,
the elementary cell (v1, v2)II agrees with the choice of (gf , es) for both s = 0 and
s = 3.

As can be seen in Fig. 11, the elementary cells (v1, v2)II and (v1, v2)I be-
low (0, 0) (near Γ0) are represented in R2

f1,f2
as the same almost rectangular

cell (v1, v2)0. So below (0, 0), the two charts are glued identically, At the same
time, we can also see that in the overlap region above (0, 0), the gluing map μI :
(v1, v2)I → (v1, v2)II is defined by the matrixMI = ( 1 1

0 1 ) plus the usual o(�). Notice
that instead of two single-valued charts we can think of a single multi-valued chart.

Since in the classical 1:(−1) system the admissible closed path δΓ crosses no
walls, any element of H1(ΛΓ0) is passable. In the respective quantum system, the
passable cell (w1, w2)0 = (w1, w2)(t)

∣∣
t=0

can be any elementary cell of the local
Z2 lattice near Γ0. We take (w1, w2)0 = (v1, v2)0 and transfer it along Γ in the
counterclockwise direction as illustrated in Fig. 10. Due to the sufficiently dense
lattice mesh in this figure, the shape of each deformed cell (w1, w2)(t) is defined
unambiguously by its predecessor as we move in small steps along Γquant. More
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formally, we transfer (w1, w2)(t) within each of the two local Z2 charts using the
basis translations of the chart, which are indicated in Fig. 11 by solid lines joining
lattice nodes. As can be seen in the bottom right panel of Fig. 11, the cell (w1, w2)(t)
coincides with the basis cell (v1, v2)I of chart I when we start at Γ0 and move in
chart I along Γ towards Γ1. As we switch to chart II in the overlap region above
(0, 0) (see bottom left panel in Fig. 11), we find that the cell (w1, w2)(t) differs
from the basis cell (v1, v2)II. Notice, that we have deliberately chosen (v1, v2)I and
(v1, v2)II so that this process corresponds most directly to our classical study in
Sec. 5.2 and Fig. 4.

After returning to the initial point Γ0, we realize that the defining vectors of
the final cell (w1, w2)1 are different from those of the initial cell. Specifically,(

w1

w2

)
1

=
(

1 1
0 1

)(
w1

w2

)
0

=
(

1 1
0 1

)(
v1
v2

)
. (6.7)

The matrix Mquant, which relates the two sets of vectors in (6.7), is the inverse
transposed monodromy matrixM for basis elements (gf , g0) of the homology group
H1(ΛΓ0), which we computed for the corresponding classical system in Sec. 5.1;
see (6.6).

6.5. Quantum monodromy of the 1:(−2) system

Quantum-classical EM diagram of the 1:(−2) resonant oscillator system is shown
in Fig. 12. We can see that in the neighborhood of the critical value (F1, F2) = (0, 0)
of the classical EM map and sufficiently far (several 2π�) away from both (0, 0)
and the line C of weak singular values (4.4), the lattice L1:(−2) formed by the joint
eigenspectrum of the two commuting operators (F̂1, F̂2) of this system is a locally
regular Z2 lattice. As in the case of 1:(−1) discussed in the previous section, we
approximate the closed path Γ in Fig. 6 by a set Γquant. We retain notation in
Fig. 6 for points on Γ. In particular, Γ0 is a regular value of F below (0, 0) with
m = 0 and h < 0.

Any atlas, which covers L1:(−2) in the neighborhood of Γ, covers also part
of C. By Proposition 6.1 such atlas represents a common sublattice of L1:(−2).
Recall that in the classical 1:(−2) system (Sec. 5.2), the only passable cycles were
the ones which represent elements of an index 2 subgroup of H1(ΛΓ0) generated
by (gf , g0) = (gf , 2e0). In the respective quantum system, the common sublattice
is a sublattice L1:(−2)/Z2 of index 2. Notice that due to the simplifying presence of
the S1 symmetry and the associated global action F1 in (4.3a), common sublattice
can be easily defined by selecting the subset of quantum states with either even
or odd eigenvalue m; we will use odd values.

To cover L1:(−2)/Z2 in the neighborhood of Γ we need (a minimum of) two
charts shown in Fig. 13. The “right” chart ΦI is a full lattice chart. Its domain
of definition DI covers only regular EM values and, in particular, the segment
[Γ0Γ1Γ2Γ3Γ4Γ5] of Γ (see Fig. 6). Its elementary cell corresponds to the basis
(gf , es) chosen in Sec. 5.2 for the homology groups H1 of the respective regular
2-tori ΛΓs

with s = 0, 1, 3, 4. The “left” chart Φ∗
II covers both regular and weakly
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Figure 12. Lattice L1:(−2) of quantum states in the base space
(shaded area) of the integrable fibration F in (4.3) of the 1:(−2)
resonance oscillator. Bold lines represent critical values of F (see
Proposition 3.4): relative equilibria (lower boundary) and weak
singular values C in (4.4); the singular value at (0, 0) is marked by
a large opaque circle. Dark gray quadrangles show the evolution
of the minimal cell (w1, w2) of the index-2 sublattice L/Z2 along
the closed path Γ in Fig. 6 which goes around (0, 0).

Figure 13. Two-chart atlas of the quantum lattice L of the
1:(−2) resonant oscillator system. Open simply connected do-
mains DII (left) and DI (right) are shaded grey; black dots and
lines joining them within these domains correspond to the com-
mon sublattice CL of index 2; faded lines and dots represent the
complementary sublattice in the full lattice chart I. Check also
Figs. 6 and 13.
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singular values of F near and including the segment [Γ6Γ7Γ8Γ9Γ0]. This chart
is a sublattice chart; its minimal cell corresponds to the elements (gf , 2es) which
define the respective index-2 subgroup of H1(ΛΓs

) with s = 0, 9, 7, 6. Notice that
corresponding local actions (I1, I2)∗II are (at least) C1 smooth on the weak singular
points C ∩D∗

II and are C∞ smooth elsewhere in D∗
II.

At this point, computing quantum monodromy of the common sublattice
CL1:(−2) becomes very similar to the computation in Sec. 6.4 for the full lattice
L1:(−1) of the 1:(−1) system. Below (0, 0) the two charts of CL1:(−2) overlap iden-
tically, while above (0, 0), i.e., near point Γ5, the gluing map μI : CLI → CLII

is given by matrix MI = ( 1 1
0 1 ). We choose the initial cell (w1, w2)0 as a minimal

cell of the sublattice L0/Z2 which represents CL near Γ0. Note that (v1, v2)0 =
(v1, v2)I and that in the full lattice chart ΦI, the cell (w1, w2)0 is the double cell
(w1, w2)0 = (2v1, v2)0, which by Corollary 6.1 with B = ( 1 0

0 2 ) corresponds to the
pair of elements (gf , 2e0) of H1(ΛΓ0).

Transporting (w1, w2)0 along Γ in the counterclockwise direction is illustrated
in Figs. 12 and 13. We can see in Fig. 12 that a cell doubled in the f1 = m direction
can be transported unambiguously across the singular line C and the result does
not depend on the point of crossing, while the transformation of a single 1 × 1
cell does depend on the crossing point. Notice also that everywhere outside the
small region near C in Fig. 12, we transport (w1, w2)(t) as a multiple cell of the
full lattice, while in Fig. 13 we remain – for the sake of clarity – within the same
common sublattice. For the final cell (w1, w2)1 = (w1, w2)(t)

∣∣
t=1

we find(
w1

w2

)
1

= Mquant

(
w1

w2

)
0

=
(

1 1
0 1

)(
w1

w2

)
0

=
(

1 1
0 1

)(
2v1
v2

)
0

. (6.8a)

The monodromy matrixMquant in (6.8a) is the same as that of the quantum 1:(−1)
system in (6.7). This comes as no surprise once we have uncovered the similarity
of the atlases of the two systems. In the chart Φ0 near Γ0, transformation (6.8a)
can be extended formally to the elementary cell of L0 ⊂ LI(

v1
v2

)
1

= B̄−1MquantB̄

(
v1
v2

)
0

=
(

1 1
2

0 1

)(
v1
v2

)
0

. (6.8b)

As indicated in (6.6) and (6.7), the fractional matrix of this latter transformation
equals the inverse transposed classical extended monodromy matrix B−1MB for
elements (gf , e0) of the homology group H1(Γ0), which we computed in Sec. 5.2.

7. Interpretation of quantum monodromy in terms of lattice
defects

In this section, we improve our representation of the locally regular joint spectrum
lattice L in order to make this representation a general tool for describing global
structure of joint spectrum lattices and underlying singularities of corresponding
integrable fibrations. Readers familiar with crystallography will find that our ap-
proach is very similar to the approach used in the study of defects of 2-dimensional
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crystals. However, the lattice defects, which correspond to integer and fractional
monodromy, are not encountered in physical crystal lattices. Following [71, 70],
we give a more formal definition of these defects and show that monodromy of
lattices L1:(−1) and L1:(−2) can be interpreted as a particular point and line defect
respectively.

Recall that each chart Φs : Ds → D̃s ⊃ Ls, where Φs = Is ◦ F−1, defines
a map from Ds ⊂ R2

f1,f2
to a domain D̃s ⊂ R2

(i1,i2)s
of its own abstract space.

The atlas of charts Φs, s = 1, 2, . . . covers an open neighborhood DΓ ⊆
⋃
Ds of

the closed path Γ ⊂ DΓ ⊂ R2
f1,f2

. This neighborhood contains the part L0 of the
original joint spectrum lattice L.
Central idea. The principally new idea is that we will now consider all D̃s as
parts of the same space R2

i1,i2
, and all lattices Ls as parts of the same regular

Z2 lattice L. More concretely, we suppose that there is a bijective semi-global
“patchwork” mapping Φ: DΓ → D̃Γ, which is constructed on the basis of local
diffeomorphisms {Φs}. The latter may require adjustments in order to fit values
of local affine actions {(I1, I2)s} together in one space R2

i1,i2
, and the definition

domains Ds may be shrunk to nonoverlapping simply connected subsets Cs ⊆ Ds,
which may include parts of their boundary ∂Cs ⊂ Ds. The images C̃s ⊆ D̃s

of Cs have similar properties. The ensemble {Cs} still covers DΓ ⊆
⋃
Cs, and

moreover D̃Γ ⊆
⋃
C̃s. Note that Cs are reminiscent of the lower cells in the cellular

decomposition discussed in Sec. 2.2 with the difference that their boundaries ∂Cs
are not necessarily related to singularities of the integrable map F .
Lattice model. The nodes of L are labeled by two integer quantum numbers
(n1, n2), which correspond to points of R2

i1,i2
according to (6.1). Using (6.1) to

rescale actions (i1, i2), we can represent L as a lattice of integer points in R2

whose elementary cell is a 1 × 1 square cell defined by orthogonal unit vectors
(u1, u2). This basis cell is the same for all charts Ls. Transporting any cell of L
within each Ls is, of course, a simple translation defined by the generators of L.
We now explain how all Ls are put together in one lattice.

Definition 7.1. The union
⋃
Ls ⊂ L is called locally regular lattice model if it is

equipped with the set of transport rules, which have the following properties.
i. each rule connects bidirectionally a pair of lattices Ls′↔Ls′′ and corresponds

to a nonempty class of homotopically equivalent direct connection paths,
which connect respective domains C̃s′↔C̃s′′ .

ii. each rule applies to minimal cells of a common sublattice CL(Ls′ , Ls′′).
iii. the transformation rule of transporting a minimal cell between Ls′ and Ls′′

is given by a matrix in SL(2,Z).
iv. if M ∈ SL(2,Z) gives the rule for Ls′ → Ls′′ , than M−1 defines Ls′ ← Ls′′ .
v. the set of transport rules is large enough to make all Ls connected: for any

two lattices La and Lb, there is at least one nonempty class of homotopy
equivalent paths, which connect C̃a and C̃b and define a minimal cell, which
can be transported between La and Lb.
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Figure 14. Abstract lattice models satisfying conditions in Def. 7.1.

Definition 7.2. If the patchwork mapping Φ: L → ⋃
Ls ⊆ L exists then we say

that our lattice model gives a regular representation of L, Φ is called deconstruction
or local regularization of L, and Φ−1 is called reconstruction.

Definition 7.1 allows for a wide class of abstract lattice models. Thus, as
illustrated in Fig. 14 a, we can use several nonoverlapping charts Cs with smooth
boundaries. We can use open domains Cs \ ∂Cs and avoid using boundaries ∂C
because our models represent only lattice nodes covered by {Ds} and not all
points in

⋃
Ds. On the other hand, we can use domains Cs with nonhomogeneous

boundaries. In particular, we can allow for two different transport rules between
the same lattices Ls′↔Ls′′ , as shown in Fig. 14 a′. Furthermore, Figs. 14 b and b′

show different ways (an external obstruction or a singular point on the boundary),
to obtain nontrivial transport rules for s′ = s′′, i.e., for the same domain. We will
see that lattice models with complex boundaries of domains represent more fully
the underlying integrable fibration.

To characterize a lattice model in terms of monodromy and defect types,
we study transport along closed paths, which we construct as sequences of direct
connection paths. It can be seen from Def. 7.1-iv that closed paths, which go
from La to Lb and then return back to La using the same set of transport rules
in reverse, result in an identity transformation. Such closed paths can be called
trivial or degenerate. If the model allows for nontrivial closed paths Γ, we can
expect a nontrivial monodromy transformation.

To find whether a lattice model corresponds to a joint spectrum lattice L
of a dynamical system, we should find (or prove the existence of) map Φ and its
inverse Φ−1. The important point to stress is that the correspondence of

⋃
Ls

and L based on Φ assures that these lattices exhibit the same monodromy. On the
other hand, different lattice models can have the same monodromy.

A comprehensive study of the regularized representation and the explicit
construction of Φ deserve clearly a separate study. At present, we only like to
demonstrate the eloquence and universality of the analysis based on lattice mod-
els and to suggest the way of how an abstract lattice defect theory can inspire
classification of singularities of integrable fibrations. To this end, we construct
lattice models L1:(−1) and L1:(−2) with the same monodromy as respective joint
spectrum lattices L1:(−1) and L1:(−2).
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7.1. Cuts of the regular Z2 lattice, passable cells and admissible cuts

Definition 7.1 gives no concrete way of constructing lattice models
⋃
Ls. In this

section, we develop special techniques to construct a particular class of lattice
models. Following [71, 70], we split the Z2 lattice L into domains C̃s ⊃ Ls by
cutting out parts of L in a special way and by defining simple rules for transporting
the cells of L across the cutout regions along one of the basis directions of L. We
associate specific defect types with one or several elementary cuts and transport
rules.

Consider a regular Z2 lattice L of points in the plane R2 spanned by two
orthogonal unit vectors u1 and u2. The coordinates on R2 are x = (x1, x2) and
the nodes L are represented by integer points n1u1 + n2u2, with n1, n2 ∈ Z. Take
a point O ∈ R2 with coordinates xO and a ray [Oc). Consider an open domain
COc and its closure COc ⊂ R2 such that ∂COc � O and COc ⊃ [Oc). Let uOc define
direction of [Oc) and let uc be one of ±u1 or ±u2, such that uc.uOc > 0. Next
introduce quantum number nc as integer part of the projection of x − xO on the
axis uc,

nc : x→
[
(x− xO).uc

]
.

Definition 7.3 (terminology used to describe cuts). We call COc a cut with vertex
or defect point at O, reference axis [Oc), and cutout region or interior COc. A node
of L in COc is called empty ; empty nodes represent no nodes of the model lattice.
We associate each cut COc with a fixed choice of coordinate axis vector uc; the
respective quantum number nc is called axis number of COc.

Consider now a path Γ, which crosses transversally a cut COc, and use the
value of n = nc(x) to characterize the crossing point x = Γ ∩ [Oc). Let the unit
vector uΓ define the direction of Γ at x. We say that Γ crosses COc in the positive
or negative direction if κ = (uc ∧ uΓ).(u1 ∧ u2) equals +1 or −1, respectively.
Let (w1, w2)0 be an arbitrary cell of the regular Z2 lattice L. Suppose that after
being transported across COc along Γ this cell becomes (w1, w2)1. In general, the
transformation

μc(n) :
(
w1

w2

)
0

→
(
w1

w2

)
1

= Mc(n)
(
w1

w2

)
0

.

depends on the point of crossing n and, of course, on the particular cell taken.

Definition 7.4. A cell of L is called passable across a cut COc, if its transformation
μc(n) does not depend on the crossing point n. A cut COc for which such cells
exist is called admissible, cf. Def. 2.5. The transformation μc(n) = μc of passable
cells is called cell transformation associated with COc. If a particular passable cell
(w1, w2)0 is carried across COc in the positive direction, we call the corresponding
matrix Mc transformation matrix of COc in the basis of (w1, w2)0. The common
sublattice CLc of the cut COc is such maximal sublattice of L, whose basis cell
(= minimal cell) is passable across COc.



1150 N.N. Nekhoroshev et al. Ann. Henri Poincaré

7.2. Parallel transport across simple cuts

We continue detailing our cut construction. Consider straight lines l(d) = {x|x.uc
= d} with d > xO.uc a constant. These lines are orthogonal to uc and intersect
[Oc) transversely. Finally define the unit vector ul such that uc.ul = 0 and κ =
(uc ∧ ul).(u1 ∧ u2) = 1. In other words, let the base (uc, ul) be a proper rotation
of (u1, u2). Note that κ is the oriented volume spanned by unit vectors uc and ul
and computed as det(uc, ul).

Definition 7.5. The lines l(d) are called lines of parallel transport and ul points
to positive transport direction. Points x′ and x′′ of the boundary ∂COc are called
opposite if they lie on the same parallel transport line, i.e., if x′.uc = x′′.uc. The
number of empty nodes with the same value of nc > 0, i.e., of empty nodes, which
lie on the same transport line {x|x.uc = nc}, is given by function Δ(nc); the defect
function δc(nc) of COc is defined as Δ(nc + 1)−Δ(nc) ≥ 0.

As their name implies, we intend to use the lines l(d) to define particular rules of
transporting cells of L across cuts. Consider a path Γ which crosses transversally
a cut COc, deform Γ homotopically so that Γ ∩ COc as well as adjacent parts of Γ
lie on one parallel transport line {x.uc = n}, where integer n is the value of the
axis number nc which specifies the point of crossing Γ ∩ COc. Notice that uΓ = ul
when we cross COc in the positive direction and otherwise uΓ = −ul.
Parallel transport. Let (w1, w2) be an arbitrary cell of the regular Z2 lattice L;
position of (w1, w2) can be specified using coordinates x, x′, and x′′ of three of its
four vertices. Translating (w1, w2) within L outside COc, we place vertex x so that
x.uc = n, while two other vertices settle on neighbor transport lines: x′.uc = n′

and x′′.uc = n′′. Of course, this does not change the shape of (w1, w2), which we
will denote as the “old” cell (w1, w2)0. We now step each vertex along its transport
line in the same direction and by the same number of nonempty nodes of L, so
that the whole cell gets across COc and becomes the “new” cell (w1, w2)1. Since for
a valid cell (w1, w2)0 at least two of the numbers (n, n′, n′′) differ and unless the
defect function δ(n) of the cut is trivially 0, the transformation μc(n) is nontrivial.

Definition 7.6. We call COc a simple cut if it has the following properties.
i. ∂COc is transversal to the lines of parallel transport l(n).
ii. cells of L are taken across COc using parallel transport along l(n), n ∈ Z+.
iii. Δ(nc) is a linear quasipolynomial in the sense of [62]; the period tc of Δ(nc)

and its amplitude ac = Δ(nc + tc) −Δ(nc) are called period and amplitude
of the cut.

iv. opposite points x′ and x′′, which are nodes of L (= integer points), represent
the same node of the model lattice, i.e., they are identified (glued).

In many cases, a simple cut can be constructed as a solid angle bounded by rays
[Oa) and [Ob). Various complex cuts can be constructed by combining elementary
cuts. For other possible extensions of Def. 7.6 see [71]; generalization to three-
dimensional lattices is discussed in [30].
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Lemma 7.1. Simple cuts are admissible.

The proof of Lemma 7.1 exploits quasi-linearity of Δ(nc).
Let (w1, w2)0 be the minimal cell which can pass simple cut COc. Recall that

according to Definition 7.4 the cell transformation matrix Mc of COc describes the
transformation of this cell carried across COc in the positive direction.

Lemma 7.2. In the basis of (w1, w2)0 the cell transformation matrix Mc is a matrix

in SL(2,Z) which is conjugate to
(

1 k
0 1

)
with k ∈ Z+.

In Secs. 7.3 and 7.4 below we show that simple cuts fall into two classes: integer and
rational, and that cuts of both kinds are admissible. After classifying all possible
simple cuts, Lemma 7.1 and 7.2 follow from direct construction of passable cells.

Corollary 7.1. A lattice model constructed using simple cuts conforms Defini-
tion 7.1.

In particular, one simple cut produces a model of kind b′ in Fig. 14.
We can see that crossing admissible simple cuts is equivalent to switching

charts of the atlas described in Sec. 6.3. Furthermore, let us consider a closed path
Γ ∈ R2

i1,i2
, which crosses transversally a finite number K of admissible simple cuts.

Label the cuts so that starting at point Γ0 ∈ Γ and going in the direction defined
on Γ, we cross sequentially the cuts of indexes s = 1, . . . ,K and then come back
to Γ0; the direction of each crossing is given by κs = ±1. Let (w1, w2)0 be a cell
of L near Γ0, which can pass sequentially (i.e., in the order defined by Γ) across
the cuts s = 1, . . . ,K, and denote respective cell transformation matrices of these
cuts in the basis of (w1, w2)0 as Ms with s = 1, . . . ,K.

Lemma 7.3. The monodromy matrix for the transport of (w1, w2)0 along closed
path Γ is

Mquant = (MK)κK · · · (M2)κ2(M1)κ1 .

In particular consider a model lattice with just one admissible simple cut COc.
Then monodromy is nontrivial only for closed paths which encircle the vertex O.

7.3. The 1:(−1) lattice: integer cut, point defect, and integer monodromy

To construct a model lattice
⋃
Ls = L1:(−1), whose defect has the same mon-

odromy as the L1:(−1) lattice in Fig. 10, we make one simple cut with axis vector
uc = (−1, 0) and defect function δ(nc) ≡ 1; the parallel transport lines are vertical
lines. A particular realization of such cut is shown in Fig. 15, left, where vertex O
is placed at the lattice node (0, 0) and the boundaries are formed by rays [Oa)
and [Ob) which go symmetrically with respect to the reference axis of the cut. It
can be seen that Δ(nc) = nc = −n1 is a linear function of nc. Also note that
following Def. 7.6-iv, nodes (nc,±1

2nc) of L with nc = 2, 4, . . ., which lie on the
two boundaries of the cut in Fig. 15, should be identified and thus represent one
node of L1:(−1).
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Figure 15. Construction of the 1:(−1) lattice defect starting
from the regular Z2 lattice L: regular lattice with removed solid
angle or “cut” (left), “reconstructed” lattice with a point defect
(right). Dark grey quadrangles show the evolution of an elemen-
tary lattice cell along a closed path around the defect point, com-
pare to Fig. 10.

Using the parallel transport procedure in Sec. 7.1, we can take a 1×1 square
elementary cell (w1, w2)0 = (u1, u2) of L across the described cut (downwards in
Fig. 15, left). It is easy to see that for any crossing point this results in the new
cell (

w1

w2

)
1

=
(

1 1
0 1

)(
w1

w2

)
0

.

In other words, (u1, u2) is passable and our cut is admissible. Furthermore, any
other cell of L is also passable. In the basis (u1, u2), the cell transformation matrix
of this cut is ( 1 1

0 1 ).
We can now define any closed path Γ which goes once about O in the coun-

terclockwise direction. The monodromy matrix for Γ is, of course, the cell trans-
formation matrix ( 1 1

0 1 ) of the simple cut we crossed.

Definition 7.7 (integer cuts). We call simple cut with defect function δ(nc) = k
∈ Z+ an integer cut of amplitude k. When k = 0 the cut is trivial.

We summarize properties of integer cuts.

Lemma 7.4 (properties of integer cuts). An integer cut COc of amplitude k is
admissible; any cell of L is passable across it. The cell transformation matrix Mc

of COc in the basis of (u1, u2) equals
(

1 k
0 1

)
when uc.u2 = 0, and

(
1 0
−k 1

)
when

uc.u1 = 0.

Remark 7.1. The concept of simple cuts is further generalized in [71] where “insert
cuts” are introduced to complement the ones we use here. Instead of leaving empty
nodes, insert cuts add extra nodes to the regular lattice L. Thus an integer insert
cut of amplitude k can be defined very similarly to the integer cut in Definitions 7.6
and 7.7, albeit its defect function δ(nc) equals a negative integer −k ∈ Z−. In the
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case uc.u2 = 0, such cut leads to a point defect with monodromy matrix
(

1 −k
0 1

)
.

Even though the latter is simply the inverse of ( 1 k
0 1 ) in Lemma 7.4, it represents, in

fact, a different kind of singularity of integrable fibrations of systems with two de-
grees of freedom, which appears in non-Hamiltonian systems [17]. The two kinds of
singularities can be distinguished using the sign of monodromy [70], whose precise
dynamical meaning was uncovered in [19]. For the above matrices, it corresponds
to the sign of the upper right element ±k. We fix this sign unambiguously in Def-
inition 7.4, when we choose the direction κ = 1 of crossing the admissible simple
cut before associating the cell transformation matrix Mc with it. Mathematically,
the sign of monodromy distinguishes the monodromy matrices as members of two
different classes of conjugate elements of SL(2,Z).

A

B

A

B

Figure 16. Construction of the 1:(−2) rational lattice defect
starting from the regular square lattice: 1 × 1 cells cannot pass
unambiguously through the cut (cf. cells A and B, left) while all
double cells transfer in the same way (right).

7.4. The 1:(−2) lattice: rational cut, line defect, and fractional monodromy

In this section, we consider more general simple cuts of the regular square lattice L.
We construct the regularized lattice

⋃
Ls = L1:(−2), which has the monodromy of

the L1:(−2) lattice in Fig. 12, using one simple cut. Since I1 = F1 corresponds again
to a global action (momentum), the axis of the cut is horizontal and the parallel
transport lines are vertical. The main difference from the integer cuts in Sec. 7.3 is
that now Δ(nc) is a quasi-polynomial. The respective defect function δ(nc) equals
a constant term plus an oscillatory part of period 2 and takes values 0 and 1.
Such δ(nc) can be expressed as 1

2

(
1 + (−1)nc+k

)
with k = 1 or 0. A particular

realization of such cut with vertex in O = (0, 0) and axis vector uc = (−1, 0) is
shown in Fig. 16. Note that nc = −n1 = 0 at point O, and that defect function
δ(nc) equals 1

2

(
1+ (−1)nc+1

)
. Comparing to Fig. 15, left, we see that our new cut

is built by removing half the cutout region of the simple integer cut in Fig. 15.
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We now use the parallel transport procedure in Sec. 7.1 to take a cell of L
across the cut in the positive direction, which for the cut in Fig. 16 is downwards.
We see in Fig. 16, left, that the result for the square 1×1 elementary cell (v1, v2)0 =
(u1, u2) depends on the crossing point: such cell either passes unchanged (cell B)
or ends up skewed (cell A) depending on whether its left side transports along the
odd-nc or the even-nc line.

This ambiguity can be avoided if instead of the 1 × 1 cell we use a cell
(w1, w2)0 = (2u1, u2), which is doubled horizontally, i.e., in the direction of the
axis uc of the cut. As shown in Fig. 16, right, transformation of such double cell
after passing across the cut does not depend on the crossing point. For the new
cell (below the cut in Fig. 16) we have(

w1

w2

)
1

= Mc

(
w1

w2

)
0

= Mc

(
2u1

u2

)
= McB̄

(
u1

u2

)
, where Mc =

(
1 1
0 1

)
.

We conclude that our simple cut is admissible and that (w1, w2)0 is the minimal
passable cell for this cut. Notice that the structure of this cell changes: in the
crystallographic terminology, the “face centered” (w1, w2)0 becomes the “body
centered” (w1, w2)1. This change is also independent on the crossing point. It can
be seen that the main reason of such uniformity with respect to all effects on
the scale smaller than the period of δ(nc) is making the dimension of (w1, w2) an
integer multiple of this period.

We can now define the monodromy transformation μΓ of the lattice cell
(w1, w2)0 transported along a closed path Γ, which goes around the defect point O
in the counterclockwise direction (as indicated in Fig. 16) and crosses our cut once.
By Lemma 7.3 the matrix of this μΓ equals Mc. As before in (6.8b) of Sec. 6.5, we
can formally extend μΓ to the “single” cell (v1, v2)0 using matrix

B̄−1McB̄ =
(

1 1
2

0 1

)
,

where B̄ =
(

2 0
0 1

)
is the same as in (6.8b). This extended matrix is the quantum

monodromy matrix of the joint spectrum lattice L1:(−2) and is the inverse trans-
posed of the monodromy matrix of the corresponding classical 1:(−2) system,
cf. (6.7) and (6.8b).

Our construction in Sec. 6.5 of the L1:(−2) atlas in terms of a common Z2-
sublattice suggests a complimentary way of describing the lattice model L1:(−2).
Separating nodes with odd and even values of momentum F1, we can represent both
L1:(−2) and L1:(−2) as a union of two Z2-sublattices. Furtermore, as illustrated in
Fig. 17, each sublattice L1:(−2)/Z2 individually can be modeled as a regular lattice
with one integer cut of amplitude 1.

We can now provide a general description of cuts which leads to construction
of lattice models with arbitrary fractional monodromy.

Definition 7.8. A simple cut of period 1 < tc ∈ Z+ and amplitude ac ∈ Z+ is
called rational .
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Figure 17. The 1:(−2) lattice model as a union of two sublattices
with even m (left) and odd m (right). In each case, the nodes of
the sublattice are shown by filled black circles.

Note that integer cuts in Def. 7.7 can be formally considered as rational cuts of
period 1.

Lemma 7.5 (properties of rational cuts). Let COc be a rational cut with direction
uc = ±u1, amplitude ac ≥ 1, and period tc > 1.

i. COc is admissible, its common sublattice CLc is an index-tc sublattice L/Ztc .

ii. the minimal cell of CLc is defined by matrix B̄ =
(
tc 0
0 1

)
.

iii. the cell transformation matrix (c.t.m.) and the extended c.t.m. of COc are

Mc =
(

1 ac
0 1

)
and B̄−1McB̄ =

(
1 ac/tc
0 1

)
.

7.5. Further examples

Formal construction of lattices with more general and more complicated defects is
not difficult. In fact it can be shown that any two-dimensional lattice defect which
can be characterized by an SL(2,Z) monodromy matrix can be reproduced as a
combination of simple cuts [71, 70]. We give some examples below. Correspondence
between lattice defects and singularities of toric fibrations may be established in a
number of concrete systems. At the same time, despite considerable progress [32], a
comprehensive theory remains yet to be developed. So we avoid making statements
as to whether and how the classical systems, which inspired the lattice models we
present below, can be related to these models.
Lattice model with two rational cuts. As a concrete example, consider the locally
regular lattice model in Fig. 18 with two rational cuts. The cuts share the same
vertex O and go “leftward” (F1 < 0) and “rightward” (F1 > 0) with corresponding
axis vectors −u1 and u1; the transport lines are parallel to axis F2. The leftward
cut has period 2 while the period of the rightward cut is 3, the amplitude of both
cuts is 1.
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Figure 18. Lattice model with rational cuts of period 2 (directed
leftward) and 3 (rightward) and common vertex O. The minimal
cell, which is passable across both cuts, is a horizontally stretched
6× 1 cell.

It is easy to see that the usual 1× 1 square basis cell (u1, u2) of the regular
Z2 lattice L should be doubled in the F1 direction in order to pass the leftward
cut and should be tripled in the same direction in order to pass the rightward cut.
Consequently, the minimal cell passable across both cuts is the 6× 1 cell(

w1

w2

)
= B̄

(
u1

u2

)
=
(

6 0
0 1

)(
u1

u2

)
.

The 6× 1 cell (w1, w2) can be transported along a closed path Γ, which goes
around O and crosses necessarily both cuts. Figure 18 illustrates the associated
monodromy transformation μΓ. Starting below the cuts and transporting (w1, w2)
along Γ in the counterclockwise direction, we cross the right cut first and then
cross the left cut; in both cases the crossing direction is positive. To find the
transformation of (w1, w2), we begin by finding the cell transformation matrices
M2 and M3 of the left and right cuts, respectively, in the basis of (w1, w2). Turning
to Lemma 7.5 we obtain

M2 = B̄

(
1 1

2
0 1

)
B̄−1 =

(
1 3
0 1

)
and M3 = B̄

(
1 1

3
0 1

)
B̄−1 =

(
1 2
0 1

)
.

By Lemma 7.3, transformation μΓ of the 6× 1 cell is given by monodromy matrix

M = M2M3 = B̄

(
1 1

2
0 1

)(
1 1

3
0 1

)
B̄−1 = B̄

(
1 5

6
0 1

)
B̄−1 =

(
1 5
0 1

)
.

The same result can be obtained graphically from Fig. 18.
Integrable oscillator systems with 1:1 resonance. Up to now we have not discussed
the boundary of the range of the EM map because we studied specific critical
EM values, which lied inside a domain of regular EM values. Here we like to
consider toric fibrations in Hamiltonian systems with two degrees of freedom and
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first integrals (F1, F2) which have just one simply connected lower cell C without
internal boundaries. We suppose that C can have an external boundary ∂C where
one or both cycles of the first homology group H1 of the regular 2-torus fibers
vanish. Note that such ∂C can be considered as the most basic boundary and
that its points represent either relative equilibria (when only one cycle vanishes)
or equilibria (when both cycles vanish) of the system. Furthermore, the latter are,
typically, isolated singular points of ∂C.

It can be shown that in the described situation we can introduce global action
variables (I1, I2) and global momentum map J . The image of J in R2

i1,i2
is a convex

polygon [3, 4, 35]. Such systems have been the subject of considerable interest and
work [23, 36, 65, 40]. Many statements, such as the Duistermaat–Heckman theo-
rem, have been rigorously proven in this particular context. So it may be instructive
to consider how lattice models can be used to describe singularities in this case.

Figure 19. Possible three-cut lattice model (left) for the 1:1 res-
onance oscillator system and its reconstruction (center and right).
The upward, central, and downward simple cuts of the model have
axes i2 (vertical), +i1 (horizontal), and −i2, respectively. Shaded
areas represent (the deconstructed and reconstructed image of)
the range of the EM map; bold dark shaded line indicates the
boundary of this range. Dashed lines connect identified nodes;
arrows indicate parallel transport direction for each cut.

Arguably, one of the simplest and most frequently studied 2-toric fibrations
is the one which occurs in the 2-oscillator system with 1:1 resonance, see for ex-
ample [15]. As one of the first integrals of this system we can take the momentum3

F1 = 1
2 (q21 +p2

1)+ 1
2 (q22 +p2

2), which is typically used as the linearized Hamiltonian.
The other integral F2 can be the whole nonlinear Hamiltonian (= energy). The
image of the EM map defined by these integrals is qualitatively equivalent to that
shown in Fig. 19, right. This image has the form of a solid angle whose vertex O

3In molecular applications F1 is called polyad integral, and the corresponding quantum number n

is called polyad number. The 1:1 system has the Poisson algebra so(3), and the analogy with the
Euler top system, where the role of n is played by the value of the total angular momentum j,

is often exploited.
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represents the equilibrium of the oscillator. The joint spectrum lattice L1:1 of the
1:1 system has n+ 1 nodes for F1 = n = 0, 1, 2, . . ..

To reproduce the above lattice and the singular point O of its boundary,
consider the plane R2

i1,i2
and take the regular lattice L+, which lies in the half-

plane {i1 ≥ 0} and has smooth boundary {i1 = 0}. Further, we need to make
several simple integer cuts. Specifically, as shown in Fig. 19, left, we use three cuts
of amplitude 1 which share the same vertex O ∈ {i1 = 0} and whose transport
lines go in either the i1 or the i2 direction. To characterize the ensemble of these
cuts (and thus the singularity at O), consider a “semicircle” path Γ+ which starts
near the boundary below O and passes in the counterclockwise direction to the
point near the boundary above O. Note that Γ+ crosses each of the three cuts
once in the positive direction. Recalling our Lemma 7.4, we can easily see that the
corresponding transformation is given by(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
=
(

0 1
−1 0

)
.

A possible reconstruction of our three-cut model which leads to the L1:1 lat-
tice is illustrated in Fig. 19, center and right. In this figure, dashed lines, which
follow the parallel transport lines, show how the opposite (in the sense of Def. 7.5)
nodes of L+ should be identified. Since the points which we glue together are reg-
ular and identical, gluing leaves no trace, i.e., there is no one-dimensional stratum
left inside the reconstructed model.

The above computation of the cell transformation near O suggests that the
same boundary defect at O can be reproduced alternatively by just one cut of a
special kind [71] shown in Fig. 20, left. The transport rule for this cut involves a
90◦ rotation of the cells defined by matrix

(
0 1−1 0

)
and the transport lines are arcs

Figure 20. Rotational disclination cut (left) and its reconstruc-
tion (right), which is equivalent to the model of the 1:1 reso-
nance oscillator system with three simple cuts shown in Fig. 19,
left. Bold shaded line represents the boundary of the EM range.
Dashed lines join identical nodes; arrows indicate transport across
the cut as rotation about the defect point.
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centered at O. The opposite points are again identical, and in order to reconstruct
the model, the two “halves” of what is left of L+ should be rotated towards
each other about O and glued together seamlessly. Interestingly, the described
construction is the most common crystallographic defect type called rotational
disclination [39, 42, 71, 70].
Integrable oscillator systems with 1:2 resonance. A two-dimensional 1:2 resonant
oscillator is yet another popular model of a large number of important physical
systems, notably the Fermi resonance of molecular vibrational modes. It is inter-
esting to compare this oscillator to the 1:(−2) system in Sec. 3 and to discuss
briefly possible models of its joint spectrum lattice. The two first integrals are

F1 = (p2
1 + q21) + 1

2 (p2
2 + q22), F2 = 1

2z1z̄
2
2 + z̄1z

2
2 = q1(q22 − p2

2) + 2p1q2p2.

Here again F1 represents a momentum of an S1 action and is often taken in
applications as a linearized Hamiltonian, while F2 describes the lowest (principal)
order resonance of the two oscillations. The energy is, generally, a smooth function
H(F1, F2), but for the purposes of the present brief discussion it suffices to simply
take H = F2. The values of F1 and H are denoted as n and h, respectively.
Note that the 1:2 system has been analyzed in detail by Vũ Ngo.c and Colin de
Verdière [13], and that the classical analysis based on the S1 reduction is described
briefly in [15, Appendix B.4, Example 3].

Figure 21. Lattice model (left) and numerical computation
(right) of the joint energy–momentum spectrum lattice of the 1:2
resonance oscillator system. The model is obtained by introduc-
ing an additional rational cut in the reconstructed 1:1 lattice
model in Fig. 19, right. This extra cut has axis +i1, amplitude 1,
and period 2; the number of empty (= removed) lattice nodes
Δ(nc) on each parallel transport line is indicated below the lower
boundary.

The image of the EM map of the 1:2 oscillator system with H = F2 is shown
in Fig. 21, right. Like that of the 1:1 system in Fig. 19, right, this image is a wedge-
like domain in a half-plane {(n, h) : n ≥ 0} whose n = h = 0 vertex corresponds
to the equilibrium of the oscillator. This image is, however, formed by two lower
cells. For the model system in Fig. 21, right, the boundary separating the two cells
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is a ray C1:2 = {(n, h) : n > 0, h = 0} of critical values. This ray is similar to the
line C− of the critical EM values of the 1:(−2) system (see Proposition 3.4): like the
points of C−, each point on C1:2 lifts to a curled torus. Furthermore, the preimage
of C1:2 is a passable wall, which in this case separates two different upper cells.

The joint spectrum lattice L1:2 of the 1:2 system is shown in Fig. 21, right.
For each fixed value n of momentum F1 (i.e., on each transport line), the number
of nodes of this lattice is given by a quasipolynomial in n

1
2 (n+ 1) + 1

4

(
1− (−1)n+1

)
,

whose oscillatory part has period 2. The oscillation of the number of nodes for F1

> 0 is the quantum manifestation of the presence of the line of singular values C1:2.
Note also that L1:2 can be considered as a union of two sublattices with momentum
indices n = 2k and n = 2k+1, where k = 0, 1, 2, . . ., and that the number-of-nodes
function for each sublattice equals k + 1, just like in the 1:1 case. Of course, this
composition of sublattices is entirely similar to the one we observed in the 1:(−2)
case in Sec. 6.5 and 7.4. Furthermore, just like in the 1:(−2) case we can pass a
double cell across the critical line C1:2.

In Fig. 21, left, we show the construction of the L1:2 lattice model starting
from the assembled L1:1 lattice model in Fig. 19, right. This construction requires
one rational cut of amplitude 1, period 2, and axis n. Comparing to Fig. 16, note
that in the particular realization of this cut shown in Fig. 21, left, its boundaries
are quasilinear. The “wiggling” of the boundaries goes to zero in the classical limit
and they become straight rays. However, reconstruction of such cut by gluing the
two boundaries together leaves the singular line C1:2.

8. Conclusion

In this paper, we developed the new concept of fractional monodromy and demon-
strated its utility on the concrete examples of classical and quantum mechanical
systems. Initially, the principal motivation of our analysis was the qualitative char-
acterization of highly excited quantum (mainly atomic and molecular) systems.
However, it quickly became apparent that fractional monodromy should play a
more general role and have wider applications both in mathematics and physics.
Yet up to now the phenomenon of fractional monodromy has remained practically
unnoticed even in purely classical systems.

Our approach to monodromy is based on a direct study of the deformation
of cycles γ representing basis elements g of first homology groups H1(Tn) of the
regular fibers of toric fibrations. In this work we have restricted ourselves to the
detailed analysis of one nontrivial example, the case of the 1:(−2) resonance. Nev-
ertheless, our method is sufficiently general and useful for the study of classical
systems with other resonances and of corresponding quantum systems.

Many qualitative properties of purely quantum systems can be analyzed on
the basis of a much more simpler study of purely classical limiting problems. Si-
multaneous analysis of classical and corresponding quantum systems gives ample
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evidence to support this general idea. At the same time, the study of the quantum
joint spectrum lattice can give important indications to the nature of singularities
of the underlying classical dynamical system. Thus fractional monodromy itself was
initially conjectured for quantum lattices and only after that it inspired the math-
ematical formulation of the corresponding phenomenon in classical mechanics.

Further generalization of monodromy and in particular of its lattice defect
representation is both naturally possible and very appealing. In this paper we have
only discussed those energy–momentum maps F which define integrable fibrations
with fibers F−1(f) consisted of one connected component. Extending our defini-
tions of monodromy in Sec. 2 to classical limit systems with several connected
components in the inverse image of F and to quantum analogs of such systems
should be especially interesting when the number of components differs for dif-
ferent values f of F . Many questions concerning examples of dynamical systems
with multiple singularities and with more complex singularities remain unclear
even in the case of systems with two degrees of freedom. Many physically relevant
examples of multi-dimensional systems with nontrivial resonances (which are quite
typical in molecular physics in particular) are potential candidates for the study
of further obstructions to the existence of global action-angle variables and for the
classification of typical patterns in quantum joint energy–momentum spectra.

A great number of questions, for example the possibility of “irrational” mon-
odromy, remain completely open. Our study demonstrated most convincingly the
power of the lattice based approach. However, a general theory of lattice defects
and their relation to singularities of classical toric foliations and joint spectra of
fully and partially integrable quantum systems has yet to be developed. In a more
global context, relation to real physical crystal lattices and, probably, to some
other areas should also be uncovered systematically.

This work is the result of a joint effort in an interdisciplinary field, which
required substantial expertise in modern mathematics, physics, and theoretical
chemistry. We hope that it will stimulate further research in this direction and en-
courage better mutual understanding of scientists, who work on seemingly distant
but intrinsically close subjects.

Appendix A. Singular fibers of integrable map in systems with
monodromy

The pinched torus is the most typical singular fiber in two degrees of freedom
Hamiltonian systems with monodromy. It can be represented as a 2D-surface of
revolution obtained by rotating a cusped loop around its cusp point. This termi-
nology and representation is due to Cushman, see [15]. Figure A.1 illustrates two
possible reconstructions of the pinched torus in R3 and respective two alternative
3D-space representations. In both cases, the cusp point O stays fixed in R3, while
the opposite middle point x of the cusped loop C goes along circle A or circle B.
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Figure A.1. Pinched torus is the Λ0 = F−1(0, 0) fiber of the
1:(−1) fibration. Two alternative representations (top left and
right) of the same torus in the 3D space are obtained by contin-
uous deformation of the cusped loop C (bottom figure): the cusp
point O is fixed while point x moves either along circle A or along
circle B.

In spite of their different 3D images, this produces two singular varieties in R4

which are topologically equivalent.
Pinched torus appears as an isolated singular fiber of EM in the case of

integrable fibration F introduced in Sec. 3 in the case m1 = m2 = 1. The cusp
point O is the critical point of EM of rank 0, all other points of the pinched torus
are regular. In our case O is at 0 ∈ R4

q,p and A or B circles represent trajectories γ

of the phase flow {gt
F

(0)
1
, t ∈ R} of the system with Hamiltonian F (0)

1 whose action

on R4 is isomorphic to a circle.
The k-curled torus can be represented in R4 as a singular surface of transla-

tion and revolution of a Zk-symmetric “k-petal-flower planar curve”. The latter is
a union of k cusped loops (= petals) with common self-intersection cusp point O.
A rotation of the plane of the flower about O by 2π/k permutes the petals cycli-
cally while leaving the flower as a whole invariant. To obtain the k-curled torus,
we take a circle trajectory γc, which intersects the plane of the flower transver-
sally at O, and move the plane so that O remains on γc. As O makes one tour
on γc, we rotate the flower about O so that the petals become cyclically permuted.
Alternatively, we can start with just one cusped loop (= one petal) whose cusp
point O makes k tours on γc, while the spiral traced out by the opposite point x
has k tours along γc and one tour in the transversal direction about γc.

Note that in the case of the 1:(−2) resonance, k equals 2 and γc is the special
short trajectory of the system with Hamiltonian F

(0)
1 in (3.1a) with m1 = 1 and

m2 = 2. In our particular example system (4.3), the 2-curled (or simply curled)
torus is the “weak” singular fiber F−1(m,h) with −1

4 < m < 0 and h = m2. All
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Figure A.2. Curled torus (left) and its possible reconstruction (right).

points on γc are critical points of map F of rank 1, all other points of the curled
torus are regular. As shown in Fig. A.2, such singular fiber can be constructed
by moving a figure eight curve so that its self-intersection point O goes around a
circle γc, while the rest of the curve rotates about O. After O comes back in time
t = π the two loops of the curve are interchanged.

The 2-curled pinched torus (or simply pinched curled torus) is the singular
fiber Λ0 which corresponds to the critical value (F1, F2) = (0, 0) of the integrable
fibration F introduced in Sec. 3 in the case of m1 = 1 and m2 = 2. It can
be obtained as a deformation of the 2-curled torus, whose critical circle γc is
contracted to a point. This fiber has one critical point of rank 0; in the R3 space,
it can be represented as a self-intersecting surface shown in Fig. A.3.

Figure A.3. Pinched curled torus.

Appendix B. Dynamical symmetry and space of orbits

In this appendix we describe integrable fibrations (3.1a) and (3.1b) using their
underlying dynamical symmetry. Assuming R1(q, p) = 0, the phase flow generated
by Hamiltonian F1 in (3.1a) can be identified with the action of one-dimensional
compact Lie symmetry group S1

t . Action of S1
t on the four-dimensional symplectic
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space R4
p,q has a particularly simple form in terms of complex variables

zs = qs − ips, z̄s = qs + ips, where s = 1, 2. (B.1)

The Poisson bracket becomes {z, z} = 2i and the action S1
t : (z, z̄) �→ Ut(z, z̄) is

given by the diagonal 4× 4 matrix

Ut = diag
(
eim1t, e−im2t, e−im1t, eim2t

)
. (B.2)

The 3D space of orbits of the S1
t action (B.2) on R4

p,q can be geometrically repre-
sented in terms of invariant polynomials (for an invariant theory survey which is
close in spirit to this application, see [49] and references therein). All S1

t invariant
polynomials form a module, whose structure is described by the Molien generating
function

gm1:m2(λ) =
1 + λm1+m2

(1− λ2)2(1− λm1+m2)
, (B.3)

where the formal variable λ represents any of variables z, z̄. According to (B.3)
there exist three algebraically independent polynomials of degrees 2, 2, and m1 +
m2, and one linearly independent but algebraically dependent invariant polynomial
of degree m1 +m2. We can choose them as

η = 1
4 (m1z1z̄1 −m2z2z̄2)(m1m2)−1, (B.4a)

π1 = 1
4 (m1z1z̄1 +m2z2z̄2)(m1m2)−1, (B.4b)

π2 = 1
4

(
zm2
1 zm1

2 + z̄m2
1 z̄m1

2

)(
2m1+m2−2mm1

1 mm2
2

)−1/2
, (B.4c)

π3 = i
4

(
zm2
1 zm1

2 − z̄m2
1 z̄m1

2

)(
2m1+m2−2mm1

1 mm2
2

)−1/2
. (B.4d)

The only one algebraic relation between these polynomials is

2Φm1:−m2
η (π1, π2, π3) = π2

2 + π2
3 − (π1 − η)m1(π1 + η)m2 = 0. (B.5)

Notice that our two initial integrals (F1, F2) are easily expressed in terms of (B.4)

F1 = 2m1m2 η, (B.6a)

F2 =
(
2m1+m2mm1

1 mm2
2

)1/2
π3 + (2m1m2π1)s. (B.6b)

Applying standard invariant theory [49] to our case gives

Proposition B.1. All orbits of the S1
t group action (B.2) can be labeled by the values

of three algebraically independent principal (denominator) invariant polynomials
and the sign of one auxiliary (numerator) invariant polynomial.

As principal and auxiliary invariants we can take, for example, (η, π1, π3) and π2

respectively. We can also replace η and π1 by their linear combinations

r1 = (π1 + η)m2 = 1
2 (q21 + p2

1), r2 = (π1 − η)m1 = 1
2 (q22 + p2

2),

which represent one-dimensional harmonic oscillators. On the other hand, invari-
ants (B.4) are particularly suitable in view of the following property.
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Lemma B.1. Polynomials (π1, π2, π3) generate a Poisson algebra with Poisson
bracket

{πa, πb} = εabc
∂

∂πc
Φm1:−m2
η , (B.7)

and Casimir η. Here εabc is the Levi-Civita symbol.

Remark B.1. We can define a meaningful reversing symmetry operation

(η, π1, π2, π3) �→ (η, π1,−π2, π3) (B.8)

for systems with first integrals (B.6). This operation leaves both the Hamiltonian
and relation (B.5) invariant but reverses some signs in the Poisson structure (B.7).
In view of this extra symmetry, using π2 as an auxiliary invariant is particularly
convenient.

B.1. Orbit space of the S1 action

Proposition B.1 and relation (B.5) give the way to describe explicitely the space
Om1:(−m2) of orbits of the S1 action (B.2). It can be seen that Om1:(−m2) is a 3D
body which can be decomposed into two parts, one for π2 ≤ 0 and another for
π2 ≥ 0, and that points {π2 = 0} constitute the intersection of these parts. In order
to visualize Om1:(−m2) and to study sections of this space with constant values of
integrals F1 and F2, we can represent each part of Om1:(−m2) in the space R3

with coordinates (η, π1, π3). To this end, we solve (B.5) with π2 = 0 with respect
to π1 ≥ 0. It can be shown that solution π0

1(η, π3) is a single valued continuous
function on R2 and that each part of Om1:(−m2) is an algebraic variety given by the

Figure B.1. Space of orbits of the S1
t action on the phase space

R4 of the 1:(−1) resonant oscillator system. All points inside and
on the surface of each cone except the vertex represent generic
circular orbits γ; the vertex represents the equilibrium. Surface
points of the cones with the same (η, π3) should be identified.
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inequality π1 ≥ π0
1(η, π3). For each (η, π3) we should identify (glue together) the

points on the surfaces π1 = π0
1 of the two parts. In the simplest case of the space

O1:(−1), the surface {π1 = π0
1(η, π3)} is a straight cone shown in Fig. B.1. The

whole space O1:(−1) can be therefore represented as two filled cones glued together
on their surface {π1 = π0

1(η, π3)}. Specifically, points inside each cone represent
different S1 orbits, while boundary points with the same η and π3 represent the
same orbit with π2 = 0 and should be identified. The space O1:(−1) contains
two strata: the identified vertices of the cones represent one exceptional one-point
orbit which is the unstable equilibrium of the system with Hamiltonian F1; all
other points represent generic circular orbits γ in R4.

Figure B.2. Space of orbits of the S1
t action for the 1:(−2) reso-

nant oscillator system. Surface points of the two bodies with the
same (η, π3) should be identified.

The orbit space O1:(−2) is shown in Fig. B.2. In addition to generic circular
orbits γ of period 2π and one exceptional equilibrium orbit, which is represented
by the vertex of the deformed conical surface, there is also a 1D set of orbits γc
represented by points in {r1 = 0, r2 > 0}. These orbits have period π and possess a
nontrivial stabilizer Z2. Similar stratification occurs in the case of m1 = 1 and any
integer m2 > 1 but the stabilizer of orbits belonging to the 1D-stratum is different.

In the most general situation, when integers m1 > 1, m2 > 1 and lcd(m1,m2)
= 1, the space of orbits includes four different strata. Points of the generic stratum
lift to generic circular orbits γ of period 2π. The 0-dimensional stratum is formed
by the vertex point which represents one exceptional one point orbit (equilibrium
point). The two 1-dimensional strata {r1 = 0, r2 > 0} and {r2 = 0, r1 > 0} include
points which lift to special “short” circular orbits in R4 whose stabilizers are two
different finite groups.

Our geometric representation Π: R4
q,p → O ⊂ R4

π1,π3,η;π2
of the space of or-

bits O of the S1 action can be used to analyze the topology of isoenergetic surfaces
of any Hamiltonian system with such S1 symmetry. We can also classify mutual
constant level sets of two commuting Hamiltonians whose flow is invariant with
respect to the S1

t action. Thus we will obtain an explicit reduced geometric repre-
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sentation sm,h = Π({F1 = m} ∩ {F2 = h}) of the fibers of the integrable fibration
defined by (F1, F2) in Sec. 3, find all different possible sm,h, and reconstruct their
preimages Π−1(sm,h). To this end it will be most convenient to slice the orbit
space O first by the constant m-level sets of F1 = F1 ◦Π−1.

B.2. Reduction in the case of the S1 symmetry

Our concrete example systems in Sec. 3 have two first integrals (F1, F2). We will
consider F1 as a momentum because the flow ϕF1 of the system with Hamilto-
nian F1 generates S1 symmetry (B.2). We can reduce this symmetry for each
given value m of F1. Each point on the reduced phase space Pm lifts to an orbit
of ϕF1 . Since the action (B.2) is not free, some of the spaces Pm have singularities.
For a general discussion of singular reduction, see [15]. We only mention that Pm
can be equipped with the Poisson structure using Lemma B.1.

In order to construct Pm we slice the space of orbits O by constant m-level
sets of F1 = F1 ◦ Π−1. We thus have Pm = Π({F1 = m}) = {F1 = m} ∩ O. It
can be easily seen from (B.6a), (B.5) and Figs. B.1 and B.2 that we should simply
intersect orbit spaces O by planes {η = const} which are parallel to the coordinate
plane (π1, π3). This gives two sections, one for π2 ≥ 0 and the other for π2 ≤ 0,
which should be glued together along their boundaries, i.e., at the points with the
same (π1, π3) and π2 = 0. In most cases when the boundary points belong to the
generic stratum this gluing is smooth.

Proposition B.2 (reduced phase spaces Pm). Each space Pm can be embedded
explicitly in R3 with coordinates (π1, π2, π3) where Pm is represented as a surface
of revolution about axis π1. This surface is bounded by π1(m) ≥ 0 and can be
projected bijectively on the 2-plane {π1 = 0} with coordinates (π2, π3). The point
of Pm with the lowest value of π1 lies on axis π1, i.e., π2 = π3 = 0; for some m
this point is singular.

The proof can be obtained analytically by fixing the value of η in (B.5). The
singular point of Pm will be called vertex.

In particular, P 1:(−1)
m is smooth for all m �= 0; all points of such spaces are

regular and lift to generic S1 orbits. P 1:(−1)
0 is a straight cone whose vertex repre-

sents the exceptional one-point equilibrium orbit. The spaces P 1:(−2)
m are smooth

(regular) for m > 0 and have one conical cusp vertex otherwise. The singularity
can be characterized explicitely using (B.5). The singular point lifts to the equi-
librium when m = 0 and to a non-generic “short” S1 orbit γc with stabilizer Z2

when m < 0.

B.3. Energy-momentum map, critical points and critical values

We can now easily construct the energy–momentum map EM for our concrete
systems in Sec. 3 and Fig. 2. To obtain a geometric representation of the fibers
of EM we study intersections {F2 = h} ∩ Pm where F2 = F2 ◦ Π−1 assumes the
role of “energy”. This study can be further simplified if we account for symmetry
property (B.8). This symmetry allows using just one part Vm of Pm which can be
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Figure B.3. Projection of Pm on the {π2 = 0} plane in the
case of 1:(−1) resonance, sliced by the constant h-level sets of
F2 = F2 ◦Π−1 with F2 in (4.1b); only one part Vm of each Pm for
π2 ≥ 0 is shown.

Figure B.4. Projections of Pm on the {π2 = 0} plane in the
case of 1:(−2) resonance, sliced by the constant h-level sets of F2

(bold lines). Only one part Vm of each Pm for π2 ≥ 0 is shown.

obtained as {F1 = m} for π2 ≥ 0, or, equally, as a projection of Pm on the 2-plane
with coordinates (π1, π3).

Figures B.3 and B.4 show constant h-level sets of F2 on Vm for the cases
1:(−1) and 1:(−2) respectively. Since we are interested in fibers Λm,h which lie
close to the singular fiber Λ0, the value of |m| is taken close to 0. Qualitative
description of such fibers follows from that of the intersections {F2 = h} ∩ Vm. In
particular we obtain
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Proposition B.3. Nonempty intersections, vm,h = {F2 = h} ∩ Vm for F2 = F2 ◦
Π−1 with F2 in (4.1b) or (4.3b), are compact, and are either a single point or
a closed segment. The set of h values, for which vm,h �= ∅ is limited from below;
the value hmin(m) corresponds to a single point intersection vm,hmin(m), which can
be a regular point of the boundary ∂Vm where {F2 = hmin} and ∂Vm touch, or
a singular point, i.e., vertex of ∂Vm. When vm,h is a closed segment, both its
end points are typically regular points of ∂Vm. However, if Pm (and therefore Vm
and ∂Vm) with m �= 0 has a vertex, there exist a critical segment vm,hc(m) with
hmin(m) < hc(m) <∞ which has the vertex as one of its endpoints.

Compactness of vm,h follows from the analysis of the intersections of the level sets
of F2 in (B.6a) and ∂Vm defined by (B.5) with π2 = 0 and fixed η(m). We can
show easily that the proper choice of s in (3.2b) and (B.6a) assures compactness
of vm,h. This justifies the specific choice of the compactifier (3.2). Lifting vm,h to
Pm ⊂ O and then to the original space R4 using the inverse reduction map leads to

Proposition B.4 (fibers of the EM map in the 1:(−1) case). Nonempty intersec-
tions sm,h = {F2 = h}∩P 1:(−1)

m for F2 = F2 ◦Π−1 and F2 in (4.1b) are connected
and compact, and are either a single regular point of Pm, a smooth closed loop, or a
closed loop with one singular point (see Fig. B.3). The respective fibers Π−1(sm,h)
of the integrable fibration defined by (F1, F2) are a circular orbit (relative equilib-
rium), a regular 2-torus (generic fiber), and a pinched torus when m = 0 and
h = 0.

Proposition B.5 (fibers of the EM map in the 1:(−2) case). Nonempty intersec-
tions sm,h = {F2 = h}∩P 1:(−2)

m for F2 = F2 ◦Π−1 and F2 in (4.3b) are connected
and compact, and are either a regular single point of Pm, a vertex of Pm, a smooth
closed loop (generic intersection), or a closed loop with one singular point. The re-
spective fibers Π−1(sm,h) of the integrable fibration defined by (F1, F2) are a generic
circular orbit γ (relative equilibrium) of the flow of XF1 , a special short orbit γc
(relative equilibrium with stabilizer Z2), a regular 2-torus (generic fiber), and a
singular 2-torus. The latter is a pinched curled torus when m = 0 or a curled
torus when m �= 0.

Finally, in order to describe the images of the EM map in Figs. 2, 10, and 12, we
can derive explicit expressions for hc(m) and hmin(m) from a more detailed analytic
study of the intersections vm,h. We do not provide this analysis here because these
expressions are found in Appendices C and D on the basis of a direct computation
of critical values of the map (F1, F2).

Appendix C. Proofs in the case m1 = m2 = 1

In this section, we collect analytical proofs of some auxiliary statements required
for the proof of the monodromy Theorem 1 (the case of the 1:(−1) resonance).
We begin with proving Lemma 5.1. We then consider cycles, which represent basis
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elements of H1(T2
m,h), and describe their deformation which occurs when the point

(m,h) moves along the contour Γ. This description is given directly in the hyper-
plane σ. The central issue is the detailed analysis of small modifications which
occur near the fibers with m = 0. This analysis completes the analytical proof of
the monodromy Theorem 1.

C.1. Technical lemmas. Case of the 1:(−1) resonance

We start with simple auxiliary technical lemmas. Recall that the hyperspace σ is
defined in (5.4) as {F3 = 0} where F3 := p1 − q2.
Lemma C.1. The phase flow of the system with Hamiltonian F1

{gtF1
, t ∈ R} : R4

q,p × R→ R4
q,p : (ξ, t) �→M(t) ξ, ξ = (q1, p1, q2, p2),

is given by the block-diagonal matrix M(t) = diag
(
M1(t),M2(t)

)
, where

Mk(t) =
(

cosωkt −(−1)k sinωkt
(−1)k sinωkt cosωkt

)
, k = 1, 2 and ω1 = ω2 = 1. (C.1)

The action of {gtF1
, t ∈ R} is equivalent to an S1 circle action. Moreover,

gπF1
: (p, q) �→ (−p,−q),

i.e., after a time t = π each point goes into a central symmetric point. The two
coordinate planes {pk = qk = 0}, k = 1, 2, are gtF1

invariant. In each of these
planes, gtF1

acts as a rotation by angle t in opposite directions with respect to the
ordered basis axes (pk′ , qk′).

There is another pair of invariant and mutually orthogonal with respect to
the Euclidian structure planes {p1− q2 = p2− q1 = 0} and {p1 + q2 = p2 + q1 = 0}
where gtF1

also acts as a rotation. The former plane lies in σ. Each trajectory γ
of the phase flow {gtF1

, t ∈ R} either belongs to this plane and thus lies in σ or
intersects σ in exactly two points, which are symmetric with respect to 0 ∈ R4.

Proof. Consider the vector field

XF1(q, p) =
(
dp1

dt
,
dq1
dt
,
dp2

dt
,
dq2
dt

)
= (−q1, p1, q2,−p2)

generated by the system with Hamiltonian F1. The condition dF3(XF1) = 0, where
F3 is given by (5.4), for the phase flow {gtF1

, t ∈ R} to be tangent to σ defines the
2-plane {−q1 + p2 = p1 − q2 = 0} ⊂ σ. One can easily verify that the restricted
vector field XF1 |σ = (−q1, p1, p1,−p2) is also tangent to the plane {−q1 +p2 = 0}.
This means that the whole trajectory γ belongs to the 2-plane {−q1 +p2 = p1−q2
= 0} ⊂ σ. The proofs of all other statements of Lemma C.1 are either analogous
or evident. �
Lemma C.2. Restrictions of coordinate functions p1, q1, p2 on σ define coordinates
on σ which we denote by the same letters. In these coordinates restrictions of
functions F1 and F2 on σ have the form

F1 = 1
2 (q21 − p2

2), F2 = p2
1 + p2q1 + 1

4 (2p2
1 + q21 + p2

2)
2. (C.2)



Vol. 7 (2006) Fractional Hamiltonian Monodromy 1171

In order to simplify F1 we change the coordinates (p2, q1) as

x = (q1 − p2)/
√

2, y = (q1 + p2)/
√

2.

Then functions F1 and F2 take the form

F1 = xy, F2 = −1
2x

2 + 1
2y

2 + p2
1 +R(x, y, p1).

The plane {x = 0} ⊂ σ coincides with the mentioned above plane {p1 − q2 =
p2 − q1 = 0} ⊂ R4 which is invariant with respect to the flow {gtF1

, t ∈ R}.
The proof consists of straightforward computations.

Lemma C.3. Consider Uε := ∪|m|+|h|<εΛm,h and its intersection Uε ∩ σ with σ.
For sufficiently small ε > 0 the condition

rank
∂(F1, F2, F3)

∂(p, q)
≤ 2

for the “extended” Jacobian matrix on Uε∩σ is satisfied at all points of the axis p1

on σ and only in these points. The values of the map F at points of the axis p1

in σ (i.e., on the line pσ1 := {q1 = p2 = p1 − q2 = 0}) are (F1, F2) = (0, p2
1 + p4

1).

Proof. The Jacobian matrix in Lemma C.3 has the form⎛
⎝ p1 q1 −p2 −q2
q2 + 2p1χ p2 + 2q1χ q1 + 2p2χ p1 + 2q2χ

1 0 0 −1

⎞
⎠ , (C.3)

where
χ = p2

1 + q21 + p2
2 + q22 .

After adding the first column of (C.3) to its fourth column and eliminating the
first column and the last row from the resulting matrix, we obtain the 2×3 matrix(

q1 −p2 −q2 + p1

p2 + 2q1χ q1 + 2p2χ (p1 + q2)(1 + 2χ)

)
, (C.4)

whose rank is smaller than that of the initial matrix (C.3) exactly by 1. Conse-
quently, we should analyze further the 2 × 3 matrix (C.4). It is clear that at all
points of axis p1 in σ the rank of (C.4) is not maximal. Direct substitution of
{q2 = p1, p2 = q1 = 0} gives the values (m,h) of the map F on pσ1 . It can be seen
that F maps pσ1 to the halfline {m = 0, h = p2

1 + p4
1}.

Let us show that at all other points of Uε ∩ σ the rank of (C.4) is maximal.
Taking into account that the coefficient in the right upper corner of matrix (C.4)
becomes equal to zero on σ, one can easily verify that the non-maximal rank
condition reduces either to equations {p1 − q2 = p2 = q1 = 0}, which specify
axis p1 on σ, or to the system

p1 = q2 = 0, (q21 + p2
2)(1 + 4q1p2) = 0. (C.5)

It is easy to see that in a sufficiently small neighborhood of 0 ∈ R4 the only
solution this system has is p1 = q2 = p2 = q1 = 0 ∈ R4. An explicit solution of
(C.5), which is far from zero, can also be found. Supposing that q21 + p2

2 > 0 the
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second equation in (C.5) becomes 1 + 4q1p2 = 0. The image of the corresponding
solution {p1 = q2 = 0, q1 = −(4p2)−1} of the complete system under the map F{

m = 1
2

(
1

16p2
2

− p2
2

)
, h = −1

4 + 1
4

(
1

16p2
2

+ p2
2

)2
}

is obtained by direct substitution into F1 and F2. From this we get the relation
h = m2 − 3

16 which defines the boundary of the range of F . Of course, critical
points of F represented by this boundary lie outside Uε, i.e., far from 0 ∈ R4. �

Figure C.1 shows the image of the {F1, F2} map together with image of the points
where the intersection Λm,h ∩ σ is non-regular.

Figure C.1. Critical values of the (F1, F2) map (solid line and
black dot) and the image of nonregular intersections σ ∩ Λm,h
(dashed line) in the 1:(−1) case.

We are now ready to prove Lemma 5.1.

Proof. It follows from Lemma C.3 that condition
(
rank ∂(F1,F2)

∂(p,q)

)
< 2 can be only

met on axis p1 in σ and only in a sufficiently small neighborhood of 0 ∈ R4. A
straightforward analysis of the “shortened” in comparison to (C.3) 2× 4 matrix(

p1 q1 −p2 −q2
q2 + 2p1χ p2 + 2q1χ q1 + 2p2χ p1 + 2q2χ

)
,

shows that on σ its rank can be non-maximal only at points satisfying the system
of equations

p2
1 + 4p1q2χ+ q22 = q21 + 4q1p2χ+ p2

2 = 0.

It is easy to see that the only solution of this system which belongs to a small
neighborhood of point 0 ∈ R4 is that point itself. Consequently, surfaces Λm,h =
F−1(m,h) for all |m| + |h| < ε are smooth at all points of σ except the point
0 ∈ Λ0,0. Smoothness of the Λm,h surfaces outside σ follows from two simple
facts: (i) Λm,h are invariant with respect to phase flow {gtF1

, t ∈ R} and (ii) each
trajectory γ of this flow intersects σ.

It follows from the above argument and from Lemma C.3 that the non-
transversality of the intersection σ ∩ Λm,h can occur only at points on axis pσ1 .
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The differential dF1 at any point of axis pσ1 has the form dF1 = p1(dp1 − dq2), see
upper line in (C.3). Consequently, σ is tangent to surfaces Λm,h at all points of pσ1
except point 0 ∈ R4. Lemma 5.1 is proven. �

C.2. Intersections Λm,h ∩ σ in the case m1 = m2 = 1

We describe intersection curves λm,h := Λm,h∩σ directly in the three-dimensional
hyperplane σ. We will use coordinates (p1, x, y) defined in Lemma C.2. Recall that
the alternative representation of λm,h on the torus chart of Λm,h was used in Sec. 5
in order to explain the idea of the proof. The especially simple intersection λ0,h

will be called skeleton.

Lemma C.4. The skeleton λ0,h<0 is regular and consists of two closed skeleton
curves, which lie in the same 2-plane {y = 0} ⊂ σ, see Fig. C.2. The skeleton
λ0,h=0 consists of two closed curves which lie in the same 2-plane and have one
common point 0 (a figure eight). λ0,h>0 is a union of two skeleton curves which lie
in 2-planes {y = 0} and {x = 0} on σ and connect in two points, see Figs. C.3, C.4.
The orientation of these curves, which corresponds to the orientation introduced
in Sec. 5, is shown in Figs. C.2, C.3, C.4.

Proof. The entire skeleton curve λ0,h ⊂
({y = 0} ∪ {x = 0}) is the union of two

curves λx0,h := λ0,h∩{y = 0} and λy0,h := λ0,h∩{x = 0}. In the coordinates (p1, x)
on {y = 0} ⊂ σ the skeleton curve λx0,h ⊂ {y = 0} ⊂ σ is defined by the equation

p2
1 − 1

2x
2 + (p2

1 + 1
2x

2)2 = h. (C.6)

By changing to variables z := p2
1, u := x2/2 in equation (C.6) we transform it into

z2 + bz + c = 0, with b = 2u+ 1, and c = u2 − u− h. (C.7)

Let us set h = 0 and analyze roots z1,2(u) of this equation for u ≥ 0. We have:
i) if u = 0, then b = 1, c = 0, z1 = 0, z2 = −1;
ii) if u ∈ (0, 1), then b > 0, c < 0, z1 > 0 > z2;
iii) if u=1, then b = 3, c = 0, z1 = 0, z2 = −3;
iv) if u ∈ (1,+∞), then b > 0, c > 0, there is no real non-negative roots.

It follows from Lemma C.3 that the curve λx0,h for h = 0 is smooth everywhere
except points of its intersection with axis p1, i.e., except point p1 = x = 0. In a
small neighborhood of this point we can take equation p2

1−x2/2 = 0 as the leading
part of (C.6). Now it follows that the curve λx0,h near the origin is the union of
graphics of two smooth functions of the form p1 = p1(x) = ±x/√2 + . . . Taking
into account the fact that z = p2

1 we get the form of the curve λx0,h for h = 0.
More specifically, we can see that this curve has the form of a figure eight which
is symmetric with respect to coordinate axes p1 and x and is aligned along axis x.
From the solution of the biquadratic equation (C.6) with respect to p1 it follows
immediately that the curve λx0,h for small |h| is obtained from λx0,0 by “deflation”
for h < 0 (see Fig. C.2) or by “inflation” for h > 0 (see Fig. C.3).
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As soon as the derivative of the left-hand side of (C.7) at small z �= 0 is
different from zero, the curve λx0,h at h �= 0 is smooth everywhere, and in particular
it is smooth in points of its intersection with coordinate axis p1 on σ.

The intersection λy0,h := λ0,h ∩ {x = 0} is given by equation

p2
1 + 1

2y
2 + (p2

1 + 1
2y

2)2 = h, (C.8)

which has a solution only for h ≥ 0. For h = 0 the solution is the single point
p1 = y = 0. The curve λy0,h is also symmetric with respect to both coordinate axes
p1 and y for all h ≥ 0. It is clear that the leading part of (C.8) is the “short”
equation p2

1 + 1
2y

2 = 0. Thus, the curve λy0,h at small h > 0 has the form of slightly
deformed ellipse p2

1 + y2/2 = h with axes length of order
√
h when h→ 0. Notice

that the “diameter” of the curve λx0,h is of the order of 1 at h→ 0.
For h < 0 the intersection λx0,h consists of two components shown in Fig. C.2.

The orientation of these components which is also indicated in Fig. C.2 follows
from the definition of the orientation given in Sec. 5.

p
1

x

AabB

Figure C.2. Skeleton curves λ0,h for h < 0. The orientation
shown by arrows is chosen for both components in accordance
with the orientation of the intersection Λ0,h ∩ σ.

The two planar components of skeleton curves λ0,h>0 ⊂ σ are shown in
Fig. C.3. These components have two common points which lie on axis p1. If
we exclude these two points we obtain four open fragments. Orientation on each
fragment is defined by the intersection Λ0,h∩σ. The 3D-view of the entire skeleton
curve λ0,h is given in Fig. C.4. �

Let us now study intersection λm,h with m �= 0. It consists of two components
lying on two sheets of the cylindrical hyperboloid {xy = m}. In the case of m > 0
these sheets belong to the first and third quadrants (xy > 0), and in the case of
m < 0 they belong to second and forth quadrants (xy < 0).

The exact statement about the correspondence between λ0,h and λm,h can be
formulated as follows. Without loss of generality it is sufficient to consider the case
m ≥ 0, because the case m ≤ 0 is absolutely similar. Using the same arguments
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Figure C.3. Planar components of skeleton curves λ0,h for h
> 0. The figure in the plane {x = 0} is zoomed in. Black points are
common for both curves. Orientation of each fragment is imposed
by intersection Λ0,h ∩ σ and is indicated by arrows.

we restrict ourselves to the case of the first “quadrant” K1 := {x ≥ 0, y ≥ 0} ⊂ σ.
The case of the third “quadrant” K3 := {x ≤ 0, y ≤ 0} ⊂ σ is analogous. Let us
denote sm,h := λm,h ∩ K1 and let Vη := {x2 + y2 < η} ⊂ σ be the cylinder of
radius

√
η with axis p1 as the cylinder axis.

Lemma C.5. There exists such h0 > 0 that for all arbitrarily small ε > 0 and
η > 0 there is δ = δ(h0, ε, η) > 0 with the following property. For m and h such
that |h| < h0 and |m| < δ,

i. Curves sm,h and s0,h are homeomorphic to each other. The curve sm,h for
m �= 0 and the curve s0,h \ {x = y = 0} are smooth.

ii. The distance between these curves does not exceed ε: ρ0(sm,h, s0,h) < ε. Here
the distance ρ0(A,B) between subset A and subset B is defined in a standard
way: ρ0(A,B) = maxξ∈A ρ0(ξ, B), where ρ0 is the distance induced by the
coordinates (p, q) in R4.

iii. ρ1(sm,h \ Vη, s0,h \ Vη) < ε, where ρ1 is the distance defined similarly to ρ0,
but with the C1 norm, rather than C0, i.e., the norm takes into account both
the distance between points and between directions of lines tangent at these
points to curves sm,h \Vη, and s0,h \Vη. In other words, curves sm,h and s0,h
are almost parallel each other outside the cylinder Vη.

iv. The mapping φ between the curve sm,h \ Vη and the part of the curve s0,h
which sends each point from sm,h \ Vη to the nearest point of the curve s0,h
is a diffeomorphism.

The proof of this lemma follows from Lemma 5.1 and the analysis of equations
defining skeleton curves λ0,h [see eqs. (C.6, C.7)] and is based on the implicit
function theorem. The proof is standard and we omit it here.

It is clear that the orientation of each component of the intersection curves
is well defined for all λm,h except when m = 0, h ≥ 0. In the latter case the
orientation is well defined on each of four open fragments of the intersection line
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λ0,h\{x = y = 0}. In what follows we will always consider curves or their fragments
with orientation defined in this way.

Curves sm,h belong to the first quadrant and we denote them as s1m,h. In
a similar way we define curves skm,h, lying in quadrants k = 2, 3, 4. Examples of
curves skm,h are shown in Fig. C.5.

Notice that a curve λm,h with sufficiently small |m| lies close to some part
of the skeleton curve λ0,h with the same h and inherits the geometrical form of
that part of the skeleton curve and its orientation. Let us describe the mentioned
part of the skeleton curve in the more complicated case of positive h. Axis p1

splits each planar component λx0,h and λy0,h into two symmetric parts which we
take closed. The described above part of the skeleton curve λ0,h consists of two
such half-curves, lying in planes {x = 0} and {y = 0} (see Fig. C.3). Note that
the x = 0 component of the skeleton curve consists of a single trajectory of the
F1 flow.

C.2.1. Curve fragments used for the construction of the deformation of cycle γ0.
We take the curve γ0 = s10,−hmax

as a cycle γ0 ⊂ Λ0,h corresponding to the basis
element e0 forming together with gf the basis of homology group H1(Λ0,h) for

Figure C.4. Skeleton curves λ0,h, h > 0 in σ.
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Figure C.5. Evolution of intersection lines of Λm,h∩σ along the
contour δΓ on σ near the Γ2 point. Projections of intersections on
the plane (x, y) are shown at the bottom of each plot.

h < 0. During the deformation of this cycle we use fragments of curves skm,h. In
order to describe these fragments for h > 0 we denote points A,B and a, b cor-
responding to the intersection of the curve λ0,h with the plane {p1 = 0} ⊂ σ,
and points α, β of the intersection of this curve with axis pσ1 . For the fragment
of the curve s10,h connecting points A and β and passing through α and a we use
the notation s10,h[Aαaβ] or simply Aαaβ. Similar notation will be used for other
fragments of curves sk0,h. According to Lemma C.5 we can unambiguously asso-
ciate points A and a of s10,h with points lying on curve s1m,h for sufficiently small
m > 0. With points α and β we associate the closest points of s1m,h. It is clear
that these points exist, are unique, and continuously depend on the parameters
(m,h). Accordingly, we will denote the fragment of the curve s1m,h which is close
to s10,h[Aαaβ] by s1m,h[Aαaβ] or simply by Aα1aβ1. Notice that on the torus chart
in Fig. 5 we use the similar α1 and β1 notation for points situated on curve s1m,h.
Definition of the shadow fragment Im,h[ξ1ξ2]. We will also use as fragments tra-
jectories γf of the system with Hamiltonian F1. For example, by γfm,h[A,B] we
mean the fragment of the curve γf lying on torus Λm,h and connecting points
on Λm,h ∩ σ, which correspond (in the sense of Lemma C.5) to points A and B
of the skeleton curve λ0,h. We take this fragment with positive orientation if it
corresponds to increasing time when moving from A to B according to the phase
flow gtF1

.
We will equally use small fragments Im,h[ξ1ξ2], which belong to surfaces Λm,h.

We will name them as “shadow fragments”. Each such fragment belongs to small
neighborhood U ⊂ R4 of a nonzero point on the axis pσ1 and connects some points
ξ1 and ξ2, which belong to Λm,h ∩ σ ∩ U .

From Lemma C.2 and C.3 it follows that surfaces Λm,h in the neighborhood
of each nonzero point in R4 regularly foliate this neighborhood into smooth two-
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dimensional local surfaces. The tangent space to Λm,h at a nonzero point κ on
axis pσ1 belongs to σ. Note that surfaces Λm,h intersect axis pσ1 in nonzero point
only for m = 0 and h > 0.

Let ξ1 and ξ2 be any two points which belong to intersection λm,h ∩ U for
small |m| and h > 0, where U = U(κ) is a small neighborhood in R4 of a point
κ ∈ λ0,h ∩ pσ1 . The tori Λm,h have an affine structure defined on them by two
commuting vector fields XF1 and XF2 which are in turn defined by the systems
with Hamiltonians F1 and F2 respectively. It is clear that this structure depends
smoothly on the position of point κ in U . Let us connect points ξ1 and ξ2 by a
segment which is part of the geodesic on torus Λm,h with respect to this structure.
We take this segment as Im,h[ξ1ξ2]. From the above mentioned facts about the
structure of surfaces Λm,h near axis pσ1 it follows that this segment is close (with
respect to norm C1) to small segment [ξ1ξ2] in the hyperspace σ with the same

ends ξ1 and ξ2: Im,h[ξ1ξ2] C
1

∼ [ξ1ξ2].

C.2.2. Deformation of cycle γ0 along contour Γ. We now repeat the analysis of
the deformation of γ0 along contour Γ described in Sec. 5.1 by using more detailed
analytical arguments.

Deformation of cycle γ0 along Γ in positive direction starting from the point
Γ0 consists in four steps. In the initial point Γ0 = (0,−hmax) we have γ0 = s1Γ0

.
At the first step we use deformation

{
s1m,h, (m,h) ∈ [Γ0,Γ1]

}
, where [Γ0,Γ1] is

the part of contour Γ going from Γ0 to Γ1 in counterclockwise direction.
At the second step we replace the cycle s1Γ1

by another curve which belongs
to torus ΛΓ1 , remains homotopic to s1Γ1

but does not belong completely to σ.
This new curve is constructed in the following way. Using two shadow segments
the curve s1Γ1

is transformed into the closed curve which mostly belongs to λΓ1 ,
but at the same time is close to curve s4Γ3

. We add to this curve the whole tra-
jectory γf ⊂ ΛΓ1 of the system with Hamiltonian F1. The curve γf will not be
further transformed except for its deformation as (m,h) and hence the torus Λm,h
vary.

The third step consists of the “transfer” of the constructed curve (which is
homotopic to γ0) along the contour Γ from point Γ1 to point Γ3 overcoming the
point Γ2 of the non-regular intersection of Λm,h with σ. As a result, the part of
this curve which was close to s4Γ3

, becomes exactly s4Γ3
.

The fourth step is similar to the first one and consists in deformation
{
s4m,h

∪ γf , (m,h) ∈ [Γ3,Γ0]
}
.

Let us now describe each step in more details. According to Lemma 5.1
and Lemma C.3 the singularities of the intersection of subspace σ with tori Λm,h
appear only on coordinate axis pσ1 . But the intersection λm,h = Λm,h ∩ σ has
common points with this axis only in the case m = 0 and h ≥ 0. From this
it follows that the first step is correct in the sense that the closed curve s1m,h,
which belongs to torus Λm,h, depends continuously on the deformation parameter
(m,h) ∈ [Γ0,Γ1] ⊂ Γ. The same is true for the last (fourth) step.
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At the second step, the curve s1Γ1
is replaced by the closed curve

r := s1m,h[Aα] ∪ Im,h[α1α3] ∪ s3m,h[αbβ] ∪ Im,h[β3β1] ∪ s1m,h[βA] ∪ γfm,h[β1β1],

which lies on the same torus ΛΓ1 . Here α1 and α3 are, respectively, the end points
of fragments s1m,h[Aα] and s3m,h[αBβ] which lie near the point α ∈ λ0,h. The points
β3 and β1 are, respectively, the end points of fragments s3m,h[αBβ] and s1m,h[βA]
which lie near the β ∈ λ0,h. The curve γfm,h[β

1β1] = β1(−γf )β1 is a complete
trajectory of the system with Hamiltonian F1 passing through the point β1. Its
orientation is opposite to the flow of XF1 .

It is easy to see that the curve r can be obtained from s1Γ1
by cutting s1Γ1

at
point β1 and by incorporating the closed curve

r0 := s1m,h[βaα] ∪ Im,h[α1α3] ∪ s3m,h[αbβ] ∪ Im,h[β3β1] ∪ γfm,h[β1β1]

which results in

r = s1m,h[Aα] ∪ s1m,h[αaβ] ∪ r0 ∪ s1m,h[βA].

Consequently, in order to prove that s1m,h and r are homotopic it is sufficient to
prove that the closed curve r0 is homotopic to a point on the covering of the torus
Λm,h with (m,h) = Γ1. Since Γ1 = (mmax, hmax) and mmax � hmax, this curve
belongs to a small neighborhood of the trajectory γf [ββ] ⊂ λ0,h = Λ0,h ∩ σ. It
follows that by shifting points of the curve r0 along the trajectories of the system
with Hamiltonian F1, this curve can be transformed homotopically so that it lies
entirely in a small neighborhood of the point β ∈ λ0,h, where h = hmax > 0. From
this and Lemma 5.1 it follows that the transformed curve and consequently r0 are
homotopic to a point.

The third step consists in deformation {rm,h, (m,h) ∈ [Γ1,Γ3]} of the curve
r = rΓ1 . This deformation is realized as follows. For all six fragments forming r only
the lower index (m,h) varies. In addition, when passing through m = 0 the upper
index changes from 1 and 3 to 4, so that s1, s3, α1, α3, β1, β3 are transformed
into s4, s4, α4, α4, β4, β4. Using Lemma C.5 we obtain the continuity of this
transformation. It is clear that fragments Im,h[α4α4] and Im,h[β4β4] are points.
Consequently the curve obtained after such a deformation becomes

s4m,h[Aα] ∪ s4m,h[αbβ] ∪ s4m,h[βA] ∪ γfm,h[β4β4],

where γfm,h[β
4β4] = β4(−γf )β4, and it coincides with s4m,h∪(−γf ). This concludes

the description of the third step. The fourth step was described earlier together
with the first step.

In this way, the continuous deformation of closed curves γf and γ0 which
lie on tori Λm,h, with (m,h) ∈ Γ going along contour Γ is constructed. As a
result of this deformation, curves γf and γ0 are transformed into γf and γ0 − γf ,
respectively:

(γf , γ0) �→ (γf , γ0 − γf ). (C.9)
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It is easy to see that the mapping (C.9) can be linearly extended to the
whole lattice H1(ΛΓ0) and the resulting map is represented by matrix (4.2). This
concludes the analytical proof of the Theorem 1.

Appendix D. Proofs in the case m1 = 1, m2 = 2

We begin this section with analytical proofs of some auxiliary statements used in
the proof of the monodromy theorem in the 1:(−2) case. In particular, we prove
Lemma 5.2 formulated in Sec. 5.2.

Subsequently, we represent the intersections λm,h = Λm,h ∩ σ for (m,h) ∈ Γ
directly in the hyperspace σ and prove Lemma D.9, which establishes the exact
correspondence between the representation of λ0,h in σ and that on the torus chart
Λ0,h → R2/Z2 in Sec. 5.2.

Further in Sec. D.2.2, we use this correspondence in order to reproduce in σ
the homotopy transformation of cycles γm,h constructed earlier on the torus charts
and the diffeomorphism which occurs near the m = 0 fibers between deformed
cycles as described in Lemma D.8. This completes the proof of the monodromy
theorem in the case of the 1:(−2) resonance.

D.1. Technical lemmas. Case of the 1:(−2) resonance

Some technical statements in the 1:(−2) case are quite similar to those in the
m1 = m2 = 1 case. At the same time, in this case we need to characterize the
phase flow in more detail. We do that in Lemmas D.2, D.3, D.4.

Lemma D.1. The phase flow {gtF1
, t ∈ R} of the system with Hamiltonian F1 in

(4.3a) is given in coordinates (p, q) in R4 by a block-diagonal matrix whose two
blocks are given by equation (C.1) with ω1 = 1 and ω2 = 2. The action of this
phase flow is equivalent to the action of a circle S1. All trajectories γf of this
flow are passed in time t = 2π, except trajectories lying on the plane {p1 = q1
= 0}, which are passed in time t = π and except the point 0 ∈ R4 which is the
only fixed point of the flow. Trajectories γf intersect transversally the section σ

defined as σ := {p1 −
√

2q2 = 0} everywhere except points of two-dimensional
plane {p1 −

√
2q2 = q1 − 2

√
2p2 = 0}. In all points of this plane trajectories γf

are tangent to hyperspace σ but they are not tangent to the plane itself except at
the line {p1 = q2 = q1 − 2

√
2p2 = 0}. In all points of this line trajectories are not

tangent to the line itself except at the point γf = {0}, which is the only trajectory
of the system with Hamiltonian F1 which lies completely in σ.

Proof. Let us denote by XF1 = (−q1, p1, 2q2,−2p2) the vector field generated by
the system with Hamiltonian F1. This vector field is tangent to γf . The condition
on XF1 to be tangent to σ has the form dF3(XF1) = 0, F3 = 0, where F3 =
p1 −

√
2q2. Former condition can be rewritten as q1 − 2

√
2p2 = 0. If now ζ :=

{p1 −
√

2q2 = q1 − 2
√

2p2 = 0}, we have XF1 |ζ =
(−2
√

2p2, p1,
√

2p1,−2p2

)
and

consequently
(
d(q1 − 2

√
2p2)

)
(XF1) = −3p1 on ζ, where XF1 |ζ is the restriction of
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the field XF1 on ζ. This means that trajectories γf intersect plane ζ transversally
everywhere except at the line l : {p1 = q2 = q1 − 2

√
2p2 = 0}. Finally, at points

of this line the vector field XF1 |l = (−2
√

2p2, 0, 0,−2p2) is not tangent to the line
except at p2 = 0, which corresponds to the only trajectory γf = {0} of the system
with Hamiltonian F1 which completely lies in σ. This concludes the proof of the
lemma. �

The next three lemmas give a more detailed description of the vector field
XF1 in R4 and the phase flow of system with Hamiltonian F1.

Lemma D.2. Each orbit γf of the vector field XF1 in R4 except point 0 ∈ R4 is a
closed curve which intersects σ ⊂ R4 in no more than four points.

Proof. The system of the differential equations with Hamiltonian F1 is linear and
its general solution has the form:

p1 = −c1 sin t+ c2 cos t, (D.1)
q1 = c1 cos t+ c2 sin t, (D.2)
p2 = c3 sin 2t+ c4 cos 2t, (D.3)
q2 = c3 cos 2t− c4 sin 2t. (D.4)

Consider function ψc(t) = p1(t) −
√

2q2(t). For any values of constants c1, c2, c3,
and c4, this function is a trigonometric polynomial of the second order. It is known
that such polynomial either has no more than four roots or is equal identically to
zero. In our case the last possibility means that the whole trajectory belongs to
σ. According to Lemma D.1 this can happen only if the trajectory coincides with
the point 0. Lemma is proven. �

Restriction of coordinate functions p1, q1, p2 on σ defines the coordinates on σ
which we denote by the same letters. For further use, it is convenient to replace
coordinates q1 and p2 for x and y:

x = (q1 −
√

2p2)/
√

2, y = (q1 +
√

2p2)/
√

2. (D.5)

Lemma D.3. The orbit of the point O [given on σ in coordinates (x, y, p1) =
(μ, 0, 0)] generated by action of the phase flow of the system with Hamiltonian F1

intersects hyperplane σ in exactly 4 points for any μ �= 0. In coordinates (x, y, p1)
these points are

(μ, 0, 0), (−μ/2, 0,−μ
√

3/2
√

2), (0,−μ, 0), (−μ/2, 0, μ
√

3/2
√

2).

As t increases, these points are passed by the flow gtF1
in the order they are listed.

Proof. In R4 the coordinates (p1, q1, p2, q2) of point O are (0, μ/
√

2,−μ/2, 0).
Constants ci in expressions (D.1)–(D.4) corresponding at t = 0 to the initial
condition at this point are c1 = μ/

√
2; c2 = c3 = 0; c4 = −μ/2. Function

ψc(t) = p1(t) −
√

2q2(t) at these values of constants ci has the form ψc(t) =
−(μ/

√
2)(sin t+sin 2t). Zero values of ψc(t) correspond to points of intersection of

σ by trajectory (p(t), q(t)) defined in (D.1)–(D.4). For the constructed trajectories
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(with μ �= 0) function ψc(t) equals zero in four points t = 0, 2π/3, π, 4π/3. In
coordinates (p, q) these points have, respectively, the form(

0, μ√
2
,−μ2 , 0

)
,
(
−μ

√
3

2
√

2
,− μ

2
√

2
, μ4 ,−μ

√
3

4

)
,(

0,− μ√
2
,−μ2 , 0

)
,
(
μ
√

3

2
√

2
,− μ

2
√

2
, μ4 ,

μ
√

3
4

)
.

Rewriting these points in terms of the coordinates (x, y, p1) on σ we obtain the
statement of the lemma. �
Lemma D.4. Curves λm,h := Λm,h ∩ σ outside singular points of torus Λm,h and
singular points of intersection of Λm,h with σ are tangent to trajectories of the
field XF1 in points of the plane {q1 = 2

√
2p2} given in coordinates (p1, q1, p2) and

only in these points.
Vector field XF1 is tangent to σ on the coordinate axis pσ1 on σ. On this axis

we have
ṗ1 = 0, q̇1 = p1, ṗ2 =

√
2p1, q̇2 = 0. (D.6)

Here p1 is a natural parameter on axis pσ1 . Projections (parallel to the axis pσ1 )
of the vectors XF1 on the plane pσ1 = 0 in coordinates (x, y) are parallel to vector
(−1, 3). For some p1 > 0 this vector is shown in Fig. D.1. At p1 < 0 its direction
is opposite to that for p1 > 0.

Under the above described projection map the plane {q1 = 2
√

2p2} projects
on the line {y − 3x = 0}.

Figure D.1. Projection of vectors XF1(ξ) on the plane pσ1 = 0.
Points ξ lie on axis pσ1 which belongs to the plane {q1 = 2

√
2p2}

⊂ σ where curves λm,h are tangent to trajectories of the vector
field XF1 .

Proof. Except at the points mentioned in the statement of the lemma, curves
λm,h are smooth. Let ξ be a non-exceptional (in the same sense as mentioned
above) point on σ at which the vector field XF1 is tangent to the curve λm,h. Then
XF1(ξ) is tangent to σ as well. According to Lemma D.1, all points where vector
field XF1 is tangent to σ belong to the plane {q1 = 2

√
2p2}. Hence, ξ belongs to

that plane. Inversely, if point ξ is non-exceptional and belongs to that plane, the
vector XF1(ξ) is tangent to Λm,h and, according to Lemma D.1, is tangent to σ.
Consequently, this vector is tangent to λm,h = Λm,h∩σ. The form (D.6) of vectors
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XF1 at points of axis pσ1 follows from the equations of motion for Hamiltonian
F1 = (p2

1 + q21)/2 − p2
2 − q22 . The form of the projection of this vector on the

plane {q1 = 2
√

2p2} follows from the coordinate transformation (q1, p2) → (x, y)
in (D.5). �
Lemma D.5. Restrictions of the coordinate functions p1, q1, p2 on σ define the
coordinates on σ which we denote by the same letters. In these coordinates the
restrictions Fi := Fi

∣∣
σ

of functions Fi, (i = 1, 2), on σ have the form

F1 = 1
2 (q21 − 2p2

2), F2 =
√

2p2
1q1 + q21p2 − p2

1p2 + 1
4 (2p2

1 + q21 + 2p2
2)

2. (D.7)

In coordinates (x, y, p1) defined by equation (D.5) functions F1 and F2 take the
form

F1 = xy, F2 = 1
2p

2
1(y + 3x) + 1

4 (y − x)(x+ y)2 + 1
4 (2p2

1 + y2 + x2)2. (D.8)

Proof. The statement is evident. �
Lemma D.6. Consider Uε := ∪|m|+|h|<εΛm,h ∈ R4 and its intersection Uε ∩ σ
with σ. For sufficiently small ε > 0 condition

rank
∂(F1, F2)
∂(p, q)

≤ 1

on the Jacobian matrix of the map F is satisfied on Uε ∩ σ at all points of the
coordinate axis pσ2 := {p1 =

√
2q2 = p1 = q1 = 0} on σ and only at those

points. The value (m,h) of F on pσ2 equals (−p2
2, p

4
2), i.e., h = m2 while m ≤ 0.

Furthermore, for sufficiently small ε > 0 condition

rank
∂(F1, F2, F3)

∂(p, q)
≤ 2

on the “extended” Jacobian matrix where F3 := p1 −
√

2q2 is satisfied on Uε ∩ σ
at all points of the straight lines

pσ2 = {p1 = q1 = q2 = 0}, pσ1 = {q1 = p2 = p1 −
√

2q2 = 0},
and of the curve θ defined in the following parametric form:{

p1 = ±
√
−1

2p2(3 + 10p2), q1 = 2
√

2p2, q2 = p1/
√

2, − 3
10 ≤ p2 ≤ 0

}
.

The image of pσ1 under F is {m = 0, h = p4
1}; the image of θ is

{
m = 3p2

2, h =
−1

4p
2
2(9 + 28p2)

}
, i.e., {h = −3

4m+ 7
9

√
3m3/2,m ≥ 0}.

Proof. To prove Lemma D.6 we should analyze the Jacobian matrix

M3 :=⎛
⎝ p1 q1 −2p2 −2q2

2q1q2 − 2p1p2 + p1χ 2q2p1 + 2q1p2 + q1χ q21 − p2
1 + 2p2χ 2q1p1 + 2q2χ

1 0 0 −√2

⎞
⎠

where
χ = (p2

1 + q21 + 2p2
2 + 2q22).
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We begin with the statement for the “shortened” 2× 4 matrix

M2 :=(
p1 q1 −2p2 −2q2

2q1q2 − 2p1p2 + p1χ 2q2p1 + 2q1p2 + q1χ q21 − p2
1 + 2p2χ 2q1p1 + 2q2χ

)
,

which is obtained from M3 by omitting its bottom row. If p1 = q1 = q2 = 0, we
have rankM2 = 1 in all points except 0 ∈ R4, where rankM2 = 0. Thus on the
coordinate axis pσ2 ⊂ σ, which coincides with the coordinate axis p2 in R4

p,q, the
rank of M2 is not maximal. Substituting p1 = q1 = q2 = 0, we find the set of
critical values{

F1(pσ1 ), F2(pσ2 )
}

= {m = −p2
2, h = p4

2} = {h = m2,m ≤ 0} (D.9)

of map F = (F1, F2).
Let us now show that rankM2 = 2 (maximal) at all other points in Uε. First

we prove the absence of critical points in the neighborhood of 0 ∈ σ ⊂ R4 in σ.
If rankM2 is not maximal, all 2-minors should be zero. Let us consider the three
minors which include the second column. This gives the system of equations

q2(2q22 + 2
√

2q1p2 − q21) = 0, (D.10a)

q31 − 2q1q22 + 4
√

2p2q
2
2 + 4q1p2

2 + 4q1p2χ = 0, (D.10b)

q22(
√

2q1 − p2 + χ) = 0, (D.10c)

p1 −
√

2q2 = 0, (D.10d)

where χ = (q21 + 2p2
2 + 4q22). Notice that (D.10d) defines σ and is added because

the rank condition is studied at points on σ and (D.10d) should be taken into
account when solving the three initial equations. Equation (D.10d) was used to
obtain (D.10a)–(D.10c).

When q2 = 0 equation (D.10b) becomes

q1(q21 + 4p2
2 + p2(q21 + 2p2

2)) = 0.

It follows from this equation that q1 = 0 for small |(p, q)|. Consequently, p1 = q1 =
q2 = 0 and this system specifies axis pσ2 . If q2 �= 0, then we get from (D.10a) and
(D.10c)

2q22 + 3q21 + 2
√

2q1χ = 0,
and for |(p, q)| � 1, it follows again that q1 = q2 = 0, and consequently p1 = 0.

Let us now show that rankM2 = 2 at all points from Uε ∩ σ outside a small
neighborhood of axis pσ1 and except points of axis pσ2 . From (D.9) it follows that the
intersection Uε∩σ with a small neighborhood of axis pσ1 is a small neighborhood of
0 ∈ σ. Consequently, this region is complementary in Uε∩σ to a small neighborhood
of 0 ∈ R3, and therefore the entire region Uε ∩ σ is studied.

From the explicit form F1 = (q21−2p2
2)/2 of function F = F1|σ for sufficiently

small ε > 0 we obtain the following. Outside a small fixed neighborhood of axis pσ1
in σ, intersections Λm,h∩σ for |m|+|h| < ε belong to arbitrarily small neighborhood
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of planes {q1 −
√

2p2 = 0} and {q1 +
√

2 = 0}. Thus, it is sufficient to find the
rank of matrix M2 in Uε ∩ σ exactly on these two planes.

Let us replace (D.10c) from the system (D.10) for q21 − 2p2
2 = 0 and F2(p, q)

= h. Taking into account that q1 = ±√2p2 we obtain the system with parameter h

q2(2q22 + (−2± 4)p2
2) = 0, (D.11a)

p2[±3p2
2 + (2∓ 1)q22 ± 8p2(p2

2 + q22)] = 0, (D.11b)

p1 −
√

2q2 = 0, (D.11c)

q1 = ±
√

2p2, (D.11d)

±4p2q
2
2 + 2p3

2 − 2p2q
2
2 + 4(p2

2 + q22)2 = h, (D.11e)

where |h| < μ and μ > 0 can be taken arbitrary small.
Equation (D.11a) has three solutions:

Case q2 = 0. In this case, (D.11b) has the form p3
2(3 + 8p2) = 0 with solutions p2

= 0, and p2 = −3
8 . At the same time eq. (D.11e) for q2 = 0 becomes 2p3

2(1 + 2p2)
= h and consequently, p2 ≈ (h/2)1/3 or p2 ≈ −1

2 . Therefore p2 = 0 and h = 0,
and the only solution of system (D.11) in this case is 0 ∈ R4.
Case q2 = p2 = 0. This case reduces to the previous case q2 = 0.
Case q1 = −√2p2, q2 = ±√3p2. In this case (D.11b) and (D.11e) become

p3
2(6− 32p2) = 0, −16p3

2 + 64p4
2 = h.

The first of these equations has roots p2 = 0 and p2 = 3
16 , while the second gives

p2 ≈ (−h/16)1/3 and p2 ≈ 1
4 . Thus the only solution of the whole system (D.11)

for sufficiently small h is 0 ∈ R4 where h = 0.
The statement of Lemma D.6 about the subset in Uε ∩ σ associated with the

non-maximal rank of matrix M2 is completely proven.
Let us now turn to the study of the condition rankM3 ≤ 2. Adding to the last

column of M3 its first column multiplied by
√

2 and eliminating the first column
and the last row, we get the 2× 3 matrix

Mr
2 =

(
q1 −2p2

√
2p1 − 2q2

2q2p1 + 2q1p2 + q1χ q
2
1 − p2

1 + 2p2χ X

)
, (D.12)

X = 2q1p1 + 2
√

2q1q2 − 2
√

2p1p2 + 2q2χ+
√

2p1χ,

χ = p2
1 + q21 + 2p2

2 + 2q22 .

Since the rank of Mr
2 is smaller than the rank of M3 exactly by one, we should

check the condition

rankMr
2 ≤ 1

to be satisfied on σ = {p1 −
√

2q2 = 0}. Taking into account that the upper right
element of Mr

2 on σ is zero, we get the system of three equations (three minors of
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Mr
2 should be zero).

q1p1(
√

2q1 − p2 + 2p2
1 + q21 + 2p2

2) = 0, (D.13a)

p1p2(
√

2q1 − p2 + 2p2
1 + q21 + 2p2

2) = 0, (D.13b)

q31 − q1p2
1 + 2

√
2p2p

2
1 + 4q1p2

2 + 8q1p2p
2
1 + 4p2q

3
1 + 8q1p3

2 = 0. (D.13c)

The first equation (D.13a) is satisfied if: (i) p1 = 0, or (ii) q1 = 0, or (iii) p2
1 =

(p2 −
√

2q1 − q21 − 2p2
2)/2. Let us analyze these cases consecutively.

Solution p1 = 0. In this case the system (D.13) on σ reduces to the single equation
q1(q21 + 4p2q

2
1 + 8p3

2 + 4p2
2) = 0. It has one obvious solution {q1 = p1 = q2 = 0}

on σ which corresponds to axis pσ2 and to critical points of the map F . Another
solution is q21 = −4p2

2(2p2 + 1)/(1 + 4p2). Since q21 ≥ 0, this solution is meaningful
only for −1/2 ≤ p2 ≤ −1/4. This solution does not belong to Uε ∩ σ. In fact, the
image of the map F for this solution is given as

F1 = −p
2
2(3 + 8p2)
1 + 4p2

, F2 = −p
3
2(23p2 + 32p2

2 + 4)
(1 + 4p2)2

.

It corresponds to the part of the boundary of the range of map F .
Solution q1 = 0. In this case equations (D.13b) and (D.13c) become

p1p2(2p2
1 − p2 + 2p2

2) = 0, p2
1p2 = 0.

They have two solutions. One {q1 = p1 = q2 = 0} has been already found in
the previous case. The other solution q1 = p2 = p1 −

√
2q2 = 0 satisfies the

system (D.13) and defines axis pσ1 . The value of the map F at points on pσ1 is
{m = 0, h = p4

1}, i.e., {m = 0, h ≥ 0}.
Solution p2

1 = 1
2 (p2−

√
2q1− q21 − 2p2

2). In this case eqns. (D.13a) and (D.13b) are
satisfied and eq. (D.13c) becomes

(−3q21 −
√

2q1 + 4
√

2p2q1 − 2p2
2 + p2)(−q1 + 2

√
2p2) = 0

and leads to two possible solutions of the whole system (D.13). One is

{q1 = 2
√

2p2, p1 = ±(−p2(3 + 10p2)/2)1/2, q2 = p1/
√

2},
where −3/10 ≤ p2 ≤ 0 because p2

1 ≥ 0. The values of F for this solution are

m = 3p2
2; h = −p

2
2

4
(9 + 28p2), −3/10 ≤ p2 ≤ 0.

We can rewrite this solution in terms of relation between the values m and h of
the map F :

h = −m
12

(
9− 28

√
m/3

)
, 0 ≤ m ≤ 27/100.

Another solution corresponds to the system of equations

p2
1 = (p2 −

√
2q1 − q21 − 2p2

2)/2, (D.14a)

−3q21 −
√

2q1 + 4
√

2p2q1 − 2p2
2 + p2 = 0. (D.14b)
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Using (D.14b) we can simplify (D.14a) and the system becomes

p2
1 = q1(q1 − 2

√
2p2), (D.15a)

−3q21 −
√

2q1 + 4
√

2p2q1 − 2p2
2 + p2 = 0. (D.15b)

As soon as p2
1 ≥ 0 the solutions are meaningful only if they belong to a part of the

{q1, p2} plane given by inequalities

{q1 ≥ 0, q1 ≥ 2
√

2p2}, {q1 ≤ 0, q1 ≤ 2
√

2p2}. (D.16)

Thus we should solve (D.15b) and retain only those solutions which belong to
the region (D.16) specified above. These solutions consist of one isolated point
(0, 0) ∈ R4 and of a line which is outside of Uε.

The R2
m,h plane image of all critical points of the map {F1, F2} and of points,

where the intersection of σ with regular tori is non-regular (i.e., critical points of the
{F1, F2, F3} map) is shown in Fig. D.2. In fact, it follows from the implicit function
theorem, that eq. (D.14b) defines in some neighborhood Θ of point q1 = p2 = 0
a smooth curve which is tangent to the line {q1 = p2/

√
2} at that point. Thus,

the system (D.14) has no such solutions (p1, q1, p2) that (q1, p2) ∈ Θ. Otherwise,
we have proved that for sufficiently small ε Uε belongs to a small neighborhood of
the union of two planes {q1 =

√
2p2} and {q1 = −√2p2} in σ. Both corresponding

lines in the (q1, p2) plane intersect sector (D.16) in the zero point (q1, p2) = 0 only.

Figure D.2. Image of the critical points of the {F1, F2, F3} map
in the plane of the (m,h) values. Solid lines represent critical
values of the {F1, F2} map; dotted and dashed lines correspond
to non-regular intersections of regular tori with σ.
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Thus, if (q1, p2) �∈ Θ, the system (D.14) does not have the solutions (p1, q1, p2) ∈ Uε
which are of interest to us. Thus, Lemma D.6 is completely proven. �

We can now prove Lemma 5.2 formulated in Sec. 5.2 of the main text.

Proof. Points where surfaces Λm.h are not smooth correspond to points where the
Jacobian matrix ∂(F1,F2)

∂(p,q) has non-maximal rank. All points where surfaces Λm,h
intersect the hyperplane σ = {p1 −

√
2q2 = 0} non-transversally correspond to

points where the rank of the Jacobian matrix ∂(F1,F2,F3)
∂(p,q) , with F3 = p1 −

√
2q2

is not maximal. All such points for sufficiently small |m| and |h| are described in
Lemma D.6.

In order to verify that the plane tangent to surface Λm,h at any point χ on pσ1
and on θ (with exception of 0 ∈ R4) belongs to hyperplane σ, we only need to
verify that both conditions

{dF3(XF1) = 0, dF3(XF2) = 0}
take place at any point lying on pσ1 and on θ in Uε except for 0 ∈ R4.

This proves Lemma 5.2. �

D.2. Analysis of the intersection Λm,h ∩ σ. Case m1 = 1,m2 = 2.

Let us now describe the intersection Λm,h ∩ σ in the case of the 1:(−2) resonance.
Restriction on σ = {p1−

√
2q2 = 0} enables one to reduce the number of variables

to three. The remaining variables are p1, q1, p2, which we change for convenience
(see Lemma D.5) to x, y, p1. In what follows below we will describe the behavior
of the intersection line λm,h := Λm,h ∩ σ in σ using these coordinates x, y, p1.

Figure D.2 shows the image of the energy momentum map F = (F1, F2)
together with the curves of critical values. The same figure shows projections of
critical points of the (F1, F2, F3) map on the plane (F1, F2). Near 0 ∈ R2 this
projection consists of three curves (disregarding the boundary), one of which is
the line of critical values of the map F = (F1, F2). These three curves split the
domain of allowed values into three regions. We need to study all these 2D and
1D strata, but the most important again is to study the m = 0 case because it in
some sense “organizes” the behavior of λm,h for small positive and negative m.

So we start again with the m = 0 case. The analysis of eqs. (D.8) defining
curves λ0,h is more complicated in the 1:(−2) case than in the case 1:(−1). It
enables us to find the following facts which we formulate first using a graphical
representation.

The behavior and the number of components depends on the sign of h. For
h < 0 the situation is simpler. The intersection λ0,h, for h < 0 has four connected
components. Three lie in the y = 0 plane. They are described by the equation

3p2
1x/2− x3/4 + (2p2

1 + x2)2/4 = h. (D.17)

The fourth component lies in the x = 0 plane. Its equation in the p1, y variables



Vol. 7 (2006) Fractional Hamiltonian Monodromy 1189

Figure D.3. Planar component of the λ0,h, h ≤ 0 curves lying
in the x = 0 plane. This component is shown for h = −0.01,
h = −0.001, and h = 0.

Figure D.4. Planar components of the λ0,h, h ≤ 0 curves lying
in the y = 0 plane. These components are shown for h = −0.01,
h = −0.001, and h = 0.

takes the form

p2
1y/2 + y3/4 + (2p2

1 + y2)2/4 = h. (D.18)

For λ0,h, h > 0 the intersection line is the union of two planar curves lying in the
planes {y = 0} and {x = 0}. In each plane there is only one component and the
two planar curves have two common points which belong to axis p1.

Figure D.3 shows planar components of the λ0,h, h ≤ 0 curves lying in the
x = 0 plane for three different values of h. Three components lying in the plane
y = 0 are shown in Fig. D.4 for the same three values of h ≤ 0.

For h = 0 all four components have one common point x = y = p1 = 0.
For positive h (but keeping always m = 0) we get the union of two planar curves
shown separately in Fig. D.5 for the x = 0 component and in Fig. D.6 for the
y = 0 component.



1190 N.N. Nekhoroshev et al. Ann. Henri Poincaré

Figure D.5. Planar component of the curves λ0,h with h ≥ 0
lying in the x = 0 plane for h = 0.01, h = 0.001, and h = 0.

Figure D.6. Planar components of the curves λ0,h with h > 0
lying in the y = 0 plane for h = 0.001, h = 0.01 and h = 0.

The 3D-view of the intersection curves for m = 0, h > 0 is shown in Fig. D.7.
As in the case of the 1:(−1) resonance we name these curves skeleton curves. They
correspond to the point Γ5 (see Fig. 6) on the contour Γ and this is precisely the
point around which we will study the evolution of cycle 2γ0 by constructing a
homotopically equivalent cycle and deforming it along the contour Γ.

As soon as we have the skeleton curves corresponding to λ0,h, h > 0, we
look at the intersection Λm,h ∩ σ for h > 0 and small |m| � hmax. In coordinates
(x, y, p1) on σ the function F1 has extremely simple form F1 = xy. This means
that for m �= 0 components of the intersection belong to two sheets of cylindrical
hyperboloid surfaces. If m > 0 these two sheets lie in the first and third cylindrical
quadrant. If m < 0 they lie in the second and fourth cylindrical quadrant. We
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Figure D.7. Skeleton curves with orientation defined by the
intersection Λm,h ∩ σ. Closed curve OβACαO belongs to plane
y = 0. Closed curve BαoβB belongs to plane x = 0. Each planar
curve consists of two fragments with different orientation.

denote as skm,h the union of components of the intersection curve which belong
to the k-th quadrant. For the sake of simplicity we will speak also about k-th
hyperboloid, meaning the part of the F1 = xy hyperboloid which belongs to the
k-th quadrant. Examples of curves s3m,h and s1m,h with h > 0 and small positive
m are shown in Fig. D.8. Figure D.9 shows curves s2m,h and s4m,h for m < 0 and
h > m2 > 0.

The precise statements about the form of the skeleton curves λ0,h and in-
tersection lines skm,h, (m,h) ∈ Γ are given in Lemmas D.7 and D.8, which follow
next.

Lemma D.7. The skeleton curve λ0,h is the union of two planar curves: λ0,h =
λx0,h ∪ λy0,h which lie in the respective planes {x = 0} and {y = 0} within σ. Each
of these planar curves is symmetric in its plane with respect to the coordinate axis
{p1 = 0}. The curve λx0,0 is a union of three loops with common point at zero
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Figure D.8. Bold lines show two components s1Γ4
(black) and

s3Γ4
(grey) of the intersection Λm,h ∩ σ at point Γ4 = (m,h).

s1 and s3 belong respectively to the hyperboloid sheets situated
in the first and third quadrant. α1, α3 (β1, β3) are points of the
intersection which are closest to the branching point α (β) of the
skeleton curve in Fig. D.7. Projections of the intersection curves
on the plane (x, y) are shown at the bottom of the plot.

p1 = x = 0. The three loops are smooth everywhere except at this point and are
situated as shown in Fig. D.4. In the neighborhood of the origin p1 = x = 0 the
curve λx0,0 has the form of the union of three smooth curves intersecting at that
point (see Fig. D.4). For small h > 0 the curve λx0,h is obtained from λx0,0 by
“inflation” (see Fig. D.6) and for small −h > 0 by “deflation” (see Fig. D.4).

Curve λy0,0 is a smooth curve lying in the half-plane y ≤ 0 and tangent to
coordinate axis p1 at zero p1 = y = 0. For small |h| curve λy0,h is obtained from λy0,0
by “inflation” or “deflation” depending on the sign of h (see Figs. D.5 and D.3).

Curves λx0,h and λy0,h intersect at two points of the coordinate axis p1 in σ

with coordinates x = y = 0 and p1 = ±(h)1/4, see Fig. D.7.
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Figure D.9. Bold lines show two components s2Γ6
(grey) and

s4Γ6
(black) of the intersection Λm,h ∩ σ at point Γ6 = (m,h). s1

and s3 belong respectively to the hyperboloid sheets situated in
the first and third quadrant. α4, (α2) and β4, (β2) are points of
the intersection which are closest to the branching points α and β
of the skeleton curves in Fig. D.7. Projections of the intersection
curves on the plane (x, y) are shown at the bottom of the plot.

Proof. We start by analyzing curve λx0,h defined by eq. (D.17). By substitution
z = p2

1 and u = x/2 we transform this equation into

z2 + bz + c = 0, where b = 4u2 + 3u, and c = 4u4 − 2u3 − h.
Let us set h = 0 and analyze roots z1,2(u) of this quadratic equation for u ∈ R.
We get:
i) u ∈ (−∞,−9/32), Δ = b2 − 4c = u2(32u+ 9) < 0, there are no real roots;
ii) u = −9/32, Δ = 0, c > 0, b < 0, there is one multiple root z1 = z2 > 0;
iii) u ∈ (−9/32, 0), Δ > 0, c > 0, b < 0, z1 > z2 > 0;
iv) u = 0, Δ = 0, c = b = 0, z1 = z2 = 0;
v) u ∈ (0, 1/2), Δ > 0, c < 0, z1 > 0 > z2;
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vi) u = 1/2, Δ > 0, c = 0, b > 0, z1 = 0, z2 < 0;
vii) u ∈ (1/2,+∞), Δ > 0, c > 0, b > 0, there are no non negative real roots.
As a leading part of eq. (D.17) in the neighborhood of point p1 = x = 0 we
can take p4

1 + 3p2
1x/2 − x3/4 = 0. Solving this equation with respect to p1, we

find that the curve λx0,0 has the form described in the statement of the lemma. In
particular, in the neighborhood of the origin λx0,0 has the form of the union of three
smooth curves intersecting at the origin and having there tangents {p1 = ±x/6}
and {x = 0}.

The relation between curves λx0,h for h �= 0 and λx0,0 and the proof of the fact
that λx0,h, h �= 0 is smooth everywhere including points of the intersection with
axis p1 is completely similar to the case 1:(−1) (see Lemma C.4).

We turn to the analysis of the curve λy0,h. After changing variables z = p2
1, u =

y/2 in eq. (D.18) we get:

z2 + bz + c = 0, where b = 4u2 + u, and c = 4u4 + 2u3 − h.
Let us set h = 0 and analyze roots z1,2(u) of this equation for u ∈ R. We have
Δ = u2 ≥ 0 and:
i) u ∈ (−∞,−1/2), c > 0, b > 0 there are no non-negative real roots;
ii) u = −1/2, c = 0, b > 0, z1 = 0, z2 < 0;
iii) u ∈ (−1/2, 0), c < 0, z1 > 0 > z2;
iv) u = 0, c = b = 0, z1 = z2 = 0;
v) u > 0, c > 0, b > 0, there are no non-negative real roots.

In the neighborhood of the origin p1 = y = 0, the leading part of equation
(D.18) has the form p4

1 + p2
1y/2 + y3/4 = 0. This ensures that λy0,0 is smooth in

the neighborhood of the origin. Further analysis repeats exactly the proof in the
case of the curve λxm,h. Thus all statements of the lemma are proved. �

The next lemma provides exact correspondence between the intersection lines
skm,h and skeleton curves sk0,h. As compared to the 1:(−1) case (see Lemma C.5)
we need to treat different cylindrical quadrants separately and we need to study
special one-dimensional strata.

Lemma D.8. There exists such h0 > 0 that for all ε > 0 and η > 0 there is
δ = δ(h0, ε, η) > 0 with the following property. For m and h such that |h| < h0

and |m| < δ

1. The distance between s1m,h and s10,h does not exceed ε: ρ0(s1m,h, s
1
0,h) < ε. Here

the distance ρ0(A,B) between subset A and subset B is defined in a standard
way: ρ0(A,B) = maxξ∈A ρ0(ξ, B), where ρ0 is the distance induced by the
coordinates (p, q) in R4.

2. ρ1(s1m,h \ Vη, s10,h \ Vη) < ε, where ρ1 is the distance similar to ρ0, but with
C1 norm, rather than C0, i.e., the norm takes into account both the distance
between points and between directions of lines tangent at these points to curves
s1m,h\Vη, and s10,h\Vη. In other words, curves s1m,h and s10,h are almost parallel
each other outside the cylinder Vη.
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Figure D.10. Parts of the intersection Λm,h ∩ σ at point Γ8

lying in the 4th quadrant. Projections on the (y, p1) and (x, p1)
planes are shown on the top; schematic 3D-view of the intersection
situated on the hyperboloid surface is shown on bottom.

Figure D.11. Part of the intersection curves at point Γ8 lying
in the 2nd quadrant. Projections on the (y, p1) and (x, p1) planes
are shown left and center. Schematic 3D-view of the intersection
curve lying on the hyperboloid surface is shown in the rightmost
plot.
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Figure D.12. Rearrangement of the components of intersection
line near the singular fiber (curled torus).

3. Let us consider the mapping φ between the curve s1m,h \ Vη and the part of
the curve s10,h which sends each point from s1m,h \ Vη to the nearest point of
the curve s10,h. Then φ is a diffeomorphism.

4. Curves s1m,h and s10,h are homeomorphic to each other. The curve s1m,h for
m �= 0 and the curve s10,h \ {x = y = 0} are smooth. For h = m2 and 0 <
−m � 1 the curve s2m,h (s4m,h) has the form of figure eight which lies close
to s20,0 (respectively to s40,0) and is homeomorphic to this curve (see Figs.
D.11, D.10). For 0 < h −m2 � m2 � 1 and m < 0, the s2m,h (s4m,h) curve
is produced by “inflation”, and for 0 < m2 − h � m2 � 1 and m < 0
by “deflation” of s2m,m2 (s4m,m2) (see Fig. D.12). Curve s3m,h for (m,h) ∈ θ
has the form of a “double figure eight” shown in Fig. D.13, centre. If point
(m,h) moves from curve θ to higher (lower) h values without changing m,
the corresponding curve s3m,h results from s3m,h, (m,h) ∈ θ, after “inflation”
(“deflation”) of the latter (see Fig. D.13, right (left)).

S3

θm>0, h<h

S3

m>0,  h=hθ

S3

θm>0, h>h

Figure D.13. Rearrangement of the s3 components of the inter-
section curve near the critical line of the {F1, F2, F3} map.
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Proof. Similar to Lemma C.5, statements i), ii), iii) of Lemma D.8 as well as state-
ment iv) in the case of the first quadrant follow from the implicit function theorem
and Lemmas D.6 and D.7. We omit the standard proof of these statements.

In order to prove statement iv) in the case of quadrants k = 2, 3, 4 we need
to study curves skm,h, k = 4, 2 for h = m2,m < 0 and for close values of (m,h), as
well as curve s3m,h for (m,h) ∈ θ and for close values of (m,h).

Let us start with skm,h, k = 4, 2 for |h − m2| � m2 � 1 and m < 0.
Substituting F1 = m,F2 = h in (D.7) and solving the first of these equations with
respect to p2 we get p2 = ±

√
−m+ q21/2. Let us treat both cases.

1) p2 = −
√
−m+ q21/2. (Analysis of curves s4m,h for |h − m2| � m2 � 1,

m < 0.) Substituting this expression for p2 into the second equation in (D.7) and
changing to variables z = p2

1, q = q1, we get

z2 + bz + c = 0

b =
√
−m+ q2/2 +

√
2q + 2q2 − 2m, c = q2(−

√
−m+ q2/2 + q2 − 2m).

Let us analyse roots z1,2(q) of this equation for all q ∈ R.
Resolving c(q) = 0 we get four roots q1,2 = 0, q3,4 = ±α, with α = 1/

√
2 + β,

β > 0 and β(m)→ 0 for −m→ 0. It is easy to verify that for |q| > α and m < 0,
we have c(q) > 0 and b(q) > b0 > 0, and for 0 < |q| < α, we have c(q) < 0. If
q = 0, then c = 0 and b > 0. Thus for roots z1,2(q) we have:
q ∈ (−∞,−α), no real non-negative roots;
q = −α, z1 = 0, z2 < 0;
q ∈ (−α, 0), z1 > 0 > z2;
q = 0, z1 = 0, z2 < 0;
q ∈ (0, α), z1 > 0 > z2;
q = α, z1 = 0, z2 < 0;
q ∈ (α,+∞), no real non-negative roots.

This information proves the statement about the form of the curves s4m,m2

at small −m > 0. Taking into account how h enters in the solution of (D.7) with
respect to p1, we get equally the form of s4m,h for small |h −m2| � m2 � 1 and
m < 0.

2) p2 = −
√
−m+ q21/2. (Analysis of curves s2m,h for |h − m2| � m2 � 1,

m < 0.) Substituting this expression for p2 into the second equation of (D.7) and
changing variables z = p2

1, q = q1, we obtain

z2 + bz + c = 0

b = −
√
−m+ q2/2 +

√
2q + 2q2 − 2m, c = q2(

√
−m+ q2/2 + q2 − 2m).

We have c > 0 for q �= 0 and c(0) = 0, with function c = c(q) being even and
c′(q) > 0 for q > 0.

Let us find roots of the equation b(q) = 0. If |q| � 1 the leading part of this
equation is P (q) = 0 where P (q) = −√−m+ q2/2 +

√
2q. The only solution of

P (q) = 0 is α =
√−2m/3. As soon as P ′(α) > 0 the initial equation b(q) = 0
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α∗ ∗

Figure D.14. Geometric representation of c(q) and b(q).

for |q| � 1 also has unique solution α∗, with α∗ being close to α, namely α∗ =
α+ o(

√−m) for small −m and |q|.
For |q| � √−m the leading part of equation b(q) = 0 is

√
2q + 2q2 = 0. Its

solution gives the only acceptable root, β = −1/
√

2. The derivative of the left-
hand side of this shorten equation in point β is negative. Thus, the initial equation
b(q) = 0 for all |q| � √−m has the only solution β∗ = β + o(1) close to β for
(−m) → 0. Taking into account that b(0) < 0, we can verify that the graphics of
functions c(q) and b(q) have the form, shown in Fig. D.14.

Let us analyze now the discriminant Δ = Δ(q) = b2(q) − 4c(q) of equation
z2 + bz + c = 0. It is clear that Δ(0) > 0, Δ(α∗) < 0 and b′(q) > 0 if q ∈ [0, α∗].
From this and from inequality c′(q) > 0 for q > 0 we get that Δ′(q) < 0 for
q ∈ (0, α∗]. Thus, equation Δ(q) = 0 has on the interval (0, α∗) the only solution,
which we denote by γ (see Fig. D.14). To analyze Δ = Δ(q) on the closed interval
[β∗, 0] we start with the complete expression of Δ(q) and reduce it to the shortened
expression

S :=
(√
−m+ q2/2−

√
2q
)2

.

For m < 0 and q < 0 we have S > −m+ q2 > 0. Now it follows easily that

Δ = S + o(S) for small positive (−m) and (−q), (D.19)

and consequently, the choice of S(q) as a leading part of Δ(q) for these m and q
is justified. From (D.19) it follows that equation Δ(q) = 0 for 0 < −m + q2 � 1
and m < 0, q < 0 has no solutions.

For −q � √−m the leading part of Δ(q) = 0 can be taken as Q(q) = 0,
where Q = 9q2/2 + 8

√
2q3. On the semi-open interval [β∗, 0) equation Q(q) = 0

has the only solution q = −9
√

2/32. Since Q′(β∗) < 0, the Δ(q) = 0 equation for√−m� −q ≤ −β∗ also has a unique solution, which should be close to −9
√

2/32
and which we denote as δ. Then, Δ(δ) = 0 and δ ∈ (β∗, 0), as illustrated in
Fig. D.14.

Analysis of the coefficients b(q) and c(q) and of the discriminant Δ(q) of the
quadratic equation z2 + bz + c = 0 enables us to make the following conclusion
about the roots z1,2(q) of this equation.
q ∈ (−∞, δ) : no real non-negative roots (because either c > 0, b > 0, or Δ < 0);
q = δ : z1 = z2 > 0, (c > 0, b < 0,Δ = 0);
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q ∈ (δ, 0) : z1 > z2 > 0, (c > 0, b < 0,Δ > 0);
q = 0 : z1 > 0, z2 = 0, (c = 0, b < 0,Δ > 0);
q ∈ (0, γ) : z1 > z2 > 0, (c > 0, b < 0,Δ > 0);
q = γ : z1 = z2 > 0, (c > 0, b < 0,Δ = 0);
q ∈ (γ,∞) : no real non-negative roots (either Δ < 0, or c > 0, b > 0).

The form of curves s2m,m2 which was described for small m < 0 in Lemma D.8
follows from this analysis. Taking into account the way h enters into the solution
of eq. (D.7) with respect to p1, we get also the form of curves s2m,h for small
|h−m2| � m2.

To prove the statement of Lemma D.8 about the form of curves s3m,h for
(m,h) lying on θ and situated close to it, we need to follow the same scheme of
the analysis of roots of the biquadratic equation. As soon as this statement is not
needed for the proof of Theorem 2, we omit it here. �

Lemma D.8 and the analysis of the skeleton curves (Lemma D.7) enable us to
precise the number of components sim,h of the intersection Λm,h ∩ σ lying on each
sheet of the hyperboloid for all three regions which exist near the singular value
(0, 0) of the map F . (See Fig. D.15.) Note, that in the lower region the total number
of components is always four, but their distribution between different sheets of the
hyperboloid changes at m = 0.

To complete the understanding of the evolution of the components of the
intersection curves we also need to define their orientations (according to the con-

s (1)  s (1)
s (1)   s (1)

s (2)   s (2)

s (1)  s (3)1

1

3

3
2

2 4

4

2
2

4 4

Figure D.15. Regions of the image of the energy momentum
map F near (0, 0) and the number of components (big numbers) of
intersection Λm,h∩σ in each region. Solid line shows critical values
of map F . Dashed lines show images of points with nonregular
intersection under F . Dotted line corresponds to the degeneration
of the two-sheet hyperboloid into two intersecting planes. Symbols
si(K) indicate that there are K components on the sheet of the
hyperboloid lying in the i-th quadrant.
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struction described earlier in Sec. 5). This orientation is indicated in all Figs. D.7–
D.13. One can easily verify that the orientation is chosen in such a way that
under reorganization of the intersection curves the orientation of each fragment is
conserved.

The next step in the proof of the monodromy theorem in the case of the 1:(−2)
resonance is the analysis of the deformation of cycles in σ as we follow along Γ. To
simplify the analysis and to visualize better the deformation of cycles we establish
in the next lemma the correspondence between the intersection curves on σ and
on the universal covering of the tori in the special point Γ5 (i.e., for m = 0, h > 0)
of the contour Γ.

Lemma D.9. Let us consider torus ΛΓ5(Γ5 = (m,h) |m=0,h>0) (see Fig. 6).
On this torus there exist continuous “angle coordinates”

ψ mod 2π = (ψ1 mod 2π, ψ2 mod 2π)

with the following properties:
Parallel “coordinate” circles {ψ2 mod 2π = c} coinside with trajectories of vector
field XF1 and circles {ψ1 mod 2π = d} are homotopic to the cycle γΓ5

0 ⊂ ΛΓ5 , which
is obtained by a continuous deformation of cycle γ0 = γΓ0

0 = s1Γ0
associated with

the displacement of point (m,h) from Γ0 to Γ5 along the right part of the contour Γ,
i.e., along Γ ∩ {m ≥ 0}. Function ψ1 increases along the curve {ψ2 mod 2π = c}
in the direction corresponding to the direction of evolution of points on ΛΓ5 under
the action of the phase flow of field XF1 . Natural orientation defined on cycle
{ψ1 mod 2π = d} agrees with the orientation defined on cycle γ0. Moreover, in
“coordinates” ψ mod 2π the intersection λΓ5 has the form of contour constructed
from straight segments as shown in Fig. D.16. More exactly, let us interpret the
square shown in Fig. D.16 as a fundamental region on the R2 covering of torus ΛΓ5

with coordinates ψ. Then the planar component λx0,h = λ0,h ∩ {y = 0} ⊂ σ of
intersection λ0,h on the covering R2

ψ is given by equation ψ2 = 3ψ1 +1/3. Another
planar part λy0,h = λ0,h ∩{x = 0} ⊂ σ is given by equation ψ2 = ψ1. [Remind, that
λ0,h = λx0,h ∪ λy0,h.]

O

o

AB C

O A BC

 β

α

ψ
1

ψ
2

Figure D.16. Schematic representation of the intersection
curves on the covering of the torus ΛΓ5 in the (ψ1, ψ2) coordi-
nates.
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Proof. Let us consider smooth “coordinates” ϕ mod 2π, ϕ = (ϕ1, ϕ2) on torus ΛΓ5

such that circles {ϕ2 mod 2π = c} coinside with trajectories of vector field XF1

and circles {ϕ1 mod 2π = d} are homotopic to cycle γΓ5
0 and at each point of

torus ΛΓ5 the direction of vector ∂
∂ϕ1

coinsides with the direction of vector XF1

at that point. The existence of such coordinates follows, for example, from the
Liouville–Arnol’d theorem [54].

Intersection of the planar skeleton component λx with the plane given in σ
by equation p1 = 0 consists of two points. We denote by O the point lying in the
half-space x > 0, i.e., the point which is farthest from the origin among these two
points (see Figs. D.4, D.6, and Lemma D.7).

We take as a circle φ2 mod2π = 0 the trajectory of the field XF1 which
goes through the point O ∈ λΓ5 . It follows from Lemma D.3 that this trajectory
contains three other points lying on λΓ5 . We denote these points in the order of
increasing time as A,B,C. From Lemma D.3 we conclude that point A belongs
to quadrant y = 0, x < 0, p1 < 0, point B belongs to ray x = p1 = 0, y < 0, and
point C belongs to quadrant y = 0, x < 0, p1 > 0 (see Fig. D.7).

Let us consider cycle OβoαO lying on the curve s1Γ5
⊂ ΛΓ5 (see Fig. D.7) and

show that this cycle is homotopic to the curve γΓ5
0 ⊂ ΛΓ5 . We notice first, that tori

Λm,h form a locally trivial fibration of the part U of the phase space R4
p,q, which

lies above some small neighborhood V ⊂ R2
m,h of the right part Γ ∩ {m ≥ 0} of

the contour Γ: U = F−1(V), Γ ∩ {m ≥ 0} ⊂ V. From Lemmas 5.2, D.7, and D.8
it follows that for (m,h) ∈ Γ ∩ {m ≥ 0}, except the final point (m,h) = Γ5, the
intersection s1m,h is the connected component of the intersection Λm,h ∩ σ = λm,h
of torus Λm,h with hyperplane σ. Moreover, this component does not include any
exceptional points of the intersection. Thus it follows that for such (m,h) the
intersection s1m,h can be obtained from γ0 = s1Γ0

by a smooth deformation in σ.
At point Γ5 the continuity in σ of the deformation of curve s1m,h follows from
Lemma D.8. All these facts give the homotopy of cycles γ0 ⊂ ΛΓ0 and OβoαO
⊂ ΛΓ5 respecting the orientation and corresponding to the displacement from Γ0

to Γ5 along the right part of the contour Γ.
Let us show now that on the covering of the ΛΓ5 torus in coordinates ϕ =

(ϕ1, ϕ2) the cycle OβoαO belongs to a half-band Π := {0 ≤ ϕ2 ≤ 2π} and
connects point O with its 2π-shift “up”, i.e., with point O+(0, 2π). Moreover, the
cycle OβoαO on R2

ϕ behaves similarly to the oriented “polygonal” line OβoαO
represented in Fig. D.16 in the following sense. The line OβoαO ⊂ R2

ϕ consists
of three smooth generic curve segments. The first segment [0, β] “goes up” from
point O to point β which is situated below the upper boundary of the band Π. The
second segment [β, α] goes down to the left of the first segment without touching
the lower boundary of the band Π. The third segment [β,O + (0, 2π)] is situated
farther to the left and goes up to point O + (0, 2π).

The fact that cycle OβoαO on the covering of the torus Λ := ΛΓ5 consists of
three smooth segments follows from the smoothness of torus Λ and “coordinates”
ϕ mod 2π on it, and from the smoothness of the curve OβoαO ⊂ σ in σ except
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points β and α. On each of these smooth segments, “moving up” along coordinate
ϕ2 cannot change to “moving down” and vice versa, because the internal parts of
these segments do not intersect the plane {q1 = 2

√
2p2} ⊂ σ (see Lemma D.4).

Recall that curves λm,h are tangent to trajectories of the vector field XF1 only at
that plane.

The fact, that “moving up” to point β on the segment [O, β] should change to
“moving down” on the segment [βoα] to the left of [O, β] follows from Lemma D.4,
see Fig. D.1. In fact, the position of curves [O, β], [βoα], and positive coordinate
semi-axis ϕ1 in the neighborhood of the point β on the covering R2

ϕ of torus Λ
should correspond respectively to positions of coordinate semi-axes x and y and
vector XF1(β) in the neighborhood of point β on σ, see Fig. D.1. Taking into
account that p1(β) < 0 we conclude that vector XF1(β) has direction opposite
to that shown in Fig. D.1. Thus, going on the torus chart Λ near point β from
segment [βoα] along the straight lines {ϕ2 = c} in the direction of increasing
coordinate ϕ1 should almost immediately lead to the curved segment [O, β]. This
results in “going down” in ϕ2 after leaving point β along segment [βoα].

Completely similar analysis shows that “going down” along [βoα] when ap-
proaching point α changes to “going up” in ϕ2. Thus we get the “zigzag” form of
the cycle OβoαO on the covering R2

ϕ of torus Λ.
Let us now show that the “zigzag” curve, with exception of its initial point O

and its final point O + (0, 2π), belongs to the internal part of band Π. In fact,
the boundary ∂Π of Π ⊂ R2

ϕ is given by equations: ϕ2 = 0 and ϕ2 = 2π. But the
subset λ = λΓ5 ⊂ ΛΓ5 intersects trajectories of vector field XF1 , which coinside
with circles {ϕ2 mod 2π = 0} only in four points O,A,B, and C. None of these
points belong to the curve OβoαO ⊂ σ except the initial (and at the same time
the final) point O. Hence the internal part of the “zigzag” curve belongs to Π\∂Π.

Just above we have shown that the circle s1Γ5
⊂ ΛΓ5 corresponding to the

“zigzag” curve is homotopic to cycle γΓ5
0 . By the definition of the angle “coordi-

nate” ϕ1, the circle {ϕ1 mod 2π = 0} is also homotopic to the same cycle. This

ββ
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O O

o o
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β

B

B

α
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oo
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α
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oo
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Figure D.17. Schematic representation of skeleton curve on the
ΛΓ5 torus map. Left: The loop (O−β−α−O) on the torus covering
together with the choice of the fundamental region (shadow part).
Center: Loop αoβBα. Right: Loop αOβACα.
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means that the final point of the “zigzag” curve is shifted with respect to its initial
point by the vector (0, 2π) ∈ R2

ϕ, i.e., the final point coinsides with O + (0, 2π).
Let us now consider the fundamental region of the torus covering which is

bounded from below and above by trajectories of the field XF1 lying respectively
on lines ϕ2 = 0 and ϕ2 = 2π. On the right and on the left, this region is bounded
by the zigzag curve (OβoαO) (see Fig. D.17, left).

Let us now take a smooth loop going along λy on the skeleton starting at
point α: (αoβBα). The first segment (αoβ) is represented on the torus covering
and we go along it to higher values of ϕ2. This means that values of ϕ2 should
increase along the whole loop and on the torus we come back to point α. On the
torus covering the final point is different from the initial one. Because the rest of
the loop (βBα) does not intersect the zigzag curve (OβαO) and λy intersects cycle
{ϕ2 mod 2π = 0} only in point B, the (βBα) part of the loop should intersect the
straight line ϕ2 = 2π at 0 < ϕ1 < 2π and the intersection point should coincide
with point B (see Fig. D.17, center).

It is easy to see that the final point of the loop (αoβBα) is displaced on the
torus covering with respect to the starting point O by vector (2π, 2π). In fact,
the orbit ϕ2 mod 2π = 0 of the field XF1 intersects the loop (αoβBα) only in
point B. Thus the value of coordinate ϕ2 in the final point should be between
2π and 4π. On the other hand, the main part of the loop (βBα) has no common
points with the zigzag curve corresponding to the loop (OβoαO) except its ends.
Thus the final point of the smooth loop (αoβBα) on the torus covering can either
return back to the continuation of the initial zigzag curve or come to a zigzag
curve shifted to the right by 2π, i.e., the zigzag shifted by the vector (2π, 0). But
the curve representing the loop (αoβBα) cannot come back to the same zigzag
because in such a case the increase of ϕ2 has to be followed by a decrease (see
Fig. D.17, center). This contradicts the behaviour of the zigzag curve which was
already proven earlier.

Let us consider now other planar part of the skeleton lying on λx. We take
point α as a starting point and move along (αOβACα). We look for the form of
this curve on the torus covering with coordinates (ϕ1, ϕ2). The part (αOβ) was
studied earlier. The rest does not contain points α, β of the intersection of planar
parts of the skeleton. Using similar arguments we get that the curve representing
the loop (αOβACα) on the torus covering always goes up (to higher values of ϕ2)
and its final point is displaced with respect to the starting point by vector (2π, 6π),
(see Fig. D.17, right). We note that the value Δϕ2 = 6π is due to the fact that the
loop (αOβACα) intersects trajectories ϕ2 mod 2π = 0 in three points, O,A,C.

We prove now the statement ii) about the existence of the homeomorphism
straightening the planar parts λx, λy of the skeleton on the torus covering, i.e., the
existence of “angle coordinates” (ψ1 mod 2π, ψ2 mod 2π) with required properties
on torus ΛΓ5 . As it was mentioned earlier both curves λx, λy represented in smooth
coordinates (ϕ1, ϕ2) are smooth and intersect themselves only in points α and β.

Let us pose ψ2 = ϕ2 and construct the “angular coordinate function” ψ1 =
ψ1(ϕ1, ϕ2) separately on each circle {ϕ2 mod 2π = c}. From the facts proven
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earlier it follows that the points of intersection lc = λ∩{ϕ2 mod 2π = c} ⊂ Λ ⊂ σ
in coordinates ϕ appear on circle {ϕ2 mod 2π = c} in the same order as points
of the intersection with circle {ψ2 mod 2π = c} of the polygonal line composed of
straight segments as shown in Fig. D.16.

At the same time and in contrast to Fig. D.16, under the variation of c the
intersection points lc in coordinates ϕ mod 2π move on curved rather than on
straight lines. To improve this deficiency of coordinates ϕ mod 2π we construct
for each c mod 2π a homeomorphism Fc : {ϕ2 mod 2π = c} → {ϕ2 mod 2π = c},
which transforms points of lc in “coordinates” ϕ mod 2π into corresponding points
of intersection of the polygonal line in Fig. D.16 with circle {ψ2 mod 2π = c}.

It is not hard to see that such homeomorphism exists. Moreover, the cor-
responding functions F and G, where F (ϕ1, ϕ2) := Fϕ2(ϕ1) and G(ψ1, ϕ2) :=
F−1
ϕ2

(ψ1), can be chosen continuous over all arguments (ϕ1, ϕ2) and (ψ1, ϕ2) re-
spectively. Then mapping (ϕ1, ϕ2) �→ (ψ1, ψ2), where ψ1 = F (ϕ1, ϕ2), ψ2 = ϕ2 is
the homeomorphism straightening the intersection λ = λΓ5 as formulated in the
statement of Lemma D.9. This proofs the lemma. �

D.2.1. Curve fragments used for construction of deformation of 2γ0. First of all we
need to choose properly the cycle which can be deformed along Γ. The obvious re-
striction imposed on this choice is due to the fusion (splitting) of loops lying on the
same hyperboloid surface which occurs when we pass through the singular curled
torus fiber. From Figs. D.10, D.11, D.12 it is clear that only the cycles formed
by two loops can continuously pass through this singular fiber. Consequently, we
need to take a double loop to construct the monodromy map associated with the
closed path δΓ.

In order to simplify the crossing of the θ line, associated with the fusion of
three loops on the 3-rd hyperboloid sheet, we take the double loop situated at
m = 0, h < 0 in the y = 0, x > 0 half-plane as a 2γ0 cycle. For positive m this
loop is situated on the hyperboloid in the first quadrant, whereas three other loops
for m > 0 are on the hyperboloid in the third quadrant. The chosen s1 loop can
be deformed smoothly as (m,h) crosses the θ curve. As soon as we take it to be
a double loop, it passes continuously across the “curled torus” singular fiber as
well. The only point to be verified is the deformation of the chosen 2γ0 cycle at
the m = 0, h > 0 line.

To cross the m = 0, h > 0 line we will replace the 2γ0 cycle by the homotopi-
cally equivalent cycle which we construct from the following fragments.
• Fragments of curves skm,h.
• Trajectories γf of the system with Hamiltonian F1.
• Shadow fragments Im,h[ξ1ξ2], which belong to surfaces Λm,h. Each such frag-

ment belongs to a small neighborhood U ⊂ R4 of a nonzero point on the
axis pσ1 and connects some points ξ1 and ξ2, which belong to Λm,h ∩ σ ∩ U
and are close to each other on Λm,h.
In fact, we realize the construction of the homotopically equivalent cycle on σ

which repeats the construction realized in Sec. 5 (see especially Fig. 9) where we use
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the same notation for characteristic points as on figures representing intersection
curves on σ (see Figs. D.7, D.8, D.9).

D.2.2. Deformation of cycle 2γ0 along contour Γ. In this section we repeat the
analysis of deformation of the 2γ0 cycle along Γ which was described in Sec. 5.2
by looking directly on surfaces Λm,h. Now we study the evolution in σ and use the
correspondence between representation on σ and on the torus covering established
in Lemma D.9.

The deformation of curve 2γ0 along contour Γ in counterclockwise direction
starting from the point Γ0 consists of the following steps (see Fig. 6).

• At point Γ0 = (0,−hmax) we take 2γ0 to be represented by the double loop
corresponding to a component of the Λ0,−hmax ∩ σ intersection lying in the
{y = 0, x > 0} half-plane.
• We use deformation {2s1m,h, (m,h) ∈ [Γ0,Γ4]}, where [Γ0,Γ4]} is part of

contour Γ going from Γ0 to Γ4 in the counterclockwise direction.
• We replace the closed curve {2s1m,h} by another curve which belongs to

torus ΛΓ4 , remains homotopic to {2s1Γ4
}, and consequently to 2γ0, but does

not belong completely to σ.
• We transfer the constructed curve (homotopic to 2γ0) along the contour Γ

from Γ4 to Γ6 thus overcoming the point Γ5 of non-regular intersection of
Λm,h with σ. At Γ6 the transferred curve becomes the sum of s4Γ6

and the
properly oriented closed trajectory (−γf ) of the system with Hamiltonian F1

which does not vary under further deformations.
• We use deformation {s4m,h ∪ (−γf ), (m,h) ∈ [Γ6,Γ9]}, which passes continu-

ously the point Γ8 where the closed loop {s4m,h} splits into two loops without
any modification of the orientation of its fragments.
• Final deformation of {s4m,h ∪ (−γf ), (m,h) ∈ [Γ9,Γ0]} transforms smoothly

two components of {s4m,h} into two components of Λ0,−hmax ∩σ, one of which
belongs to the {y = 0, x > 0} half-plane and another − to the {x = 0, y < 0}
half plane.

Let us now discuss this deformation in more details.
The chosen cycle 2γ0 = OoOoO = 2s1m,h, (m,h) ∈ [Γ0,Γ4] corresponds to the

component of the intersection which possesses no critical points of the {F1, F2, F3}
map between Γ0 and Γ4, see Fig. D.4. Consequently, the closed curve 2γ0 depends
smoothly on the deformation parameter (m,h) when (m,h) ∈ [Γ0,Γ4] ⊂ Γ.

In order to deform the curve 2γ0 between Γ4 and Γ6 we need to replace
the initial curve by homotopically equivalent curve at Γ4 and then to deform the
replacement curve between Γ4 and Γ6.

At Γ4 the double loop s1m,hs
1
m,h represented as Oβ1oα1Oβ1oα1O on Fig. D.8

(intersection line s1Γ4
in σ) and as OoOoO on Fig. 9 (intersection line OoO on ΛΓ4

torus chart) is replaced by the cycle

r := s1m,h[Oβ
1]∪Im,h[β1β3]∪ s3m,h[β3Bα3]∪Im,h[α3α1]∪ s1m,h[α1O]∪ γfm,h[α1α1]
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which can be smoothly deformed between Γ4 and Γ6. The cycle r belongs to torus
Λm,h but it does not belong completely to σ. It consists of fragments s1m,h[Oβ

1],
s1m,h[α

1O], and s3m,h[β
3Bα3] which belong to Λm,h and to σ simultaneously. It

includes also two shadow fragments Im,h[β1β3] and Im,h[α3α1] which lie on Λm,h
but not on σ. These two fragments belong to small neighborhood U of axis p1

and are close to points β and α respectively. Finally, γfm,h[α
1α1] = α1(−γf )α1 is

a properly oriented complete closed trajectory of the system with Hamiltonian F1

through the point α1.
The curve r can be obtained from the double loop s1m,hs

1
m,h represented on

the torus chart in Fig. 9 as Oβ1oα1Oβ1oα1O by cutting the double loop at point
α1 and by introducing the fragment

r0 := s1m,h[α
1oβ1Oα1oβ1] ∪ Im,h[β1β3]s3m,h[β

3Bα3] ∪ Im,h[α3α1] ∪ γfm,h[α1α1].

Thus in order to prove that the double loop 2γ0 and the curve r are homo-
topic, it is sufficient to prove that the closed curve r0 is homotopic to a point on
the torus Λm,h, (m,h) = Γ5.

Let us consider on torus ΛΓ5 , which is close to ΛΓ4 , the closed curve r̃0 ⊂ ΛΓ5

which is close to curve γ0 ⊂ ΛΓ4 . Using straightening coordinates ψ mod 2π (see
Lemma D.9) we construct a closed curve r0 ⊂ ΛΓ5 which is close to the r̃0 curve
but is composed from straight segments forming the polygonal line, represented
in Fig. D.16. Lifting r0 up to the covering space R2

ψ we see that the lifted curve
remains closed. Thus the r0 curve and the nearby loops r̃0 and r0 are homotopic
to zero on respective tori.

Let us now consider the deformation {rm,h, (m,h) ∈ [Γ4,Γ6]} of the curve
r = rΓ4 . For all fragments forming r only index (m,h) is varying. In addition,
when passing through m = 0, the upper index changes from 1 and 3 to 4. This
transformation is obviously continuous. At the end of deformation, the Im,h[α4α4]
and Im,h[β4β4] fragments become points. Consequently, the curve r after such a
deformation becomes

s4m,h[Oβ
4] ∪ s4m,h[β4Bα4] ∪ s4m,h[α4O] ∪ γfm,h[α4α4]

and coincides with s4m,h ∪ γfm,h. This cycle consists at point Γ6 of two loops repre-
sented in Fig. 9 as OBO − γf . Namely, OBO is the connected component of the
intersection line λΓ4 and −γf is the trajectory of the system with Hamiltonian F1

taken with proper orientation.
The deformation along [Γ6,Γ0] ⊂ Γ is obviously continuous for s2m,h and

for s4m,h. We are interested only in deformation of the s4m,h component which
is represented at point Γ6 by the closed loop OBO. Nothing happens with the
loop γf .

Under the deformation between Γ6 and Γ0 the cycle OBO undergoes the
non-smooth modification when (m,h) pass the point Γ8, see Lemma D.7. Namely
at this point the loop OBO becomes a figure-eight loop (see Figs. D.10, D.12) due
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to the identification of the two points which belong to the Z2 symmetric trajectory
of XF1 and further transforms to two loops OO and BB (see Figs. 8, 7, D.12).

Thus the construction of the continuous deformation of the closed double
loop 2γ0 is completed. After the deformation along directed counterclockwise
closed path Γ, the initial cycle 2γ0 = OoOoO becomes the cycle OO + BB − γf .
Each of the two loops OO and BB is homotopic to the initial loop γ0. The loop
(−γf ) is the properly oriented trajectory of XF1 . Together with the trivial evolu-
tion of the cycle γf this gives the transformation of cycles corresponding to the
basis of the subgroup of the first homology group H1(Γ0) associated to a closed
path Γ

(γf , 2γ0)→ (γf , 2γ0 − γf ). (D.20)
This completes the proof of Theorem 2.
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[2] Vl.I. Arnol’d, V.V. Kozlov, and A.I. Néıshtadt, Mathematical Aspects of Classical
and Celestial Mechanics. Dynamical Systems III, volume 3 of Encyclopedia of Math-
ematical Sciences (Springer-Verlag, Berlin, 1988).

[3] M.F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14
(1982), 1–15.

[4] M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology
23 (1984), 1–28.

[5] M. Audin, Hamiltonian monodromy via Picard-Lefschetz theory, Commun. Math.
Phys. 229 (2002), 459–489.

[6] L. Bates, Monodromy in the champagne bottle, J. Appl. Math. Phys. (ZAMP) 42
(1991), 837–847.

[7] L. Bates and M. Zou, Degeneration of Hamiltonian monodromy cycles, Nonlinearity
6 (1993), 313–335.

[8] A.V. Bolsinov and A.T. Fomenko, Geometry and topology of integrable geodesic flows
on surfaces, in Ser. Regular and Chaotic Dynamics, Vol. II, Editorial URSS, Moscow,
1999.



1208 N.N. Nekhoroshev et al. Ann. Henri Poincaré
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[19] R.H. Cushman and S. Vũ Ngo.c, Sign of the monodromy for Liouville integrable
systems, Annales Henri Poincaré, 3 (2002), 883–894.
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[70] B.I. Zhilinskíı, Interpretation of quantum Hamiltonian monodromy in terms of lattice
defects, Acta Appl. Math. 87 (2005), 281–307.
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[72] B.I. Zhilinskíı and S. Brodersen, Symmetry of vibrational components in Td

molecules, J. Mol. Spectrosc. 163 (1994), 326–338.

[73] N.T. Zung, A note on focus-focus singularities, Diff. Geom. Appl. 7 (1997), 123–130.

[74] N.T. Zung, Another note on focus-focus singularities, Lett. Math. Phys. 60 (2002),
87–99.
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