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Abstract. Hamiltonian monodromy is known to be the first obstruction to the
existence of global action coordinates in integrable systems. Its manifestation in
quantum systems can be seen as characteristic defects of the regular lattice formed
by the joint eigenvalues of mutually commuting quantum operators. Relation
between topology of singular fibers of classical integrable fibrations and patterns
formed by joint spectrum of corresponding quantum systems is discussed. The
notion of the sign of “elementary monodromy defect“ is introduced on the basis
of “cut and glue“ construction of the lattice defects. Special attention is paid to
non-elementary defects which generically appear in phyllotaxis patterns and can
be associated with plant morphology.

1. Introduction

Hamiltonian monodromy is one of important qualitative features of classical integrable
models, characterizing the non-triviality of the fibration of the phase space of classical
integrable Hamiltonian dynamical system into common levels of integrals of motion
being in involution. Taking into account the fact that Hamiltonian monodromy is
a property associated with a relatively rare class of completely integrable dynamical
systems the natural immediate question is: Why such particular differential geometry
notion can be of interest for applications to real systems in physics, chemistry, or
biology, which should generically be described by obviously non-integrable models?

First of all one should remind that integrable approximations become often
very accurate in certain regions of the phase space, in particular near the generic
equilibrium point, where the motion is regular and toric fibration is typical. According
to KAM theory, small deformation of Hamiltonian system does not destroy seriously
the regular toric structure [2]. The most of the tori survive small non-integrable
perturbation. Similar analysis has been realized for Hamiltonian dynamical systems
with monodromy. It has been shown that the monodromy survives under small non-
integrable perturbation [6]. The origin of this phenomenon is due to the fact that
monodromy is a topological phenomenon and consequently it is quite robust with
respect to perturbations. From the point of view of applications this means that the
monodromy phenomenon can be observed in real systems which are not obliged to be



completely integrable. Even more, as soon as we know what are the fingerprints of
monodromy, we can start to analyze some new real physical, chemical or biological
systems from the point of view of manifestation of monodromy and then to choose
an adequate dynamical model of the phenomenon which should be able to reproduce
some important features related to the presence of monodromy.

That is why we start with the manifestations of monodromy in characteristic
patterns associated with Hamiltonian dynamical systems.

2. Classical and quantum monodromy

For classical Hamiltonian integrable dynamical systems the presence of monodromy
is related to the presence of singularities in the toric fibration associated with the
common levels of integrals of motion being in involution [8]. The most direct
manifestation of monodromy is the absence of global action-angle variables, or the
non-triviality of the fiber bundle structure over the closed contour encircling the
singularity on the image of the energy-momentum map [27, 15]. New dynamical
manifestation of monodromy related to temporary evolution of a number of individual
particles with different initial conditions for a problem with focus-focus singularity
was suggested recently [12] but we will treat here “static“ manifestation, mainly
related to characteristic pattern formation in the joint spectrum of quantum problem
corresponding to initial integrable classical one.

To simplify the discussion let us restrict mainly the analysis to a completely
integrable Hamiltonian system with two degrees of freedom. Two integrals of motion
for such system enable one to construct a momentum map (often named as “energy-
momentum map” because one of the integrals is typically an energy) which establishes
the correspondence between common levels of these two integrals of motion and the
values of these integrals [21, 5]. The momentum map acts from four dimensional
phase space of integrable Hamiltonian system to two dimensional space of values of
integrals of motion. This map has regular and critical points in the initial phase
space of the classical Hamiltonian problem and regular and critical values in the space
of values of integrals of motion. Inverse images of regular values are regular tori
[2], while inverse images of critical values are various topologically different objects.
Consequently, we can say that the momentum map defines a fiber space with the base
being the space of allowed values of integrals of motion and the fibers being the inverse
images of the map. If now we take the contour in the base space which belong to a
simply connected region of a space of regular values of momentum map, the fibration
reconstructed over this contour will be trivial and the contour itself is contractible
to a point. It is also possible that the contour passes only through regular values of
the momentum map but it surrounds critical values. In such a case the fibration over
this contour is topologically nontrivial and can be characterized by a monodromy.
Monodromy appears as the modification of the basis of the first homology group of
the regular fiber after continuation of the basic cycles along a closed contour going
through regular values of the momentum map.

The simplest generic isolated critical value of the momentum map is due to
presence of a critical point known as focus-focus point. The corresponding singular
fiber is a singly pinched torus, i.e. regular torus with one non-trivial (non homotopic to
a point) circle shrunk to a point. This singular fiber can be equivalently described as
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a sphere with one transversal self-intersection point with positive signature.‡ Pinched
torus associated with the focus-focus singularity of Hamiltonian integrable dynamical
system has by its construction critical point with transversal positive self-intersection.
At the same time the matrix representation of the monodromy, i.e. the auto-morphism
of the first homology group of a regular fiber, induced by a closed contour in the base
space of the toric fibration, depends on the choice of the basis of the first homology
group of a regular torus. The basis is defined up to similarity transformation within
SL(2, Z) group. This means that the monodromy matrix is defined as a class of
conjugated elements of SL(2, Z) group.

The simplest isolated singularity (focus-focus) associated with a singly pinched
torus in an appropriate basis leads to monodromy matrix of the form

M
−

=

(

1 0
−1 1

)

. (1)

The choice of the sign of the non-diagonal element in the monodromy matrix depends
on the definition of the orientation of the contour, but it is important that the matrix
(1) and the matrix

M+ =

(

1 0
1 1

)

. (2)

belong to different conjugacy classes of the SL(2, Z) group. It should be noted that for

3D-integrable systems the monodromy matrices

0

@

1 0 0

−1 1 0

0 0 1

1

A and

0

@

1 0 0

1 1 0

0 0 1

1

A

belong to the same class of conjugated elements of SL(3, Z) [41].
As soon as the correspondence between elementary focus-focus singularities and

the associated monodromy matrices is found, some natural questions arise. In
particular: What monodromy matrices can be realized by multiple or non-elementary
singularities of toric fibrations? Does monodromy matrix characterizes the topological
type of singularity? We remind here that singularity is considered as a non-elementary
one if under a small deformation preserving integrable Hamiltonian structure the
singularity can be decomposed into several focus-focus singularities.

Formal answer to these questions can be easily given [29, 10, 11, 42]. Any matrix
from SL(2, Z) can be realized as a monodromy matrix of a sufficient number of
elementary focus-focus singularities with different vanishing cycles. In such a case the
cumulative monodromy matrix associated to a circle surrounding several singularities
is a product of a number of matrices corresponding to elementary singularities. One
needs only to use the same basis for all singularities. Thus the matrix corresponding to
contour surrounding several elementary singularities (but eventually having different
vanishing cycles) has the form

X =
(

A1M−
A−1

1

) (

A2M−
A−1

2

)

. . .
(

AkM
−
A−1

k

)

,

where Ai, i = 1, . . . , k are SL(2, Z) matrices transforming elementary M
−

matrices
to the same basis.

‡ In order to define whether the self-intersection is positive or negative, we need to start by defining
a two-dimensional reference frame on a regular point of a fiber and to construct the 4D-reference
frame at the self-intersection point by moving initial 2D-frame to critical point in two different non-
equivalent ways. If the so defined 4D-frame corresponds to positive volume, the self-intersection is
positive. If the volume of the 4D-space calculated with this 4D-frame is negative, the self-intersection
is negative.
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Figure 1. Image of the classical energy momentum map together with quantum
joint spectrum of commuting operators for a particle in an axially symmetric
(mexican hat like) potential.

In particular even the identity matrix can be obtained as a monodromy matrix
associated to a closed contour surrounding k = 12 specially oriented elementary focus-
focus singularities.

The possibility to get the identity monodromy matrix for non-contractible
contour surrounding multiple singularities gives immediately negative answer to
second question. Namely, the monodromy matrix does not characterize the topological
type of singularity. One needs to add some additional characteristics to distinguish
at least between absence of singularities within the contour and the presence of 12
singularities resulting in identity monodromy matrix.

In order to understand better the non-unique correspondence between
monodromy matrices and singularities of toric fibration it is quite useful to compare
classical picture with corresponding quantum representation [31]. Simple quantization
rules for integrable problem enable one to construct a regular lattice of common
eigenvalues of two commuting quantum operators in a simply connected region of
regular classic toric fibration. This locally regular lattice of common eigenvalues (joint
spectrum of mutually commuting observables) can be characterized by an elementary
cell. Vertices of an elementary cell correspond to integer values of local action variables
which exist for integrable models. Representing joint quantum spectrum on the image
of the classical momentum map allows one to associate regions of regular values of
momentum map with regions of joint spectrum where the lattice of common quantum
eigenvalues can be locally represented as a regular lattice without defects. This is
possible in simply connected regions of the image of momentum map which do not
include critical values. Transporting quantum elementary cell along a closed contour
surrounding some critical value of the classical momentum map allows to find quantum
monodromy [31]. Matrix representation of quantum monodromy indicates how the
elementary cell transforms after a round trip encircling the singularity. At each step
the elementary cell is moved by changing quantum numbers of local action variables
by one for all vertices of elementary cell. Matrix giving the quantum monodromy
is inverse transpose matrix to classical monodromy matrix giving the transformation
of the basic cycles of the first homology group for corresponding classical problem
[39, 17, 18].

Thus the quantum integrable problem with monodromy is characterized by a
specific pattern of common eigenvalues which can be described as a locally regular
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Figure 2. Eigencut for 1 : (−1) resonant oscillator system represented on the
energy-momentum diagram.

pattern with defects [41, 42, 13, 32, 18]. The study of defects of regular lattices
becomes, consequently, tightly related to study of singularities of toric fibrations.

3. Lattice defect representation of monodromy

Lattice defects and, in particular, their classification and representation are rather
popular subjects in solid state and, especially, in soft matter physics [26]. The common
way to represent crystal defect is through the “cut and glue” procedure which normally
starts with regular ZN lattice and after making special cuts and removing or adding
parts of regular lattice glues together the so obtained boundaries in order to get lattice
with defects.

In the case of lattices formed by joint spectrum of mutually commuting operators
with non-trivial monodromy, the locally defined classical action variables enable one
to introduce local quantum numbers (n1, n2), giving locally two directions of constant
action (n1 = const, n2), (n1, n2 = const). These directions are not globally defined in
a unique way in the non-simply connected neighborhood of a singular (defect) point.
To represent the lattice with defect we are obliged to make a cut with one end at the
singularity and to arrange some rules to cross the cut and to continue the locally well
defined lines of constant actions across the cut.

There are two different ways to represent defects of regular lattices formed by
joint spectrum of commuting quantum operators in the case of defects associated to
isolated focus-focus singularities of corresponding classical systems. The first one is
based on the cut made along the so called eigenray (see discussion by Symington [36]).
The eigenray is uniquely defined (up to the choice of the direction of the ray starting
at the singularity). The values of the actions (quantum numbers) are the same on the
two boundaries of the cut within the same local chart if the cut is along the eigenray.
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Figure 3. Eigencut for 1 : (−1) resonant oscillator system represented in action
variables. Solid lines should follow dashed lines after crossing the cut.

Figure 4. Construction of the elementary monodromy defect by removing solid
wedge from the regular lattice.

In contrast, the direction of the “constant action“ lines changes when crossing the
cut and this direction does not coincide with original directions induced on another
boundary by initial local chart. Although the unambiguity of the eigenray has certain
advantage from the point of view of defect representation, the resulting geometrical
representation (see figures 2, 3) of the constant local action lines shows abrupt change
of the slope when crossing the cut. Such representation was used in applications [7]
but it makes less clear the construction of the evolution of the elementary cell after
crossing the cut.

Another possibility is to keep the directions of “constant action” lines fixed at
the two boundaries of the cut at the price of getting different values of actions at two
boundaries of the cut in respective points which should be identified after gluing. In
such a case the lattice of common eigenvalues in the neighborhood of a singularity is
represented in the local chart as a part of regular Z2 lattice with a particular solid
wedge removed and the points on the two boundaries of the removed wedge being
identified (see figure 4). Thus the values of actions on two boundaries of the cut are
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different in the initial local chart with the removed wedge. At the same time the lines
of constant actions follow the same direction after crossing the cut. This construction
of the monodromy defect was suggested in [31, 9, 42, 28] and used, consequently, in
relatively complicated cases [19, 41]. Certain inconvenience of such construction of
the defect is an ambiguous choice of the cut and of the removed wedge. At the same
time it is important to note that only the geometrical form of the removed wedge
is ambiguous. The number of quantum states removed for each subspace with fixed
value of another integral of motion is strictly defined. The number of removed states
is a linear function of the value of second integral of motion. This statement is in
fact the implication of the Duistermaat-Heckman theorem for 2D-degree of freedom
integrable classical Hamiltonian systems [16, 21].

4. Duistermaat-Heckman theorem, convexity of energy-momentum map

and the sign of monodromy

Restricting again to the case of two degree of freedom integrable classical systems,
we can reformulate the statement of the Duistermaat-Heckman theorem as a piece-
wise linear behavior of the reduced space volume as a function of the value of the
integral of motion. The discontinuity of the first derivative of the reduced volume
occurs at those values of integral of motion which correspond to critical values of
the energy momentum map. The convexity of the momentum map [21, 40] implies
certain restrictions on the type of defects associated with isolated critical values related
to focus-focus singularities. Namely, the geometrical representation of “quantum
monodromy“ was introduced in previous section as construction of a monodromy
defect from regular lattice by removing solid wedge and identifying boundaries of
the cut. At the same time an alternative construction of somewhat similar defect
is possible. It consists in making a cut of the regular lattice and inserting a solid
wedge, instead of removing it. From the point of view of matrix representation
of corresponding monodromy, the difference between these two formally constructed
defects is in the sign of the off-diagonal element of the monodromy matrix. This is
the origin of the initial question about possible existence of monodromy with positive
and negative sign [10, 11, 42] in integrable Hamiltonian systems, or in more general
dynamical models.

In order to formulate this initially not very precise question about the sign of
monodromy in a more accurate way, we need first to remind that the correspondence
between monodromy matrix and the topological type of the singular fiber is not
one to one. This follows immediately from possibility to realize trivial (identity)
monodromy matrix with non-contractible closed contour surrounding 12 specially
chosen elementary monodromy defects. This means that just comparison of initial
and final bases of the homology group of regular fiber is not sufficient to characterize
the presence of singular fibers inside the contour. From another point of view, taking
in mind the possible construction of defects through removing or adding solid wedge to
regular lattice, we can verify immediately that two defects, one obtained by removing
and other by adding the same solid wedge, lead to trivial monodromy matrix for closed
path surrounding both defects.

To find the difference between positive and negative elementary defects, we need
to count the number of states for the reduced space and to plot this function as a
function of value of the integral of motion. This function is piece-wise linear and
near each singular point there are two possibilities. The function can be convex or
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concave. We associate with convex function “normal“ defect and with concave function
- “inverse“ defect. It is important that multiple “normal“ defects can result in identity
monodromy (again 12 elementary specially oriented defects are necessary). In the same
way 12 elementary “inverse” defects can also result in identity monodromy. Both
examples with identity monodromy are associated with nontrivial fibrations which
moreover are non-equivalent between them. For integrable Hamiltonian dynamical
systems all elementary monodromy defects should be of the same “normal” type
resulting in convex image of the momentum map.

If we suppose that for more general kind of dynamical systems both “normal” and
“inverse” defects could coexist, by deformation it could be possible to fuse two defects,
one “normal” and one “inverse”. In such a case “normal” and “inverse” defects should
annihilate. If such construction is possible remains an open question.

5. Monodromy of sol-flower and cat map

An interesting example of an integrable problem with monodromy was recently studied
by Bolsinov et al [4]. Namely, the quantum version of the geodesic flow on Sol-
manifolds is studied. Authors analyze the main class of Sol-manifolds which are T 2

torus bundles over a circle S1 with hyperbolic gluing maps with positive eigenvalues.
The quantum monodromy is represented on a two-dimensional lattice which can be
considered as placed on a cone. The monodromy arises when the contour C surrounds
the vertex of the cone and the basis of lattice undergoes transformation A after
parallel transform along the closed contour C. The third direction for the Sol-manifold
corresponds simply to a trivial extension of the 2D-lattice.

A particular example treated in [4] is related to the cat-map

A =

(

2 1
1 1

)

. (3)

The corresponding quantum problem leads to a joint spectrum of two commuting
operators which has the form of a regular lattice in any simply connected regular
region which is situated away from the origin. At the same time near the origin
the actions are not defined globally and continuation of the lines of constant values
of local actions along a contour surrounding the origin clearly shows the presence of
monodromy. An equivalent way to see the monodromy is to follow the evolution of the
elementary cell of the locally defined lattice along the same closed contour surrounding
the origin. System of spires corresponding to constant values of local action resembles
near the origin the behavior of spires of the sunflower and this similarity was probably
at the origin of the name Sol-flower used by authors of [4]. Unfortunately, the
resemblance to spiral phyllotaxis observed for many plants (sunflower, pine-apples,
pine cones, cabbage, etc is only local (see next section). Comparison of the initial
and the final form of the elementary cell after going around the origin enables one to
find geometrically the matrix of the corresponding quantum monodromy and to verify
that going around the same contour in the reverse way leads to inverse monodromy
matrix. Naturally, the form of the matrix depends on the choice of the basis and
the quantum monodromy is defined as a class of conjugated matrices with respect to
SL(2, Z) group. The choice of the basis made on figure 5 corresponds to standard
form A of the cat map transformation given in Eq. 3.

An interesting question now is: Can we replace the effect of a single singularity at
the origin for a geodesic flow on the Sol-manifold with cat map A given by Eq.(3) by
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Figure 5. Quantum monodromy for the geodesic flow on the Sol-manifold.
Evolution of an elementary cell along a closed path going around central
singularity in clockwise and counterclockwise directions are shown. Initial and
final cells are compared in the bottom of the figure on local part of the lattice
which is deformed into regular square lattice.

O O
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Figure 6. Representation of the cat map monodromy with the aid of one positive
and one negative elementary monodromy defect. Initial and final form of the cell
coincides with that shown in figure 5, left, but now, during the evolution, there is
no 2π rotation of the elementary cell.

a multiple elementary monodromy defects? And what could be the simplest solution?
We can look for a solution by using properties of the modular group SL(2, Z)
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[29, 11], or by using the geometrical representation of defects through “cut and
glue” procedure [42, 41]. Formal algebraic analysis allows to represent “cat map“
monodromy in many different ways as a cumulative effect of 12 elementary focus-focus
singularities. If we allow to use multiple focus-focus singularities, i.e. singularities

having the matrix form U

(

1 0
k 1

)

U−1, with U ∈ SL(2, Z) being the matrix

describing the modification of the basis of regular Z2 lattice, and we want to minimize
the number of such individual (multiple) singularities, the solution with three multiple
focus-focus singularities was suggested in [11] but the authors of that article had
no idea how to answer the question about possible minimal number of individual
singularities to represent cat map matrix or identity matrix.

Geometrical construction of defects gives a new point of view on the representation
of “cat map“ monodromy defect or of “identity“ defect. First of all we note that
the transformation of the initial elementary cell into final cell is associated with the
overall 2π rotation of the elementary cell. In order to see better the presence of
this overall 2π rotation we can formally construct the same monodromy matrix A

of the “cat map“ by combining two “elementary monodromy defects”, one “normal”
and one “inverse”. It is also important that these two defects should have different
orientation as shown in figure 5. Let us remind that these two defects differ by their
sign, and by their geometric representation. One defect corresponds to removing the
solid wedge from the lattice, whereas another defect corresponds to adding the same
solid wedge to the lattice. Thus the cumulative effect of going around these two defects
can be algebraically represented as the “cat map” monodromy A. At the same time,
geometrically the evolution of the elementary cell along a closed contour surrounding
the pair of “normal” and “inverse” defects differs by 2π rotation form the evolution of
the elementary cell going around defect on the lattice corresponding to geodesic flow
on Sol-manifold (figure 5).

“Local convexity” arguments forbid the existence of defect corresponding to
introducing the solid wedge into lattice. We used such defect just to stress the
difference in the global geometry between two defects having the same monodromy
matrix representation. Thus, in order to avoid misunderstanding, one needs to add
an additional geometrical (topological) invariant to characterize the singularity of
dynamical system, the number of 2π rotations of elementary cell during its trip around
the singularity.

The simplest dynamical system which can allow the appearance of defects with
nonzero number of 2π rotations of the elementary cell should allow the presence of at
least 12 elementary monodromy defects. Looking at the list of almost toric symplectic
four-manifolds [36, 25] the most interesting candidate is a K3 surface [20]. It appears
as a total space of almost toric fibration over two-dimensional S2 base space with 24
elementary singularities. This means that dynamic system with K3 phase space can be
relevant as possible local model of nontrivial non-elementary singularities associated
with new nontrivial topological invariant, namely 2π rotation of the elementary cell
along a closed path surrounding the singularity. In order to demonstrate the interest
in such dynamic models we turn now to completely different examples of biological
systems exhibiting so called spiral phyllotaxis phenomenon, which nevertheless seem
to be quite related to discussed up to now monodromy and specific pattern formation.
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Figure 7. Sunflower with easily eye-guided 34 left and 55 right spires
(parastichies) and similar lattice formed by 13 left and 21 right spires together with
an elementary cell going around central singularity and exhibiting monodromy
showing 2π rotation of the cell. To see better the rotation of the cell, two vertices
of all cells are marked by letters a and b.

6. Phyllotaxis and monodromy

Modeling complex biological system, for example the evolution or morfogenesis of
plants, is based on a simplification or an idealization which takes into account only
some specific particular features and properties of the phenomenon considered. We do
not want to enter here into problems of general modeling of morphogenesis (like those
suggested by A.M. Turing [38] and R. Thom [37]). Instead we restrict ourselves to
study of phyllotaxis (i.e. pattern formation associated with plant development) and
more concretely to spiral phyllotaxis which manifests itself through the arrangement
of repeated units such as leaves around a stem, scales on a pine cone or on a pineapple,
florets in the head of a daisy, and seeds in a sunflower [22]. Spiral phyllotaxis brings
always special attention of scientists working in quite different fields. Regular system of
helices resembles crystallographic structures and naturally provokes its interpretation
in terms of living and growing crystals. Nevertheless, the interest in study of spiral
phyllotaxis is mainly due to peculiar appearance of Fibonacci numbers as typical
numbers for left and right spirals. The explanation of the appearance of Fibonacci
numbers during the self-organization process associated with the plant growth was
in fact the main concern in almost all papers dealing with this phenomenon. Many
different points of view on this botanical patterns were suggested ranging from purely
geometrical or crystallographic till algebraic, dynamical, chemical, genetic, etc. For a
review see [1, 22], among more recent relevant papers we can cite [23, 30, 33, 34].

Interdisciplinary character of the phyllotaxis phenomenon can be clearly seen on
the example of pattern formation by drops of ferro-fluids in a magnetic field [14] or
by flux lattices in superconductors [24].

Here we would like to bring attention of researchers to another aspect of
phyllotaxis patterns which was not noted and discussed earlier up to our knowledge,
namely its relation to monodromy of lattices with defects and to singularities
(Hamiltonian monodromy) of integrable dynamical systems or integrable fibrations
in general.
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Figure 7 shows real sun-flower with its easily seen spires formed by seeds. There
are 55 right and 34 left spires. Locally seeds form an almost regular lattice which
can be continued along a closed path surrounding the center of the flower. Similar
lattice is reproduced on figure 7, right using another Fibonacci pair of right (21) and
left (13) spires. Taking an elementary cell of this lattice and moving it around the
center it is easy to see that the elementary cell returns to its original position after
making a 2π rotation around itself. This means that the lattice formed by sunflower
seeds has a singularity leading to the trivial (identity) monodromy matrix and to non-
trivial 2π rotation of the elementary cell with the direction of rotation corresponding
to “normal” rotation. This means that the central singularity can be represented as
a union of 12 “normal” elementary monodromy defects, arranged in such a way that
they produce global identity monodromy matrix.

7. Are there universal non-elementary defects?

We have started this paper by looking at the manifestation of monodromy in very
simple dynamic systems with two degrees of freedom. Then we switch to really
complex systems and try to look again for monodromy manifestations just by studying
the patterns showing singularities. We interpret these singularities as a non-elementary
defects and represent them as a cumulative result of several elementary monodromy
singularities. The idea behind such analysis is to find an adequate mathematical tools
to describe and to characterize complex systems in terms of relatively simple models.

One of the typical ways to understand the behavior of complex systems is to
find and to describe universality classes of the organization of complex systems. The
scale invariance in particular is known to be appropriate not only for physical phase
transitions and critical phenomena but for a number of systems arising in disciplines as
diverse as biology, ecology, economics, cardiovascular medical systems, etc. By scale
invariance is meant a hierarchical organization that results in power-law behavior
over a wide range of values of some control parameter such as species size, heartbeat
interval, or firm size, and the exponent of this power law is a number characterizing
the system [35].

Looking at simple dynamical systems with monodromy, the natural question
arises: What kind of behavior we can expect for complex systems from the point
of view of singularities and more specifically of corresponding monodromy. It is quite
reasonable to suppose that the number of individual elementary singularities should
increase when going to more complex systems, but at the same time it is probable that
formation of certain groups of singularities can be favored and the systems possessing
these non-elementary groups of singularities can be classified into universality classes.
We suppose that the number of 2π rotations of the elementary cell during a closed
path around a singularity (group of singularities) can be considered as a universality
class of dynamical systems. In this sense all plants exhibiting spiral phyllotaxis belong
to the same universality class. Mechanical systems possessing only monodromy with
one vanishing cycle (in the case of several elementary singularities all vanishing cycles
should be the same) belong to another universality class (zero number of 2π rotations).

Extension to problems with higher number of degrees of freedom, i.e. to three
and higher dimensional patterns leads naturally to question about defects of higher
codimension. No examples of dynamical systems with ”elementary defects“ of higher
codimension, generalizing the codimension two monodromy, are known to the author,
except some formal construction [3].
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