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1 Introduction

In order to see better the place of the present chapter within the very broad
subject of complex dynamical systems we need to start with a short discussion of
three key notions: Quantum systems, Complexity, Monodromy; and to explain
their interrelation and relevance to the general study of dynamical systems.

By quantum systems we mean here very simple objects formed by a finite
number of particles, typically atoms and molecules, which exist in bound states
and can be described within the standard non-relativistic quantum mechanics.
This means that the system can exist in a number of states, characterized by
discrete values of certain physical quantities, or equivalently by a set of quan-
tum numbers. The physical quantities are represented in quantum theory by
operators, whose eigenvalues give the possible values of these quantities. The
operators do not generally commute. In order to characterize the quantum state
we need to use the eigenvalues of a set of mutually commuting operators.

The finite number of degrees of freedom and even the finite numbers of
quantum states which we are typically interested in lead to an impression that
such dynamical systems have more chance to be treated as “simple dynamical
systems” rather than complex. Thus an example which will be mentioned, the
hydrogen atom, is one of the simplest real quantum systems with a completely
regular set of quantum states forming highly degenerate groups of levels, so
called shells, which are present due to specific dynamic symmetry of the problem.
Such shells themselves can be considered independently as quantum dynamical
systems with two degrees of freedom using effective Hamiltonians. At the same
time even a small external perturbation of a hydrogen atom by constant electric
and magnetic field leads to a splitting of the degeneracy and to the appearance
of a complicated pattern of eigenstates strongly dependent on the values of
external parameters characterizing the perturbation.

More generally, the analyzed system of quantum states can be considered as
a simple one if all states can be arranged in regular patterns characterized by
several good quantum numbers taking consecutive integer values. Such quantum
systems correspond to classical Hamiltonian integrable systems whose dynamics
is regular and is associated with toric fibrations. To go to the extremely simple
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case one can assume that classical action-angle variables are globally defined.
For quantum systems this means that the set of quantum states represented
through the joint spectrum of quantum operators can be globally arranged in a
regular lattice whose nodes are characterized by quantum numbers associated
with eigenstates of mutually commuting quantum operators corresponding to
classical integrals of motion.

Another natural limiting behavior of dynamic systems is associated with the
irregular spectra of quantum systems, or with the irregular or chaotic motion of
classical dynamical systems [48]. Such irregular or chaotic dynamics is usually
qualified as much more complex than the regular motion. But generically the
majority of dynamical systems exhibit both regular and chaotic behavior at
different energies and/or at different values of control parameters. The study of
the transition from the regular to the chaotic limit should be done for parametric
families of dynamic systems. Such a transition typically goes through several
consecutive steps from completely regular motion through a partial breaking
of integrals of motion [32]. At the same time, even at the level of completely
regular motion for completely integrable systems, the complexity of a dynamical
system can be increased through a sequence of bifurcations (in both classical
and quantum cases [51, 67]). Increasing complexity of a completely integrable
classical (or quantum) dynamical systems can be most easily seen by analyzing
the image of its energy-momentum map (or bifurcation diagram) [8, 5].

For a completely integrable classical Hamiltonian dynamical system the en-
ergy momentum map establishes the correspondence between common levels of
energy and other integrals of motion and the values of these integrals which
are in involution for a completely integrable classical system. We remind that
two physical quantity are in involution in classical mechanics, if their Poisson
bracket is zero. In quantum mechanics, the corresponding operators commute.
The energy momentum map has regular and critical points in the initial phase
space of the classical Hamiltonian problem, and regular and critical values in
the space of values of integrals of motion. Inverse images of regular values are
regular tori [2], while inverse images of critical values are various topologically
different objects. Consequently we can say that the energy momentum map
defines a fiber space with the base being the space of allowed values of integrals
of motion and the fibers being the inverse images of the map. The set of critical
values of the energy-momentum map defines in some sense the complexity of the
integrable dynamical system. In order to characterize the complexity we need to
describe either the topology of singular (critical) fibers and their organization,
or to introduce some special characteristics of a family of regular fibers sur-
rounding the above mentioned singularities. This is exactly the moment when
the Hamiltonian monodromy appears as a natural characteristic to describe the
singularities of toric fibrations and the complexity of dynamical systems.

For quantum analogs the system of common eigenstates of mutually com-
muting quantum operators which form the complete set of observables plays
the role of toric fibration. Locally the joint spectrum of mutually commuting
operators forms a regular lattice in regions corresponding to regular toric fibra-
tions of associated classical systems. At the same time, singularities of classical

2



toric fibrations correspond to certain defects of the pattern representing the
joint spectrum of quantum operators. We can equally try to describe the defect
by analyzing the behavior of the locally regular lattice surrounding the defect.
This leads us naturally to quantum monodromy which generalizes the classical
Hamiltonian monodromy to quantum systems.

After this intuitive introduction giving initial ideas about relations between
the complexity and monodromy of classical and quantum systems and singulari-
ties (or defects) of almost regular patterns associated with classical and quantum
systems we turn to a slightly more detailed description of the Hamiltonian mon-
odromy along with more concrete examples of classical and quantum dynamical
systems possessing monodromy. We will even try to generalize the characteris-
tic discrete patterns with monodromy which arise naturally for quantum atomic
and molecular systems and to look for generic universal patterns and their de-
fects which appear in completely different scientific domains like botany, but
which nevertheless can be considered as a result of the evolution of a complex
dynamical system showing simple universal behavior.

The organization of the paper is as follows. Section 2 deals with basic in-
troduction to classical Hamiltonian monodromy. Classical quantum correspon-
dence is used in Section 3 in order to explain associated quantum monodromy.
Interpretation of quantum monodromy in terms of defects of lattices of quan-
tum states and associated discussion of elementary and complex defects is the
subject of the central for this paper section 4. Possible generalizations of the
monodromy concept, naturally arising during the analysis of concrete physical
examples, are suggested in section 5. Short section 6 reviews recent progress in
monodromy manifestations in time dependent processes. The last section 7 dis-
cusses perspectives of possible applications of the monodromy concept to very
complex biological phenomena like plant morphogenesis, using as an example
one particular but universal phenomenon: spiral phyllotaxis.

2 Hamiltonian monodromy

The notion of “monodromy” is generally used in science, mainly in mathematics,
in order to explain how some mathematical objects behave as they “go” around
a singularity. This is a very general and unprecise description which can be
made more concrete within the fiber space construction [42, 8].

Let p : E → B be a locally trivial fiber space with the base B. With
each point b ∈ B we associate a fiber p−1(b) and with each continuous path
γ : [0, 1] → B in B with initial point a = γ(0) and end-point b = γ(1) we
can associate a homeomorphism of the fiber p−1(a) onto the fiber p−1(b). In
a particular case of a = b, the path γ is a loop and we have a transformation
of F = p−1(b) into itself. This transformation defined up to a homotopy is
called the monodromy transformation. The transformation of fibers induces the
transformation on the homology and cohomology spaces of F , which are also
called a monodromy transformation.

In the context of classical Hamiltonian integrable dynamical systems the
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monodromy transformation appears naturally as a transformation of a regular
fiber associated with a closed path in the base space defined as a space of pos-
sible values of integrals of motion being mutually in involution [8, 17]. Image of
the energy momentum map (known also as bifurcation diagram [5]) enables us
to clearly visualize for 2D-integrable Hamiltonian systems the qualitative struc-
ture of the associated fiber space. Regular fibers in this case are regular tori
[2] and the monodromy transformation can be described as a transformation of
a fundamental group (or a homology group) of a fiber associated with closed
paths in the base space. In a more classical mechanics way we can speak about
local action-angle variables defined on individual tori and their connection (evo-
lution) along a family of tori associated with a loop in a base space. The fact
that a loop goes around a singularity and is consequently noncontractible im-
plies the absence of global action-angle variables and the presence of non-trivial
monodromy transformation [43, 17].

The simplest situation in the case of completely integrable dynamical sys-
tems with 2 degrees of freedom corresponds to the presence of an isolated sin-
gular fiber (see Figure 1 a) which can be surrounded by a loop in the base space
going only through regular fibers [40, 5, 19, 61, 63]. Such a situation is present,
for example, in a number of very simple model mechanical problems like parti-
cle motion in an axially symmetric potential of “mexican hat” or “champagne
bottle” type : V (r) = ar4 − br2, with a, b > 0 [3, 6], or for spherical pendu-
lum [8, 9, 19]. We can associate with each isolated singular fiber a closed path
going around a corresponding isolated critical value in the base space. In its
turn this closed path is associated with the transformation of the first homol-
ogy group of a regular fiber. This transformation can be naturally represented
by a matrix with integer coefficients leading to integer monodromy. A typical
isolated singular fiber which appears generically for Hamiltonian systems with
two degrees of freedom is a pinched torus represented in Figure 2 a. A pinched
torus is obtained from a regular torus by shrinking one non-trivial circle to a
point. Its geometrical view as an object in the three-dimensional ambient space
can give an impression that depending on the choice of vanishing cycle the ge-
ometry of the pinched torus can be different. But this is just an artifact which
is caused by plotting the pinched torus in 3-D rather than in 4-D. In fact, the
choice of coordinates on the torus is ambiguous and this ambiguity is due to
the SL(2, Z) symmetry of a two-dimensional lattice. This leads, in particular,
to the important fact that the matrix representation of monodromy is defined
up to a SL(n, Z) similarity transformation for n-dimensional problem.

It is possible that instead of one isolated singular fiber the image of the
energy-momentum map is a whole region with a complicated set of singular
fibers surrounded nevertheless by a regular region. Figure 1 c shows an example
of an “island” which can be surrounded by a closed loop in the base space
going through only regular fibers. The resulting monodromy transformation
characterizes the whole region possessing singular fibers and in such a case
we can speak about nonlocal integer monodromy [53, 36]. One of the simplest
reasons of the appearance of a nonlocal “island” like singularity is the formation
of a second component in the image of the energy-momentum map due to the
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Figure 1: Typical images of the energy momentum map for completely inte-
grable Hamiltonian systems with two degrees of freedom in the case of: a -
integer monodromy, b - fractional monodromy, c - nonlocal monodromy, and d -
bidromy. Values in the light shaded area lift to single 2-tori; values in the dark
shaded area lift to two 2-tori. Dashed lines in sub-figures c, and d correspond
to stratum formed by bitori.

transformation of an isolated focus-focus singularity into an “island” through
the Hamiltonian Hopf bifurcation [19] which is related to the presence of a family
of singular fibers. Each generic member of such a family is named a bitorus.
It is represented in Figure 2 c. A singular (cuspidal) torus (see Figure 2 d) is
its limiting form corresponding to corners on the bifurcation diagram 1 c where
the bitorus line ends.

A less trivial situation arises when the essentially singular fiber is not iso-
lated but appears as a limiting case of a one-dimensional stratum of weakly
singular fibers [45, 46, 19]. The presence of weakly singular fibers does not al-
low one to go around the essential singularity by transporting the basis cycles
of the homology group of regular fibers. At the same time it is now possible to
study the continuous evolution of cycles for certain subgroups of the homology
group. Such construction allows us to generalize the monodromy notion and
introduce “fractional monodromy” [45, 46, 21, 29, 44, 60]. An image of the
energy-momentum map with a singularity leading to fractional monodromy is
shown in Figure 1 b. An example of weakly singular fibers, the so called curled
torus, is shown in Figure 2 b.

Qualitative characterization of images of energy-momentum maps for clas-
sical integrable systems and especially of their generic possible evolution for
families of integrable systems depending on one or several control parameters is
important from the point of view of different generalizations. In spite of a very
serious restriction due to integrability, the qualitative features, like monodromy,
remain valid even for non-integrable systems which can be obtained by small
non-integrable perturbations [4]. The situation here is similar to the KAM the-
orem [2] assuring that the majority of tori survive under a small perturbation
leading from regular to chaotic classical motion.
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Figure 2: Two dimensional singular fibers in the case of integrable Hamiltonian
systems with two degrees of freedom: a - pinched torus, b - curled torus, c -
bitorus, and d - singular (cuspidal) torus.

3 Classical quantum correspondence

Another important aspect of classical integrable systems with monodromy is
the generalization from classical to quantum mechanics [9, 61, 62, 52, 28]. The
quantum analog of a classical integrable dynamical system is a quantum system
possessing a mutually commuting set of operators corresponding to physical ob-
servables. Classical local action variables correspond in quantum mechanics to
quantum numbers which label common eigenfunctions of mutually commuting
operators. Representation of joint spectra of mutually commuting quantum op-
erators naturally leads to locally regular lattices due to the simple quantization
conditions imposed on local classical action variables.

Formal correspondence between classical integrable Hamiltonian systems
and their quantum analogs helps to visualize the quantum monodromy [52].
Existence of local actions for an integrable system means that the joint eigen-
values of mutually commuting quantum operators corresponding to classical
integrals of motion for a n-degree of freedom, completely integrable, dynamical
system form a pattern which locally can be mapped onto a standard Zn lattice
[66, 65]. If the quantum commuting operators correspond directly to classical
actions the lattice formed by the joint spectrum of these operators represents
a regular rectangular pattern because of the simple quantization rules for both
action variables. A more typical situation corresponds to cases when only part
of the classical integrals of motion are actions, while others, like energy, are not
actions themselves, but can be locally transformed into actions by nonlinear
(and in some sense small) transformations.

Figure 3 gives an example of classical - quantum correspondence for com-
pletely integrable problems with two degrees of freedom. The image of the
classical energy momentum map is shown in the space of values of integrals of
motion: {energy, first action}. Figure 3 a shows the regular part of the image
of classical energy-momentum map together with points corresponding to joint
eigenvalues of quantum mutually commuting operators. In order to see the nat-
ural correspondence of a discrete lattice with regular Z2 lattice, an elementary
cell of the lattice is chosen and displaced through the lattice along a closed path.
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Figure 3: Quantum joint spectra for typical regions of the image of the energy
- momentum map for some examples of integrable problems [15].

It is evident that the initial and final cells coincide and all closed paths in this
local regular region of the lattice are similar from this point of view. In more
formal terms we can say that all closed paths in the regular simply connected
region of the image of the energy-momentum map are homotopic to a point,
i.e. such closed paths could be shrinked to a point because all intermediate cells
remain equivalent.

Figure 3 b illustrates another possibility. The region of the classical energy-
moment map shown here has an isolated singularity, associated with a pinched
torus. In any simply connected local region which does not include the singular-
ity, the behavior of the quantum cell after going around a closed path is similar
to that shown in Figure 3 a. In contrast, if the closed path goes around the
singularity the final form of the elementary cell clearly differs from the initial
form, thus indicating the presence of nontrivial monodromy [52]. The trans-
formation between initial and final cells does not depend on the geometry of
the closed path supposing that it goes only once around the singularity. The
transformation between initial and final cells written in the matrix form gives
the matrix representation of quantum monodromy. Naturally, the explicit form
of the matrix depends on the choice of the lattice basis which is defined up to
an SL(2, Z) similarity transformation.

Figure 3 c shows the image of the classical energy - momentum map with
a region where two connected components exist in the inverse image. This
curvilinear triangular region is represented in the figure by dark hashing. The
correspondence between classical and quantum mechanics is more complicated
for this example. Outside the region with two classical connected components
there is one lattice of quantum joint eigenvalues. Inside the “dark” region with
two classical connected components of the inverse image all quantum states can
be approximately separated into two distinct leaves (neglecting the tunneling
splitting which allows the coupling of quantum states associated to two dis-
connected classical components). Taking an elementary cell on the big leave
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Figure 4: 1 : (−1) resonant oscillator system with a cut along a eigenray R =
{m = 0, E > 0}. Left: Representation in energy - angular momentum variables.
Right: Representation in action variables.

and going around the “island” we define a quantum nonlocal monodromy which
characterizes the second leaf of the lattice and the way how two leaves join to-
gether. The vibrational structure of an LiCN molecule can be suggested as an
example of a concrete molecular system which is reasonably well described by an
integrable approximation which shows the presence of an island and a nonlocal
non-trivial monodromy [36]. The second component exists as well for the quite
similar example of an HCN molecule [22] but the closed path surrounding the
second component cannot be constructed for the HCN model and consequently
the HCN example is completely different from the LiCN one.

4 Lattices and defects

The above mentioned examples give an impression that patterns formed by the
joint spectrum of mutually commuting quantum operators can be considered ei-
ther as ideal periodic lattices (ideal crystals) or as periodic lattices with defects
[66]. More generally one can suppose that lattice defects of periodic crystals
[41, 37] should correspond in some way to singular fibers of classical integrable
dynamical systems. In fact, this analogy proves itself to be extremely useful,
although even the simplest classical singularity associated with a pinched torus
(so-called focus-focus point) leads to a defect of the lattice of quantum eigen-
states which has no straightforward analog among typical crystal defects.

4.1 Elementary monodromy defects

In order to see the correspondence with solid state defects we analyze the pattern
of quantum eigenstates for a two degree of freedom integrable system possess-
ing, in the classical limit, a focus-focus singularity. A typical classical image
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of the energy momentum map together with common eigenstates of mutually
commuting operators for corresponding quantum problem are shown in Figure
4. To demonstrate the presence of the defect, we do the cut starting at the
singularity of the classical problem. There are a lot of different possibilities to
realize such cut. We first do the cut along the m = 0, E > 0 ray. Such choice of
the direction of a cut is named an eigenray by M. Symington [63]. Its specificity
can be easily explained by using the Figure 4, where we have labeled eigenstates
for each m by consecutive integers starting from zero. These integers play the
role of quantum numbers associated with a second action which is defined locally
in any simply connected region of regular values of the energy-momentum map.
We see that this local action (quantum number) has the same value for each
eigenstate located at the cut irrespective of either we approach the cut from
the right or from the left. At the same time the first derivative ∂E

∂m
(calculated

for a set of states with the same quantum number corresponding to a second
action) has a jump at the cut. Due to the presence of such a discontinuity of
the first derivative this cut was named “kink” line by M. Child [6]. It should be
noted that the presence of a “kink” singularity is a purely artificial fact related
to the multivaluedness of the action variables and to our choice of one leaf of
the multi-valued function.

In fact, we can continue labeling eigenstates of the joint spectrum by con-
tinuing local action variables within E > 0 energy region from the m > 0 to the
m < 0 domain. This will naturally give another labeling scheme which can be
shown on the bifurcation diagram and which is associated with an alternative
construction of a single valued function from an initially multivalued one. If
we transform the (E, m) plot to new coordinates which we choose as two local
actions, [as it is shown in Figure 4, right] in order to continue the line corre-
sponding to one chosen value of local action across the (m = 0, E > 0) ray we
need to change the direction after crossing the ray.

If we do cut along any other direction, the local action itself has a disconti-
nuity at the cut. This situation is shown in Figure 5. Further transformation of
the lattice with a cut to local action coordinates leads to a regular lattice with
a certain part of this lattice removed and with the boundaries of this removed
wedge being identified [65, 66, 46]. Figure 6 illustrates the construction of the
defect associated with the simplest focus-focus singularity (single pinched torus)
in the regular lattice by making a cut in the direction orthogonal to the “eigen-
ray”. Such construction is similar in spirit to the representation of dislocations
and disclinations in solid state physics by a cutting and gluing procedure. At
the same time the obtained defect differs from well known constructions for
dislocations and disclinations. We named the defect shown in Figure 6 an “el-
ementary monodromy defect”. The most important features of the suggested
construction of an “elementary monodromy defect” is the linear dependence of
the number of removed states on the value of the integral of motion. This prop-
erty is related to the Duistermaat-Heckman theorem applied to the volume of
the reduced phase space in classical mechanics [18, 62, 31].
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Figure 5: Cut leading to a discontinuity of the second local action.

Figure 6: Construction of the 1:(−1) lattice defect starting from the regular Z2

lattice. Dark grey quadrangles show the evolution of an elementary lattice cell
along a closed path around the defect point.
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4.2 Fractional monodromy defects

The geometrical construction proposed for the description of a monodromy de-
fect allows immediately several alternative ways of generalization. The first
possibility is the construction of less trivial elementary defects, like recently in-
troduced fractional monodromy defects [45, 46]. We illustrate construction of
such a defect in Figure 7. The idea of relevance of such a specific defect to pat-
terns formed by joint eigenvalues of mutually commuting operators came from
the typical dependencies of the number of states in multiplets or polyads on the
quantum number characterizing these polyads or multiplets. This question is
again related to the Duistermaat-Heckman approach describing the evolution of
the reduced phase spaces with the corresponding integral of motion value.

The important difference between the removed wedge associated with ele-
mentary “integer” monodromy (represented in Figure 6) and the removed wedge
in the case of a fractional monodromy defect (see Figure 7) is in the number of
the removed states considered as a function of the integral of motion. In the
integer case this function is linear [or polynomial in the higher dimensional case]
[31], while in the fractional case the function is a “quasi-polynomial” [59], i.e. it
includes an oscillatory part. In a particular example shown in Figure 7 we have
just modulo 2 oscillations. In an equivalent way it is possible to say that we need
to consider separately the sub-lattices with even and odd m values, each possess-
ing an integer “elementary monodromy defect”. The geometrical consequence
is the impossibility for an elementary cell to go unambiguously through the cut.
Depending on the position after crossing the cut, the elementary cell takes one
of two different geometrical forms shown in Figure 7, left. In contrast, if we use
a double cell, the result of the cell transformation after making a closed trip
around the essential singularity and crossing the cut only once is independent
of the place where the cell crosses the cut. The price for that are the fractional
coefficients which appear in the monodromy matrix written for the elementary
cell. We can formally use the monodromy matrix for an elementary cell in the
regular region even if this elementary cell itself cannot cross the singular cut.

An example of a simple model problem showing the presence of a fractional
monodromy and the associated pattern of common eigenstates of two mutually
commuting operators is shown in Figure 8 [33].

The corresponding dynamical system is constructed by taking two angular
momentum operators N = (Nx, Ny, Nz), S = (Sx, Sy, Sz) interacting in a non-
trivial nonlinear way between themselves and with an external field. The model
Hamiltonian is given as:

Hλ =
1 − λ

|S|
Sz + λ

(

1

|S||N |
SzNz +

1

2|S||N |2
(

N2
−S+ + N2

+S−

)

)

, (1)

where standard notation is used for ladder operators N± = Nx ± iNy, S± =

Sx + iSy, and |N| =
√

N2
x + N2

y + N2
z , |S| =

√

S2
x + S2

y + S2
z . This model

generalizes the most trivial model of angular momenta coupling leading to the
appearance of a focus-focus singularity in classical mechanics and an integer
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Figure 7: Construction of 1 : 2 rational lattice defect. Left: Elementary cell
does not pass unambiguously. Right: Double cell passes unambiguously.
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Figure 8: Fractional monodromy for two angular momenta coupling model.
Image of the energy-momentum map is given for Hamiltonian (1) with λ = 0.5.

quantum monodromy in the corresponding quantum problem [47, 52, 26, 27]. It
is interesting to note that the simplest quantum problem, namely the hydrogen
atom in the presence of external electric and magnetic fields leads to integrable
approximations for certain values of field parameters, which show the presence
of fractional monodromy [25, 23, 24].

4.3 Monodromy - defect correspondence

Another way of generalizing the possible patterns typical for lattices formed by
joint spectrum of mutually commuting operators is to describe more compli-
cated defects which can be present for 2D-lattices from one side and for higher
dimensional lattices from another side. We restrict ourselves here with 2D-case
only.

First of all it should be reminded that if we want to characterize the de-
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fect of a quantum lattice (or the singularity of a classical toric fibration) by its
monodromy, we introduce in some sense a certain equivalence relation between
different defects (singularities). The most detailed description of a singularity of
classical toric fibration and of the associated quantum state lattice can be done
by indicating the explicit transformation of the basis of the first homology group
of regular fibers. In such a case two defects characterized by the presence of one
vanishing cycle become different if the vanishing cycles themselves are different.
Naturally, the monodromy matrices associated to these two defects and written
in the same basis of cycles (or on the same lattice basis) are different. At the
same time these matrices belong to the same class of conjugated matrices within
the SL(2, Z) transformation group responsible for the basis transformation of
the 2D-lattice. Thus, the monodromy matrices should be considered equivalent
if they belong to the same class of conjugated elements of the SL(2, Z) group.
To characterize the class of conjugated elements we use first the trace of the
matrix. The matrices M ∈ SL(2, Z) are named parabolic, elliptic or hyper-
bolic, if their traces equal ±2 (for parabolic), ±1, 0 (for elliptic), or > |2| (for
hyperbolic). A more detailed classification of parabolic matrices into classes of
conjugated elements needs additional information, like a non-diagonal element
of some standard “normal form” of the parabolic matrices. Especially interest-
ing is the importance of the sign of the non-diagonal element indicating that,
for example, two quite simple monodromy matrices

(

1 0
1 1

)

,

(

1 0
−1 1

)

belong to different classes of conjugated elements within the SL(2, Z) group.
We name these matrices positive and negative elementary monodromy matri-
ces. It is important to note that only one class corresponds to an elementary
toric singularity, the pinched torus. Its representation as a defect of a regular
lattice corresponds to removing a wedge from the lattice and to identifying the
wedge boundaries. It is also important to note that using several elementary
monodromy matrices which belong to the same class of conjugated elements of
SL(2, Z) but can be reduced to the normal form in a different lattice basis it
is possible to construct an arbitrary SL(2, Z) matrix representing a cumulative
monodromy effect [12, 11].

At the same time the monodromy (i.e. the class of conjugated elements of
SL(2, Z) group) does not define in a unique way the classical singularity and the
pattern formed by the joint spectrum of commuting quantum operators [11, 12].
For example, 12 specially constructed elementary singularities (each described
by a matrix conjugated to the simplest monodromy matrix and represented by
defects associated with removing a wedge from the lattice) can lead to global
trivial monodromy. This is a simple consequence of the SL(2, Z) group struc-
ture [55, 49]. Non-triviality of a global singularity nevertheless is clearly seen
through the transformation of the elementary cell going around all singularities
on the lattice of mutual quantum eigenstates. The cell realizes the 2π rotation
around itself while going along a closed path surrounding these 12 elementary
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Figure 9: Construction of two-dimensional surfaces by the identification of the
opposite ends of a square, preserving the directions indicated by arrows. (a) -
Identification of AB with DC and AD with BC gives torus. (b) - Identification
of AB with CD and AD with BC gives Klein bottle. (c) - Identification of AB

with CD and BC with DA gives real projective plane, RP2.

singularities. It is important that the sign of the rotation of the elementary cell
is well defined and corresponds to removing wedges from the lattice [65].

As another example, it is possible to realize the negative “elementary mon-
odromy” by using 11 elementary positive monodromy defects. In such a case
the rotation of an elementary cell while going around this defect can be again
characterized as a “positive” and being almost overall 2π rotation in spite of the
fact that a much more simpler construction of the elementary “negative defect”
can be formally done by inserting into the lattice a wedge, corresponding to one
elementary monodromy defect, instead of removing from the lattice 11 wedges
corresponding to elementary defects as in the case of “positive defects”.

The notion “elementary monodromy” which we use is due from one side
to the simplicity of the matrix representation but from another side due to
simplicity of the topology of the singular classical fiber responsible for such
monodromy. The geometric monodromy theorem states that the presence of an
isolated singly pinched torus leads to the elementary positive monodromy of an
associated toric fibration [8, 40]. A singly pinched torus can be alternatively
described as a sphere with one transversal positive self-intersection point. In
order to understand this statement better it should be reminded that in four-
dimensional space the 2-dimensional surfaces generically intersect via isolated
points and the simplest model of a pinched point of a torus corresponds to
the intersection of two 2-D planes (x = 0, y = 0) and (z = 0, w = 0) in 4-D
{x, y, z, w}-space. Positivity of the self-intersection point means that a 4D-
frame constructed from two 2D-frames transported from a regular point on the
surface to the singular point of self-intersection via two non-equivalent paths
gives positive volume.

The representation of a negative “elementary monodromy” in terms of 11 ele-
mentary positive singularities shows in some sense the complicated nature of the
“elementary negative defect”. At the same time simple topological arguments
suggest, instead of a singly pinched torus as a possible candidate for an alter-
native simple defect, the singular fiber which is a sphere with one transversal
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Figure 10: Representation of a Klein bottle in a 3D-space as a surface with
self-intersection.

negative self-intersection point [39]. The objection to appearance in Hamilto-
nian systems of such a topologically allowed defect comes from the deformation
arguments. Supposing that the “negative” defect is an elementary one, the small
deformation of this singular fiber removing the singular point should lead to a
fiber from the neighborhood filled by regular fibers. At the same time, a small
deformation of a singular fiber which is a sphere with one transversal negative
self-intersection point should lead to a regular fiber which is a non-orientable
surface (Klein bottle) instead of a regular torus.

In order to see why this non-orientable surface cannot be another non-
orientable surface, for example real projective plane RP2, rather than the Klein
bottle we can study what happens with a pinched RP2 if we cut it through the
pinch point. One can verify that a singly pinched RP2, after cutting through
the pinch point, becomes again RP 2 rather then sphere.

In contrast, if we prepare a singly pinched Klein bottle and cut it through
the pinch point, the result may be different. It is important to note that the
Klein bottle can be pinched in two non-equivalent ways: either by shrinking
to zero the cycle which is a generator of the infinite group, or by shrinking to
zero a generator of a Z2 group. Cutting a pinched Klein bottle through the
pinch point which corresponds to a vanishing cycle being a Z2 generator leads
to a 2D-sphere, S2. At the same time cutting pinched Klein bottle through
the pinch point which corresponds to a vanishing cycle being a Z generator of
a group of integers results in an RP2 surface. Thus appearance of a sphere
with one negative self-intersection point as a generic singular fiber assumes that
regular fibers should be Klein bottles rather than regular tori and the singularity
should be associated with the vanishing of the Z2 generator. It is probably
useful to note here that the Klein bottle itself can be considered as a critical
fiber of toric fibration associated with the double covering of a Klein bottle
by a torus. Although a Klein bottle is known to be a generic critical fiber for
toric foliations this critical fiber rarely appears in applications [5]. What kind
of integrable systems can lead to generic fibers of Klein bottle type remains an
open problem.
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Figure 11: Self overlapping of a lower cell of the unfolding image of the energy-
momentum map.

5 Multi-component energy momentum map, bi-

dromy and so on

Another generalization of monodromy is based on the analysis of images of
energy-momentum maps with several components. A rather complicated exam-
ple of multicomponent maps arises even for such a naturally simple integrable
model as a Manakov top [57]. A much more simpler example of the appearance
of a second component was shown in Figure 1 c, where the second component
appears as a result of a Hamiltonian Hopf bifurcation [19, 20] leading to trans-
formation of an isolated focus-focus singular point into a second leaf attached
to the main leaf through a family of singular fibers, named bitori (see Figure
2 c). Such creation of the second leaf evidently cannot modify the nontrivial
monodromy associated with an initial isolated singular point and consequently
the nonlocal monodromy is associated with the closed path surrounding the
whole second leaf on the image of the energy-momentum map. More precisely,
we should say that the closed path goes around bitorus stratum responsible for
joining two components into one. Examples of such a transformation are well
known in different molecular examples like a hydrogen atom in fields [20], or an
LiCN [36, 22] molecule. It should be also noted that the appearance of the sec-
ond leaf on the image of the energy-momentum map could also result from the
fold type catastrophe [15]. In such a case the second component typically ap-
pears within the regular region of the image of the energy-momentum map and
consequently the monodromy transformation associated with the closed path
surrounding the second leaf should remain trivial in this case.

Another possibility of getting the second leaf appears in a rather different
situation associated in fact with the self-overlapping of the same leaf (see Figure
1 d). The organization of the image of the energy momentum map can be
explained by using a schematic “unfolding” procedure represented in Figure 11,
which can be more accurately explained by introducing notions of upper and
lower cells for singular toric fibrations as it is done in detail in [46].

The specificity of the situation is due to the fact that a certain region of
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the image of the energy-momentum map has two regular tori as an inverse
image (points b′ and b′′ in Figure 11). At the same time we can choose a
continuous family of regular tori allowing deformation of one torus in this region
into another. The possibility of such a deformation leads to an unambiguous
definition of three tori lying close to a bitorus fiber (point c in Figure 11) on
three locally different leaves of the image of the energy-momentum map. This
construction gives the possibility to define the crossing of a bitorus line in such
case. The tentative definition of corresponding splitting of cell and path when
crossing the bitorus line and fusion of bipath into one path along with two
cell fusion was named bidromy [54]. The bidromy phenomenon was initially
illustrated on a rather complicated example of a three degree of freedom system
with special resonance 1 : 1 : 2 [30, 54] but essentially the same qualitative
behavior can be observed for a 2-degree of freedom dynamical system. An
example of such behavior was even found in such simple quantum systems as a
hydrogen atom in the presence of electric and magnetic external fields [25, 24].

6 Time evolution and monodromy

Up until now I have discussed only a “static”, in some sense, manifestation
of Hamiltonian monodromy, namely special arrangements of joint spectrum of
mutually commuting operators. A quite interesting direction of further inves-
tigation is related with the analysis of monodromy manifestations during time
dependent processes. The general unprecise idea is to realize the time-dependent
evolution of the dynamical system corresponding in some sense to going along
a closed path surrounding a singularity in the energy-momentum space. The
initial question in such a construction is about what should be observed and
what fingerprints of monodromy could be found. The first step in this direction
was made by Delos et al [13, 14] using very simple toy problem, namely the mo-
tion of a single particle in an axially symmetric billiard with a parabolic barrier
potential. This problem possesses monodromy in its stationary Hamiltonian
formulation. In order to see the nontrivial dynamic effect of monodromy, one
needs to follow the evolution of a family of particles and to choose a special
time-dependent perturbation which allows to change values of the integral of
motion in, say, an adiabatic way. The dynamic manifestation of monodromy
consists in the nontrivial topological modification of an initial spatial distribu-
tion of particles after following a closed path in the energy-momentum space
and returning to the initial values of integrals of motion. The most difficult
step in the realization of such a time-dependent processes is to find the pre-
cise form of the time dependent perturbation which satisfies all theoretically
imposed assumptions on the form of perturbation and to realize it practically.
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7 Perspectives

The notion of monodromy can be related to problems which are quite far from
the classical Hamiltonian integrable systems, or model quantum molecules. The
idea of such a generalization is based on the relation between defects of regular
patterns and the monodromy. Namely, many defects of regular lattices which
appear in solid state physics can be considered as a cumulative result of a number
of elementary monodromy defects and can be treated as some complicated non-
elementary defects from the point of view of monodromy defects. It is clear that
the choice of “elementary bricks” is not unique. Even though the mathematical
description of defects in solid state physics and in toric fibrations related to
dynamical Hamiltonian systems, or in other models turns out to be similar, the
relevance of these mathematical constructions should be confronted to physical
reality.

From the physical point of view the origin of defects in solids is due to
imperfection of the crystal growth. Some of 2D-point defects like disclinations
has a natural description in terms of several elementary monodromy defects.
Some others, like vacations, have nothing to do with monodromy, because they
are not related to the topology of the lattice. We can try to generalize the
mathematical description of defects in terms of elementary monodromy defects
and to look from this point of view for typical singularities (defects) of almost
regular patterns appearing in different domains. The general idea behind this
is to find interpretation of defects in terms of natural “elementary ones” and
to specify the generic most frequently appearing defects and to find a possible
explanation of their appearance.

Regular patterns with defects can appear not only in solid state, with each
point being associated with an atom or molecule, but in more complex systems
like plants with regular patterns being associated with leaves or seeds, reflecting
the morphogenesis or the plant development. The most striking example of such
a regular pattern formation is the phyllotaxis, intriguing scientists working in
different fields even quite far from biology. Let us just cite Leonardo da Vinci,
Kepler, Bravais, Turing, Coxeter, .. [1].

The phenomenon of phyllotaxis describes the morphology of many botanical
objects. It exists in the arrangement of repeated units such as leaves around
a stem in various plants, seeds of a pine-cones or of a sunflower, scales of a
pineapple, etc. The most widely known is the spiral phyllotaxis associated in
a major part of cases with lattices formed by left hand and right hand spirals
whose number are found to be consecutive numbers in the Fibonacci sequence
1, 1, 2, 3, 5, 8, ..., ak, ak+1, ak+2 = ak + ak+1, .... The interdisciplinary character
of the phyllotaxis phenomenon is clearly seen on the example of pattern for-
mation by drops of ferro-fluids in a magnetic field [16] or by flux lattices in
superconductors [38].

The enormous literature devoted to the study and to the explanation of the
universal behavior of botanical patterns mainly deals with a peculiar presence of
Fibonacci numbers and chemical regulation of their presence (see [34, 64, 1, 50,
35, 58] and references therein). Characterization of the resulting pattern from
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Figure 12: Sunflower with 55 right spirals (parastichies) indicated by additional
lines to guide the eyes.

Figure 13: The same sunflower as in Figure 12, but now 34 left spirals are
indicated.
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Figure 14: “Sunflower lattice” formed by left and right spirals shown in previous
figures 12, 13. The transformation of an elementary cell of this lattice along the
close path surrounding the central singularity shows the presence of monodromy,
related to a 2π self-rotation of the elementary cell (see the text).
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the point of view of the singularity responsible for the pattern formation and
its monodromy has not been described earlier in the literature up to our knowl-
edge. The appearance of defects within the spiral pattern and modifications
of (n1, n2) into (n′

1, n
′
2) patterns has been discussed on several occasions [56],

but the most essential persistent feature of global organization of spirals due
to the characteristic relation between a locally regular lattice and its nontrivial
behavior around the growing center has not been related to a monodromy like
notion.

I would like here to demonstrate the manifestation of a phyllotaxis mon-
odromy on the sunflower example and to formulate several questions about
universality of the patterns, associated defects, and relevance of such defects to
evolution processes not only in botanic, but in other fields of science.

First of all, taking an example of sunflower with 34 left and 55 right eye-
guided spirals - parastichies in biological language - (see Figure 12) we note that
locally regular lattice can be constructed by explicitly plotting spirals (see Figure
13). In any local simply connected region this lattice can be easily transformed
into a regular lattice but globally it has an easily seen defect - the apex. In
order to see the nontrivial effect of the apex region on the lattice we take the
elementary cell in any regular part of the lattice and move it step by step along
a closed path surrounding the apex region (see Figure 14). At each step the
local regular structure allows us to move the elementary cell unambiguously,
even though the lattice itself and the corresponding elementary cell could be
chosen in a different way because the basis of the lattice is defined as usual up
to an SL(2, Z) similarity transformation1. It is important to keep the vertices
of the cell labeled at each step of the lattice displacement. We use letters a and
b in Figure 14.

It is easy to verify that after following a closed path which does not go
around the apex the elementary cell returns to its initial position. Apparently
the same situation occurs after going along a closed path surrounding once the
apex. But the principal difference is that in this case (shown in Figure 14) the
cell returns to its original position after making a 2π self-rotation around axis
passing through the center of the cell in an orthogonal to the cell-plane direc-
tion. From the point of view of Hamiltonian monodromy the comparison of the
initial cell and the final cell can be expressed by an identity matrix which is asso-
ciated with a trivial monodromy. At the same time the closed path is evidently
non-contractible and in order to characterize the singularity (or the defect) re-
sponsible for this non-triviality we need to add another topological invariant
associated with the closed path, namely the self-rotation number which can be
positive, negative or zero. According to the earlier formulated correspondence
between a cell transportation around a defect and the “monodromy defect”
construction (by removing or inserting a wedge) the positive numbers of self
rotation correspond to defects with removing wedge. These defects correspond
to typical singularities (focus-focus) for Hamiltonian systems. The direction of

1The corresponding ambiguity in the choice of parastichies was equally mentioned in liter-
ature discussing the geometrical aspects of phyllotaxis [7]
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self-rotation of the cell is well defined for an arbitrary number of focus-focus
singularities in Hamiltonian systems [11, 12, 66]. This direction is related to the
fact that the corresponding defect is produced by removing a certain number of
wedges from the lattice. It is important to note that the direction of “positive”
self-rotation should be defined only after specifying the direction of the closed
path going around the singularity. The rotation can be defined positive if the
cell turns from the v1 to v2 in the shortest way, where v1 is a vector defining
the direction of the path surrounding the singularity, and v2 is a vector joining
the cell and the singularity. More formally, the triple product (v1,v2,R) > 0
should be positive, where R is the axial vector giving the self-rotation of the
cell.

In a more intuitive way we can say that the positive choice of the cell’s
self-rotation coincides with the sense of rotation of a wheel (representing the
cell) turning around another wheel (representing the singularity), if the “cell”
rolls around the “singularity” without slipping. Unfortunately, in order to get
in such a representation the value of the self-rotation angle to be equal to 2π,
the radius of a wheel representing the singularity should be chosen to be equal
to 0.

The choice of the sign of the monodromy defect observed for a wide range of
botanic patterns seems to be rather fundamental property similar in the spirit
to the left-right asymmetry and time irreversibility. A number of interesting
questions naturally arise provoked by this supposition. Can the evolution of
the plants be modeled by a dynamical system with the source being associated
with a generic singularity characterized by an identity monodromy and positive
2π self-rotation? Does the sign of self-rotation reflect specific properties of the
system? We end with an even more general tentative speculation: Is the generic
singularity associated with irreversible time evolution (growing process) always
characterized by a trivial (identity) monodromy with positive 2π self-rotation?
Is it possible to apply this conjecture to the evolution of our Universe?
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