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Preface

This book has a rather long and complicated history. One of the authors,
Louis Michel, passed away on the 30 December, 1999. Among a number of
works in progress at that time there were a near complete series of big papers
on “Symmetry, invariants, topology“ published soon after in Physics Reports
[75] and a project of a book “Lattice geometry“, started in collaboration with
Marjorie Senechal and Peter Engel [53]. The partially completed version of
the “Lattice geometry“ by Louis Michel, Marjorie Senechal and Peter Engel is
available as a IHES preprint version of 2004. In 2011, while starting to work
on the preparation of selected works of Louis Michel [19] it became clear that
scientific ideas of Louis Michel developed over the last thirty years and related to
group action applications in different physical problems are not really accessible
to the young generation of scientists in spite of the fact that they are published
in specialized reviews. It seems that the comment made by Louis Michel in his
1980’s talk [70] remains valid till now:

“Fifty years ago were published the fundamental books of Weyl and of
Wigner on application of group theory to quantum mechanics; since, some
knowledge of the theory of linear group representations has become necessary
to nearly all physicists. However the most basic concepts concerning group ac-
tions are not introduced in these famous books and, in general, in the physics
literature.

After rather long discussions and trials to revise initial “Lattice geometry “
text which require serious modifications to be kept at the current level of the
scientific achievements, it turns out that probably the most wise solution is to
restrict it to the basic ideas of Louis Michel’s approach concentrated on the
use of group actions. The present text is based essentially on the preliminary
version of the “Lattice geometry“ manuscript [53] and on relevant publications
by Louis Michel [71, 76, 72, 73, 74], especially on reviews published in Physics
Reports [75], but the accent is made on the detailed presentation of the two-
and three-dimensional cases, whereas the generalization to arbitrary dimension
is only outlined.
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Chapter 1

Introduction

This chapter describes the outline of the book and explains the interrelations
between different chapters and appendices.

The specificity of this book is an intensive use of group action ideas and
terminology when discussing physical and mathematical models of lattices. An-
other important aspect is the discussion and comparison of various approaches
to the characterization of lattices. Along with symmetry and topology ideas,
the combinatorial description based on Voronoi and Delone cells is discussed
along with classical characterization of lattices via quadratic forms.

We start by introducing in Chapter 2 the most important notions related
to group action: orbit, stabilizer, stratum, orbifold, ... . These notions are
illustrated on several concrete examples of the group action on groups and on
vector spaces. The necessary basic notions of group theory are collected in
appendix A which should be considered as a reference guide for basic notions
and notation rather than as an exposition of group theory.

Before starting description of lattices, chapter 3 deals with a more general
concept, the Delone system of points. Under special conditions Delone sets lead
to lattices of translations which are related to the fundamental physical notion
of periodic crystals. The study of the Delone set of points is important not only
to find necessary and sufficient conditions for the existence of periodic lattices.
It allows discussion of a much broader mathematical frame and physical objects
like aperiodic crystals, named also as quasicrystals.

Chapter 4 deals with symmetry aspects of periodic lattices. Point symmetry
classification and Bravais classes of lattices are introduced using two-dimensional
and three-dimensional lattices as examples. Stratification of the ambient space
and construction of the orbifolds for the symmetry group action is illustrated
again on many examples of two- and three-dimensional lattices. The mathe-
matical concepts necessary for the description of point symmetry of higher di-
mensional lattices are introduced and the crystallographic restrictions imposed
on the possible types of point symmetry groups by periodicity condition are
explicitly introduced.

Chapter 5 introduces the combinatorial description of lattices in terms of
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their Voronoi and Delone cells. The duality aspects between Voronoi and
Delone tesselations are discussed. Voronof cells for two- and three-dimensional
lattices are explicitly introduced along with their combinatorial classification
as an alternative to the symmetry classification of lattices introduced in the
previous chapter. Such notions as corona, facet, and shortest vectors are defined
and their utility for description of arbitrary N-dimensional lattices is outlined.

Description of the lattices by using their symmetry or by their Voronoi cells
does not depend on the choice of basis used for the concrete realization of the
lattice in Euclidean space. At the same time practical calculations with lattices
require the use of a specific lattice basis which can be chosen in a very ambiguous
way. Chapter 6 discusses a very old subject : the description of lattices in terms
of positive quadratic forms. The geometric representation of the cone of positive
quadratic forms and choice of the fundamental domain of the cone associated
with different lattices is discussed in detail for two-dimensional lattices. The
reduction of quadratic forms is viewed through the perspective of the group
action associated with lattice basis modification. The correspondence between
the combinatorial structure of the Voronoi cell and the position of the point
representing lattice on the cone of positive quadratic forms is carefully analyzed.
The dimension of the cone of positive quadratic forms increases rapidly with the
dimension of lattices. That is why the straightforward geometric visualization
becomes difficult for three- and higher dimensional lattices. Nevertheless, for
three-dimensional lattices the construction of the model showing the distribution
of Bravais lattices and combinatorially different lattices by taking an appropriate
section of the cone of positive quadratic forms is possible. This presentation is
done on the basis of the very detailed analysis realized by Louis Michel during
his lectures given at Smith College, Northampshire, USA. Generalizations of the
combinatorial description of lattices to arbitrary dimension requires introduction
of a number of new concepts, which are shortly outlined in this chapter following
mainly the fundamental works by Peter Engel and his collaborators. Symbolic
visualization of lattices via graphs is introduced intuitively by examples of 3-,
4-, and partially 5-dimensional lattices without going into details of matroid
theory.

Concrete examples of lattices in arbitrary dimensions related to reflection
groups are studied in chapter 7. These examples allow us to see important cor-
respondence between different mathematical domains, finite reflection groups,
Lie groups and algebra, Dynkin diagrams, ... .

Chapter 8 turns to discussion of the comparison between different classifica-
tions of lattices introduced in previous chapters and some other more advanced
classifications suggested and used for specific physical and mathematical ap-
plications in the scientific literature. Among these different classifications we
describe the correspondence between geometric and arithmetic classes of lattices
and more general crystallographic classes necessary to classify the symmetry of
the system of points which are more general than simple regular point lattices.
Among the most important for physical applications aspects of lattice symmetry,
the notion of enantiomorphism and of time reversal invariance are additionally
discussed. The simultaneous use of symmetry and combinatorial classification
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for three-dimensional lattices is demonstrated by using the Delone approach.

Some physical and mathematical applications of lattices are discussed in
chapter 9. These include analysis of sphere packing, covering, and tiling related
mainly with specific lattices relevant for each type of problem. More physically
related applications are the classification of the regular phases of matter and in
particular the description of quasicrystals which are more general than regular
crystals. Another generalization of regular lattices includes discussion of lattice
defects. Description of different types of lattice defects is important not only
from the point of view of classification of defects of periodic crystals. It allows
also the study of defects of more formal lattice models, for example defects
associated with lattices appearing in integrable dynamical models which are
tightly related with singularities of classical dynamical integrable models and
with qualitative features of quantum systems associated with lattices of common
eigenvalues of several mutually commuting observables.

Appendices can be used as references for basic definitions of group theory
(Appendix A), on graphs and partially ordered sets (Appendix B), and for com-
parison of notations (Appendix C) used by different authors. Also the complete
list of orbifolds for 17 two-dimensional crystallographic groups (Appendix D)
and for 3D-irreducible Bravais groups (Appendix E) is given together with short
explication of their construction and notation.

The bibliography includes a list of basic books for further reading on relevant
subjects and a list of original papers cited in the text, which is obviously very
partial and reflects the personal preferences of authors.
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Chapter 2

Group action. Basic
definitions and examples

This chapter is devoted to the definitions and short explanations of basic notions
associated with group actions, which play a fundamental role in mathematics
and in other fields of science as well. In physics group actions appear naturally in
different domains especially when one discusses qualitative features of physical
systems and their qualitative modifications.

We also introduce here much of the notation that will be used systematically
in this book. Thus this section can be used as a dictionary.

Group action involves two ”objects”: a group G, and a mathematical struc-
ture M on which the group acts. M may be algebraic, geometric, topological,
or combinatorial. Aut M, its automorphism group, is the group of one-to-one
mappings of M to itself.

Definition: group action. An action of a group G on a mathematical
structure M is a group morphism (homomorphism) G % Aut M.

The examples we give are designed for the applications we need in this book.
Let us start with a very simple mathematical object M, an equilateral triangle
in the (two-dimensional) Euclidean plane R?. The isometries of R? that leave
this triangle invariant form a group consisting of 6 elements (identity, rotations
through 27/3 and through 47 /3, and reflections across the lines passing through
its three vertices and the midpoints of the opposite sides). In the classical
notation used by physicists and chemists, this group is denoted Ds. (Alternative
notations of groups are discussed in Appendix C).

We can also consider the action of D3 on other objects, for example on the
entire plane (see Figure 2.1). In this case the group morphism D3 % Aut R?
maps each group element to an automorphism (symmetry transformation) of
M = R?. This action is said to be effective because each g € G (other than the
identity) effects the displacement of at least one point of the plane.

As another example of the action of D3, we can take for M a single point,
the center of the equilateral triangle. This point is left fixed by every element

13
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of Ds; thus this action is not effective.

We can also extend the action of D3 from R? to R3. The rotations through
27/3 and 47/3 about the axis passing through the center of the triangle and
orthogonal to it generalize the plane rotations in a natural way.

There are two ways to generalize the reflections of D3 to transformations of
3D-space.

First, we can replace reflection across a line ¢ by reflection in the plane or-
thogonal to the triangle and intersecting it in . This gives us a symmetry group
whose symbol is Cs,, (or 3m or x33). Alternatively, we can replace 2D-reflection
across ¢ by rotation in space, through 7, around the axis coinciding with that
line. This group is denoted D3 (or 32 [ITC]=[14], or 223 [Conway]=[31]). The
groups D3 and Cj3, are isomorphic; thus one abstract group has two very dif-
ferent actions on R3, while their actions on a 2D-dimensional subspace are
identical.

We began this discussion with the example of an equilateral triangle in
the plane. What is the symmetry group if the triangle is situated in three-
dimensional space? Obviously, this group includes the six symmetry transfor-
mations forming the two-dimensional group Ds. But now the complete set of
transformations leaving the triangle invariant also includes reflection in the plane
of the triangle and the composition of this reflection with all the elements of
Ds. Thus in R? the symmetry group of an equilateral triangle has 12 elements.
We denote this larger group by Day,, or 62m [ITC], or ¥223 [Conway].

Notice that the action of D3, on the plane of the triangle in R? is non-
effective, since reflection in that plane leaves all its points fixed. This ac-
tion, described by the homomorphism Dsp, L Aut R?, has a non-trivial kernel,
Kerp = Zs, the group of two elements (the identity and reflection in the plane).

Returning now to the definition of group action, we introduce the following
notation. Since the action of a group G on a mathematical structure M is
specified by the homomorphism p(g) for all g € G, we will write p(g)(m) for the
transform of any m € M by g € G, and abbreviate it to g.m. *

Now we come to a key idea in group action.

Definition: group orbit. The orbit of m (under G) is the set of transforms
of m by G; we denote this by G.m.

For example (see Figure 2.1), each of the following sets is an orbit of Dj
acting on the two-dimensional plane containing an equilateral triangle:

e three points equally distanced from the center, one on each of the three
reflection lines;

e the centroid or, equivalently, the center of mass of the triangle; and

e any set of six distinct points related by the reflections and rotations of the
symmetry group Ds.

IWhen G is Abelian and its group law is noted additively, we may use g + m instead of
g.m as short for p(g)(m), though this use of + is an ”abus de langage,” since g and m may
not be objects of the same type.
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(a)

Figure 2.1: Orbits of the action of D3 (the symmetry group of an equilateral
triangle) on the 2D-plane. (a) The sole fixed point of the D3 group action. The
stabilizer of this one-point orbit is the whole group Ds. (b) Two examples of
orbits consisting of three points. Each point of the orbit has one of the reflection
subgroups r;, i = 1,2, 3, as a stabilizer. The three stabilizers r;, ¢ = 1,2, 3 form
the conjugacy class r of D3 subgroups. (c¢) - Example of an orbit consisting of
six points. The stabilizer of each point of such an orbit and of the orbit itself is
a trivial group C; = 1.

Figure 2.2 shows orbits of C3,,, D3, and D3 acting on an equilateral triangle
in R3.

Under the action of a finite group, the number of elements in an orbit cannot
be larger than the order of the group, and this number always divides the group
order. Belonging to an orbit is an equivalence relation on the elements of M
and thus M is a disjoint union of its orbits.

For continuous groups an orbit can be a manifold whose dimension cannot
exceed the number of continuous parameters of the group. The simplest ex-
amples of continuous symmetry groups are the group of rotations of a circle,
SO(2) = Cw, and the circle’s complete symmetry group, O(2) = Dy, which
includes reflections. Both Cy, and D, act effectively on the plane in which
the circle lies. In fact their orbits coincide (see Figure 2.3): there is one one-
point orbit, the fixed point of the group action, and a continuous family of
one-dimensional orbits, each of them a circle.

A second key notion is the stabilizer of an element of M.

Definition: stabilizer. The stabilizer of an element m € M is the subgroup

Gm={9€G, gm=m}

of elements of G which leave m fixed.

If G,, = G, then this orbit has a single element and m is said to be a fixed
point of M (see Figure 2.1a and Figure 2.3a).

If G is finite, then the number of points in the orbit G.m is |G|/|G,|. Thus
if, as in Figure 2.1 b, the stabilizer of a D3 orbit is a subgroup of order 2, the
orbit consists of three points. If G,,, = 1 = e, the group identity (Figure 2.1 ¢),
then the size of the orbit is |G| and the orbit is said to be principal. 2

20rbits with trivial stabilizer 1 are always principal but for continuous group actions
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s
Caym=
271 \r\D 3h
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v C i
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()

Figure 2.2: Generalizing the action of D3 from R? to R3. (a) Action of the
group Cj,: three orbits with stabilizers Cs, , Cs, and Cy are shown (s stands
for reflection in the indicated plane); (b) Action of the group Ds: four orbits
with stabilizers D3, C5, C3, and C; are shown. (c¢) Action of the group Dsp:
one point from each of six different orbits (Dsp, Csy, Cay, Cs, Ch, and C7) is

shown.

(a) (b)

Figure 2.3: Orbits of the action of Cx, and Dy, on the 2D-plane. (a) The fixed
point of these group actions on R2. (b) - Continuous circular orbits.
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Figure 2.4: The lattice of conjugacy classes of subgroups of D3 group. The table
on the right shows, in column 1, the number of elements |[H]¢| in the conjugacy
class [H]g of each type of subgroup. The numbers in the right-hand column are
the orders of the subgroup |H|.

It is easy to prove that G, = ¢Gng~ "', from which it follows that the set
of stabilizers of the elements of an orbit is a conjugacy class [H]g of subgroups
of G. For example, the stabilizers of the three vertices of an equilateral triangle
are the three reflection subgroups, r;, of D3, which are conjugate by rotation.
This fact allows us to classify (or to label) orbits by their stabilizers, i.e. by
the conjugacy classes of subgroups of group G. We recall that the conjugacy
classes of subgroups of any given group form a partially ordered set: one class is
“smaller” than another if it contains a proper subgroup of a group in the other
conjugacy class. This partial ordering for D3 is shown in Figure 2.4.

Orbits with the same conjugacy class of stabilizers are said to be of the same
type.

Next, we define the very important notion of stratum.

Definition: stratum. In a group action, a stratum is the union of all
points belonging to all orbits of the same type.

By definition, two points belong to the same stratum if, and only if, their
stabilizers are conjugate. Consequently we can classify and label the strata of
a group action by the conjugacy classes of subgroups of the group.

The three strata of the action of D3 on R? are shown in Figure 2.5. They
include the centroid of the triangle (D3’s zero-dimensional stratum), three mir-
ror lines without their intersection point (the one-dimensional stratum), and
the complement of these two strata (the two dimensional stratum).

A disc D, minus its center, is one stratum of the action of Dy, on D; the
center is the other.

When they exist, as in the case of the D3 action on R? (Figure 2.1) or the Ci,
action (Figure 2.3) the fixed points form one stratum and the principal orbits
form another. Belonging to the same stratum is an equivalence relation for the
elements of M or for orbits of a G-action on M. Thus M can be considered as
a disjoint union of strata of different dimensions.

principal orbits can have nontrivial stabilizers. In that case principal orbits are defined as
orbits forming open dense strata, see below.
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Figure 2.5: The strata of D3 action on R?. Blue point represents the zero-
dimensional D3-stratum. The red rays without their common intersection point
form the one-dimensional r-stratum. The six two-dimensional green regions of
the plane form the two-dimensional principal stratum with trivial stabilizer.

Figure 2.6: Strata of the action of Cs (or D) on R%. The blue point forms
the zero-dimensional stratum. The whole plane without the point is the two-
dimensional principal stratum.
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We will denote the set of orbits of the action of G on M by M|G and the
corresponding set of strata as M||G. To belong to the same stratum is an
equivalence relation for the elements of M and for elements of the set of orbits,
M]|G. The set of strata M||G is a (rather small in many applications) subset of
the set of conjugacy classes of subgroups of G. Thus M||G too has the structure
of a partially ordered set S; € M||G,where by S; < S we mean that the local
symmetry of S7 is smaller than that of Sy —i.e. the stabilizers of the points of
S1 are, up to conjugation, subgroups of those of S5. Beware: a less symmetric
stratum might have a larger dimension than a more symmetric one. The set of
strata is partially ordered by local symmetry, not by size.

The example of the action of D3 on R2, discussed above, leads to three
strata: the zero dimensional stratum D3, the one-dimensional stratum r, and
the two-dimensional principal stratum 1, which is open and dense. Only three
conjugacy classes of subgroups of D3 (see Figure 2.5) appear as local symmetry
of strata. The natural partial order between strata is 1 < r < Ds.

The action of C (the group of pure rotational symmetries of a circle or of a
disk) on R? leads to two strata (see Figure 2.6). The zero-dimensional stratum
consists of one point, the center. The two-dimensional principal stratum is the
whole plane minus that point. Note that the action of Dy, on R? has the same
two strata, but their stabilizers now are different.

Finally, we define the notions of orbit space and orbifold.

Definition: orbit space. The set of orbits appearing in an action of G on
M is the orbit space M|G.

If M contains only one orbit, i.e. if any m € M can be transformed into
any other element of M by the group action, the action is said to be transitive
and M is called a homogeneous space (with respect to G and p). Examples of
homogeneous spaces and their associated groups include

e a circle (not a disk!), G = D;
e R" and G the group of translations in R™.

e a sphere S, in (n + 1)-dimensional space and G = SO(n + 1).

Definition: orbifold. The orbifold of a group action is a set consisting of
one representative point from each of its orbits.

Thus, the space of orbits for the action of D3 on R? can be represented as
a sector of the plane (see Figure 2.7). The space of orbits for the action of Cso
on R? can be represented as a one-dimensional ray with a special point at the
origin (see Figure 2.8).

Let us consider the space of orbits of a (three-dimensional) D3 action on
a two-dimensional sphere surrounding an equilateral triangle (see Figure 2.9).
Assume that its action on R? (see Figure 2.2 b) coincides with the action of
the 2D-point group Ds.

The action of D3 on the two-dimensional sphere yields one orbit with sta-
bilizer C3. This orbit consists of two points (two poles of a sphere lying on
the C3 axis). Another zero-dimensional stratum is formed by two three-point
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Figure 2.7: Orbifold of D3 action on R2. The blue point represents the D3-
orbit consisting of one point. Red rays form 1D-set of r-orbits consisting each
of three points. Green region is a two-dimensional set of principal C; = 1 orbits,
consisting each of six points.

- Pt circle
P!
L e— /
\ <

"--Y50(2)

Figure 2.8: Orbifold of the action of Cs, on R?. Blue filled point - the orbit
with stabilizer SO(2) consisting of one point. Red ray - the set of 1D-orbits,
each orbit being a circle.

a

Figure 2.9: (a) - Schematic view of the sphere surrounding an equilateral trian-
gle. (b) - Action of group D3 on the sphere represented on orthographic projec-
tion. The yellow region represents a fundamental domain. Parts of boundaries
indicated by the same letters should be identifies. (c¢) - Orbifold for action of
D3 group on the sphere - sphere with three special points, 223.
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orbits with stabilizer Cy. These points have stabilizers C%, i = 1,2, 3. The three
subgroups C4 of order two belong to the same conjugacy class Co, which is used
to label these orbits. All other points of the sphere belong to principal orbits
with stabilizer 1; each of these orbits consists of six points.

To construct the orbifold (or the space of orbits) we take one representative
point from each orbit. From the physical point of view this procedure corre-
sponds to selecting a fundamental domain of the group action (the choice is not
unique). The so obtained space of orbits is (from the topological point of view)
a two-dimensional sphere with three singular points, corresponding to three iso-
lated orbits. One isolated orbit has stabilizer C's and forms itself C3 stratum.
Two other isolated orbits (each consisting of three points) have stabilizer Cy
and form another zero-dimensional stratum. The topology of an orbifold can be
quite complex; for a primer on orbifold construction, see [4], [21], and a number
of examples in chapter 4.

2.1 The action of a group on itself

Let us consider the set of elements forming group G. Then Aut G is the per-
mutation group of the elements of the set G.

Example 1 G acts on its elements by conjugation. That is, M = G, and
p(g)(m) = gmg~'. Then Ker p = C(G), the center of G (the subset of elements
of G commuting with all g € G). Im p is the group of inner automorphisms of
G.

The orbit of z € G is called the conjugacy class of z in G; we denote it by
[z]e. The fixed points of this action are the elements of the center of G. If G is
Abelian, then there is only one stratum, that of fixed points.

We illustrate the action of G on itself by conjugation with the example of
Dsy,, the symmetry group of an equilateral triangle in 3D space (see Figure
2.2, ¢). Group Ds), consists of the 12 elements listed in the first line and the
first column of Table 2.1. Column z and line g intersect in the entry gzg—!.
All of the entries in each column belong to the same orbit, that is, they form
one conjugacy class. The notation for the conjugacy class and the number of
elements in it are listed in the two last lines of the table. The elements z € G
invariant under conjugation with one g € G constitute the stabilizer of g, listed
in the last column. In group theoretical terminology the stabilizer of a group
element is its centralizer.

The action G % Aut M defines an action of G on the subsets of M in
a natural way. In particular, the action of G on its elements by conjugation
induces the action of GG on the set of its subgroups. The orbit G.H of a subgroup
H is the conjugacy class [H]g of the subgroups of G conjugate to H. The
stabilizer G is the normalizer of H in G, Ng(H). If H is fixed by this action,
it is by definition an invariant subgroup of G.
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Table 2.1: Example of the action of the group D3, on itself. For each x € D3,
the result of the D3y action is given. The stabilizer (or the centralizer) of each
element g € D3y, is given in the last column. The last two lines show the classes
of conjugate elements to which an element z € D3}, belongs and the number of
elements in the corresponding class.

g | E O LUy Uy Us oon S3 S;t 0% of  of | Stabilizer
E E  C3 s Us Uy US oS3 s ol a) of D3y,
C3 FE C3 C:;l Ug U§ Uél Op 53 S;l Ug Ug Ug C3h
L B Cs s Us Ug Ub on  Ss Sit oof ot of Cap,
Ug E c3' ¢y vy Us U on S;t Sy o of ot e
vt | E Ccy' Cs Us U Us on S3t S3 ot ob oo cs,
us | E Ccy' C3 Uy US US on S3t S3 ab 0% ot cs,
on E C3 Ccy' Uy Uy Us o S3 S;t a¢ b o Day,
S E O3 LUt us Us oo, Sy St o o ol Cap
Syt E ©; Ccyt us uUs U: oy S; Syt o8 o ob Csy,
ol E o7t Ccy Uy US U o, S;t Sy ¢ o ob cs,
ab E Cc;t oy Us U US on S3t Sy o ob o0 ch,
ot E ot cy Uy Us Us o S;t Sy ob o0 o cs,
[#]Dsn | [E] [Cs] U] (o] 5] (0]
2] | 1 2 3 1 2 3

The lattice of subgroups of Dgj is shown in Figure 2.10, and the action of
D3y, on its subgroups is illustrated in Table 2.2. Note that Dj; has several
subgroups of order two describing reflection in different planes. There are three
vertical planes and one horizontal plane (see figure 2.2, ¢). The three subgroups
of reflections in vertical planes form one conjugacy class. The subgroup C}, of
reflection in the horizontal plane h is an invariant subgroup. Moreover, C}, is
the center of Dsyy,.

We denote the set of subgroups of G by {< G} and the set of conjugacy
classes of subgroups of G by {[< G]g}. For a large family of groups — including
all those we will meet in this monograph — there is a natural partial ordering
on {[< G]g} by subgroup inclusion up to conjugation. By definition, the set of
possible types of G-orbits defines a partial ordering on the stratum space M||G.
(As we shall show, the role of this space is essential.) Its elements correspond
to the different symmetry types of the elements of M.

For infinite groups, |{[< G]}| is infinite in general®, but in most problems
we shall study, M||G is finite. In that case, there exist maximal and minimal

3This is the case, for example, for Uy, the one dimensional unitary group i.e. the multi-
plicative group of complex numbers of modulus 1. This group is Abelian and has an infinite
number of subgroups Z,, the cyclic group of n elements. Moreover, since the Z,, for different
n are not isomorphic, every group containing U; has an infinite set of conjugacy classes of
subgroups. That is also the case of O and GL(n, R) for n > 1.
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Figure 2.10: Lattice of subgroups of Dsj group. The order of subgroups is
indicated in the right column.

Table 2.2: Action of the group D3, on the set of its subgroups.

H G-H Normalizer
D3y, D3, Dsp
O30 O30 D3y,
C3n Csn D3y,
D3 Ds D3y,
020/71 {020/717 Cgv7 CQC'U} 020/71
cs, {Cs,,C5,,Cs,} Cs,
cs, {Cs,,C5,,Cs,} Cs,
C3 C3 D3y,
cy  {Ce,Ch o8} Cs3,
¢t {cg,ct ey cs,
ce  {cg,ch ey Cs,
cy  {Cg,C5,C5} s,
ch {Cs,C5,Cs} cs,
Ccs  {Cg,08,Cs} Cs,
Ch Ch D3h

Cl Cl D3h
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D3, 12
C3V 6
3Cy 4

\
3¢, G 2
N

Figure 2.11: Lattice of strata of Ds; group action on three dimensional space.
Numbers before symbols of conjugacy classes of subgroups indicate the number
of subgroups in the class. Right column shows the order of the stabilizer written
on the left in the diagram.

strata, corresponding to maximal and minimal symmetry.

The set of strata of Dsj in R® consists of six elements (see figure 2.2, c):
D3y, Cs,, Cyy, Cs, Cp, Cp. They form the partially ordered lattice shown in
Figure 2.11. The maximal stratum is the zero dimensional D3, stratum, while
the minimal is a generic C; three-dimensional stratum with a trivial stabilizer.

Example 2 G acts on itself by left multiplication: g.m = gm.

Under this action, G has a single orbit, the entire set G is a single G-orbit.
That is, G is a principal orbit. If we restrict this G-action to a proper subgroup
H, then the orbit of x € G is the right coset Hz. The set (G : H)g of right
cosets Hx is the orbit space G|H.

The group action of G on G by right multiplication is defined by g,.x = zg~'.
Restricting to H < G, the H-orbits are the left cosets xH and the orbit space
can be identified with (G : H), the set of left H-cosets.

2.2 Group action on vector space

Let M be an n-dimensional real vector space V;, and GL,(R) the real general
linear group. Then Aut M = GL,(R) and the action GL,,(R) % Aut V,, defines
a real linear representation of GL,(R) on V.

The elements of V,, are called vectors; we denote them by Z,%,.... The
action of GL,(R) on V,, has only two orbits, the origin o, which is fixed, and
the rest of the space. We leave it as an exercise to the reader to find the stabilizer
of a nonzero vector®.

4The answer is given later in this subsection
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Figure 2.12: Action of a group of translations on two-dimensional Euclidean
space leads to a parallel displacement of a reference frame. A space with this
action is said to be“homogeneous*.

Two linear representations p and p’ are said to be equivalent if they are
conjugate under GL,(R):

p=p & FyeGL(R), Vg€ G, p'(g) =vplg)y " (2.1)

Moreover, for « € GL,(R), the determinant det(«) defines a homomorphism

GL,(R) 44 R whose kernel is the special linear group SL,(R), the group of

matrices with determinant +1.

Example 3 For any two bases {b;} and {6/} of V,,, there is a unique g €
GL,(R) transforming {b;} into {l;;} in the basis {b;}, the elements of the ;'
column of the matrix representing g are the components of the vector 53 Thus
the set of bases B,, is a principal orbit of GL, (R).

V.. together with the scalar product (#,¥) is an orthogonal space that we
denote by E,. Then Aut E, = O,, the n-dimensional orthogonal group, and
p defines an orthogonal representation of G. When we are only interested in
the Abelian group structure of the elements of V,, or E,, we use the notation
R™. Figures 2.12 and 2.13 illustrate the action of translations and rotations on
two-dimensional space.

Example 4 When n > 0, Aut E,, = O, and there are only two strata:
the fixed point 6, and n-dimensional open dense stratum formed by points with
stabilizers belonging to the conjugacy class [O,,—1]o, . The orbits of this stratum
are the spheres (centered at the origin) of vectors of the same norm.

The set of elements of V,, with translation, the "natural” action of R", is
an affine space that we denote V,; it is a principal orbit of R™. We denote its
elements, the points, by z,y,....

Let z,y be any pair of points in V;,. The unique translation vector taking x
to y will be denoted by £ =y — x or by £ = Z7.
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Figure 2.13: The action of a group of rotation on two-dimensional Euclidean
space around a fixed point shows that the space is isotropic. The red and blue
frames are the results of action on the initial black frame.

By extension, every algebraic sum of points of the affine space, the sum of
whose coefficients is 1, is a well defined point of V,.

Any m+1 points of V,,, m < n, are said to be independent if they span an m-
dimensional linear manifold. A simplex is the convex hull of n + 1 independent
points in V,,; the independent points are its vertices. Two dimensional simplices
are triangles; in three dimensions they are tetrahedra.

The affine space &, built from an orthogonal space E,, has a richer structure
than V,, as it inherits a metric from the orthogonal scalar product of E,,: the
distance d(z,y) between the pair of points x,y € &, is the positive square root
of the scalar product, or norm, N(y — x).

Example 5 Special cases of affine objects include:

- For any A € R, Az+(1—\)y is the straight line defined by the two distinct
points x,y € Vy;

- The sum ), oz, where ). o; = 1 is the linear manifold defined by the
points x;.

- When 0 < A < 1, Az + (1 — Ay is the line segment joining z,y; when
Yo =1land 0 <oy <1, ) asx; is the convex hull of the points ;.

Similarly, any algebraic sum of points, the sum of whose coefficients vanishes,
defines a unique translation of R"; e.g. a+c—b—d = ba + de = da + be. An
arbitrary choice of a point of V,,, called the “origin”, reconstructs the structure
of a vector space in the affine space.

Example 6
The affine and Euclidean groups

Aff,, = R" ><GL,(R) = Aut V,,, and Eu,, = R"” ><0,, = Aut &,. (2.2)

are semi-direct products (see appendix A).
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To represent the action of Aff,, on V,, by matrices, we have to choose a basis
in the underlying vector space V,, and an origin o in V,,. This yields a system of
coordinates: the coordinates of o vanish and those of o + oz (or, more simply,
0+ Z) are the coordinates of the vector Z. An element of Aff,, can be written
in the form (@A) with @ € V,,, A € GL,(R). Then the group law of Aff,, is

(@, A)(b, B) = (@+ Ab,AB), (@,A™")=(-A"'a,A™") (2.3)

and the action on V), is, explicitly,
(@, A).x =0+ d+ AZ. (2.4)

Note that the map 7 given by

=y ) (25

gives a (n+1)-dimensional linear representation of Aff,,.
By definition, the contragredient representation of 7 is

C= 1 —(A7'a)" P 1
7({@, A)) = ( 0 (AT ) ; det 7({a, A)) = (det A)™". (2.6)
Since the determinant is invariant under conjugation, 7 and 7 are inequivalent
representations.

Now we can give the answer to the exercise proposed in example 2. Im 7
leaves invariant the vectors whose first coordinate is the only nonzero one, and
obviously no larger subgroup does. So the stabilizers of Aut V,, for the non-
vanishing vectors of V,, form the conjugacy class of Im 7.

Example 7 Euclidean geometry.
En is the principal orbit of R™ or, equivalently, the orbit of Fu, : O,. Let
EX? be the set of pairs x # y of distinct points of &,. Its dimension is 2n.
The action of Fu, on this set contains a unique generic open dense stratum
formed by a continuous set of orbits each labeled by a positive real number, the
distance d(x,y). Each orbit is a 2n — 1-dimensional subspace of £2. In order
to find the stabilizer let m be the midpoint of the segment Zy, and &,_1 the
bisector hyperplane of the pair x,y. Figure 2.14 illustrates schematically this
construction. It is easy to see from the figure that the stabilizer of this stratum
is [Op—1 X Z3]gu, where O, _; is the stabilizer of m in the Euclidean group of
En—1 and Zs is the 2 element group generated by the reflection (in E,,) through
the hyperplane &,,_1.

Let us now consider the more interesting case of the action of Eu, on £X3,
the set of triplets z, y, z of distinct points of &,.

The distances &, 7, { between the 3 pairs of points are a Euclidean invariant,
but they are not arbitrary positive numbers. We will choose three invariants
A, i, v defined by the conditions

E=d(y,z) = %(u—i—u) >0, n=d(z,z)= %(V—i—)\) > 0,
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Figure 2.14: Construction of orbits of the action of Eu,, on &2, the set of pairs
of distinct points of &,.

(=d(z,y) = %()\ +p) > 0. (2.7)

Then
A=—E+n+(>0, p=E&—n+(>0, v=E6+n—(>0, (2.8)

and — it is easy to prove — no more than one of these 3 invariants A, y4, v vanishes.
It is sufficient to verify that if any two of invariants become zero, the third is
zero as well and the three points coincide. The surface s(z,y, z) of the triangle
(z,y, ) satisfies

4s(x,y,2)% = (A + p+ v) Auv. (2.9)

This implies that if one of the parameters A, u, or v equals zero, the three points
belong to a single line.

We have the one-to-one correspondence between orbits and points in the
three dimensional space of parameters A, u, v situated in the octant A > 0, u >
0,v > 0 excluding three axes A\= =0, A=v=0,and p =v =0.

To find the stabilizers we need first to distinguish two cases and several
subcases.

i) None of A, i, v is equal to zero:

a) The 3 invariants have different values. There exists a three-parameter
family of orbits corresponding to generic triangles with three different
sides.

b) Exactly two of the parameters are equal. This is a two-parameter
family of orbits corresponding to isosceles triangles.

c) Three parameters are equal. The triangles are equilateral. In this

case there exists a one-parameter family of orbits.

ii) Among the three invariants A, u, v exactly one is zero. Then the 3 points
are collinear.
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(a)

Figure 2.15: Orbifold for Fu,, action on &3 represented in the space of \, u, v
parameters. Two images (a) and (b) are given in order to see better the strati-
fication. The green boundary corresponds to orbits of three aligned points with
different distances between them. The blue ray corresponds to one-parameter
family of equilateral triangles. The red rays correspond to a one-parameter fam-
ily of orbits associated with three points on a line with equal distance between
them. Three planes correspond to a two-parameter family of isosceles triangles.

a) The 3 invariants have different values. There is a two-parameter
family of orbits corresponding to three points on a line with different
distances between them.

b) Two invariants are equal and positive, while the third is zero. This
means that one point is the midpoint of the segment formed by the
other two. There is a one-parameter family of such orbits.

We shall determine the stabilizers of orbits in the 2- and 3-dimensional cases.
Orbits corresponding to a generic triangle have a trivial stabilizer in the 2D-
case and a C}, stabilizer in the 3D-case. The symmetry transformation leaving
a generic triangle in the 3D-space invariant includes reflection in the plane of a

. . S i i
e | AN l ®
N . s
oo ®----- ° & ----n- ° ° ¢
2D Ol Z2 53 Z2 Z2 X ZQ
3D C1h OZU D3h C1oov Dooh

Figure 2.16: Point configurations for different orbits of Eu, action on &3
together with their stabilizers for 2D- and 3D-cases. See text for details.
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triangle.

Orbits corresponding to isosceles triangles have the stabilizer Z, in the two-
dimensional case. This group is generated by reflection through the symmetry
axis of the triangle. In the three-dimensional case the stabilizer of the isosceles
triangles is the Co, group generated by two reflections (in the plane of the
triangle and in the plane orthogonal to the triangle and passing through the
symmetry axis of the triangle).

For equilateral triangles the stabilizers are respectively (see figure 2.16) a
group of permutation of three objects S5 = D3 and Dsy,.

Three points on a line with different distances possess in the 2D-case only
one non-trivial symmetry transformation leaving these configuration of points
invariant, namely reflection in that line. In the three dimensional case this
configuration of points is invariant with respect to any rotation around the line
and any reflection in planes passing through this line. This group is known as
the O(2) group of orthogonal transformations or Co, - the three dimensional
point symmetry group.

At last, three points equally spaced on the line have in the two-dimensional
case the stabilizer Zy x Zo generated by in line reflection and reflection in the
orthogonal line. In the three-dimensional case the stabilizer is Doop, = O(2) X Zo.

To summarize, in the case of two-dimensional space we have found 4 strata:

- the minimal one (trivial stabilizer), which corresponds to generic triangles;
its dimension is six;

- the unique strata above it (stabilizer ~ Zz), which contains the orbits of
the same type for two different kinds of geometric objects, cases i-b) and
ii-a); both components of this stratum have a dimension of five;

- two maximal strata, i-c) (equilateral triangles) and ii-b) (equidistant points
on a line) with stabilizers isomorphic to S and Z3 respectively. Both these
maximal strata have a dimension of four.

In the n = 3 case and even in any n > 3 space, there are the same five differ-
ent geometric arrangements of three non-equal points. The difference with the
n = 2 case consists in the following fact. Now all five arrangements have differ-
ent stabilizers and consequently there are five strata. In the three dimensional
case the stabilizers are

e The three invariants have different values. The stabilizer is Cy = Zso -
reflection in the plane of triangle. The dimension of the Cy stratum is
nine.

e Exactly two of the parameters are equal. The stabilizer is the Cs, =
Zs X Zs group including Cy rotation around the bissectrisse (symmetry
axis) of the triangle, reflection in plane of the triangle, and reflection in the
plane orthogonal to the triangle and including the C5 axis. The dimension
of the Cy, stratum is eight.
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e Three invariants are equal. The triangle is equilateral. The stabilizer is
the D3y, group or 83 X Zs. The dimension of the Dsp stratum is seven.

e One of invariant is zero, two other are non-zero and different. The sta-
bilizer is the O(2) = C, group, the continuous group of rotations and
reflections around the line going through three points. The dimension of
the C, stratum is seven.

e One invariant is zero, two others are equal and non-zero. The stabilizer is
O(2) X Zy = Doop. The dimension of the Doy, stratum is six.
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Chapter 3

Delone sets and periodic
lattices

3.1 Delone sets

We begin our study of lattices in a more general setting.

In the 1930s B.N. Delone (Delaunay) and his colleagues in Moscow began
a long-term project of reconstructing mathematical crystallography from the
bottom up. The family of point sets we now call Delone sets was their principal
tool. The Delone school called them (7, R) systems but after Delone’s death in
1980 they were renamed to honor him.

Delone sets are used to model very different phases of matter, from gases
to liquids, glasses, quasicrystals and periodic crystals, and the differences are
instructive. Delone sets are characterized by two simple but surprisingly power-
ful postulates inspired by physics: a ”hard-core” condition — two atoms cannot
overlap; and a ”"homogeneity” requirement — atoms are distributed more or less
homogeneously throughout the medium.

The mathematical setting for Delone sets is a real orthogonal space E,,
by which we mean a vector space V,, endowed with a positive definite scalar
product (Z, 7). We associate to E,, a principal orbit of its translation group; we
call this orbit a Euclidean space &,. (For the definition of ”orbit” and related
group-theoretic concepts, see chapter 2.) We choose an origin in &, arbitrarily
and label it o.

The length of a vector o € E, is the square root of the scalar product (Z, ¥);
its squared length is the norm N(¥) of Z (we abbreviate oz to &). Obviously
N(Z) < N(9) if and only if ¥ is shorter than §.

The distance between two points x and y of &, is the length of the vector
—_— —

x —y € E,, which is the square root of N(z —y).

In this abstract setting the ”"hard-core” and ”"homogeneity” conditions trans-
late into axioms: there must be a minimal distance ry between any two points
of a Delone set A, and the radius of a sphere containing no points of A cannot

33
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Figure 3.1: A portion of a two-dimensional Delone set. The parameter rg is
the minimal distance between two points of the set; Ry is the maximum for the
radius of any empty hole in the set. Delone set on the right subfigure differs from
the Delone set on the left subfigure by adding one extra point (marked by the
red dot). This local effect results in drastically decreasing of the ro parameter.

exceed a fixed positive number Rj.

That is, we define:

Definition: uniformly discrete A point set A C &, is uniformly discrete
if there is an 9 > 0 such that every open ball of radius r¢ contains at most one
point of A.

Definition: relatively dense A point set A C &, is said to be relatively
dense (in &,) if there is an Ry > 0 such that every closed ball of radius Ry
contains at least one point of A.

With this terminology we say:

Definition: Delone set An n-dimensional Delone set is a point set A C &,
that is uniformly discrete and relatively dense in &,.

Note that rg can be less than, equal, or greater than Ry. For an example
of the case of ro > Ry, note that the Euclidean plane can be tiled (that is, it
can be covered without gaps or overlaps) by congruent equilateral triangles of
edge-length 1. Let A be the set of vertices of this tiling. Then A is a Delone set
with parameters 7o = 1 and Ry = 1/+/3, the radius of the circle circumscribing
any triangle.

For a Delone set of dimension n > 1, the minimal ratio Rg/r is the ratio of
the radius of the sphere circumscribing a regular n-simplex to the length of an

edge; the formula is
RO n

o V2wt
This formula is easy to prove if we situate the n-dimensional simplex in (n + 1)-
dimensional space. The points (1,0,...0),...(0,...,0,1) are the vertices of a
regular n-dimensional simplex in the hyperplane x; + -+ + x,41 = 1; their

barycenter is (%H, %H, cen n%rl) Thus in every dimension n we have

R 1
1/2< 2« —,
To \/5
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Figure 3.2: The vertices of a tiling of the plane by equilateral triangles is a
Delone set.

with the ratio approaching the upper bound as n — oc.

Proposition 1 A Delone set A is countably infinite.

Proof. A is infinite, otherwise all of its points would lie in some half-space,
contradicting relative density. Countability follows from uniform discreteness:
E™ can be partitioned into a countable number of unit cubes and, since a unit
cube can contain only a finite number of balls of radius r¢, there is only a finite
number of points of A in each cube. O

To study Delone sets we begin, as Delone did, with the "method of the
empty sphere.” Consider an n-dimensional sphere S in &£, which contains no
points of A in its interior. S may, or may not, have points of A on its boundary.
If these points — that is, the set SN A — lie in an (n — 1)-dimensional subspace,
then as we increase the radius of S it will remain empty. Indeed, by moving the
sphere if needed, we can increase its radius until S N A contains n + 1 linearly
independent points. (We say that n + 1 points of &, are linearly independent if
they span &,.)

Definition: hole (of a Delone set) An empty hole or, more simply, a
hole (of &, with respect to a Delone set A) is a sphere S with no points of A in
its interior and at least n + 1 linearly independent points of A on its boundary.

The maximal radius of an empty hole of &, (with respect to A) is the pa-
rameter Ry of A.

Proposition 2 Let A be a Delone set. We can cover £, by closed balls con-
taining n+ 1 independent points of A on their boundaries and no points of A in
their interiors.

Proof. The proof uses the method of the empty sphere. Let = be any point
of &,; we will show that it lies in at least one such sphere. Let p be a point of
A at minimal distance r from x. Then

r= |ﬁ| SRO

Let B, (r) be the sphere of radius r with the point = as its center, and suppose
that it contains fewer than n + 1 independent points A. Then B, (r) N A lies in a
hyperplane H of dimension d < n—1. Leaving x fixed, we can expand the sphere
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Figure 3.3: Consecutive steps in the construction of an empty hole for a two-
dimensional Delone set. A - A sphere S containing no points of the Delone set,
A. B - Increase the radius of the sphere untill one point appears on its boundary
(i.e., until SN A spans a zero-dimensional subspace). C - Increase the radius of
the sphere keeping one point on its boundary untill the second point appears
on its boundary (now SN A consists of two points and spans a one-dimensional
subspace). D - Increase the radius of the sphere keeping the two points on it
untill the third point appears on its boundary (now SNA consists of three points
and spans the plane). The resulting sphere is an empty hole of radius R < Ry,
where Ry is the parameter of the Delone set.

along the (n — d)-dimensional subspace orthogonal to H until it encounters a
point of A independent of those in H. We continue this process until the sphere
contains n + 1 independent points. (|

The convex hull of the points of A on the boundary of a hole H is a poly-
tope Ly, called a Delone polytope. (This terminology and notation follows the
Russian tradition.)

We will show in Chapter 5 that just as &, is covered by the holes of A, it is
tiled by the Delone polytopes {L} of its holes: that is, the Delone polytopes of
A fit together with no gaps or overlaps.

The Delone polytopes show the empty spaces of A in &,,; another construc-
tion, called the Voronoi construction, focuses attention instead on the regions
"belonging” to the points of A.

Definition: Voronoi cell The Voronoi cell D(p) of p € A is the set of
points & € E™ which are at least as close to p as to any other point of A. That
is,

D(p) ={z € E"|N(z —p) < N(z — q),¥q € A}. (3.1)

Voronoi cells — which appear in many contexts and variations — are evidently
very old. In 1644, Descartes used what appears to be a variant to describe the
structure of the heavens [40] but he did not bother to explain it. The con-
struction first appeared in mathematics in 1850 in the context of the arithmetic
theory of quadratic forms; Dirichlet proved that the cells of two dimensional
lattices are either rectangles or centrosymmetric hexagons (see [45]). This is
why Voronoi cells are also known as Dirichlet domains (as well as by other
names, since the construction has been rediscovered many times). We call them



New Version, January 2014 BZ LZbookFull_R.tex 23 février 2015

o o ©
h -O-.
o £
4
o o o
,/r’ \xo
? )
o 1 s o
S
(@]
© o

Figure 3.4: A covering of a Delone set represented in figure 3.1 by holes. Left:
Arbitrarily chosen three initial holes. Right: Complete set of overlapping holes.

Figure 3.5: A Delone set of point with Delone polygons drawn in.
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Figure 3.6: Two stars of two different points for a Delone set shown in Figure 3.1.
Only “arms“ between a chosen point and points of the Delone set represented
on a fragment are shown. (The star is partial because the figure is finite.)

Voronoi cells because Voronoi performed the first deep study of their properties
for point lattices in an arbitrary dimension n (see [94]), but we denote them by
the letter D in honor of Dirichlet’s contribution.

To construct the Voronoi cell of a point p € A, we note that, for any point
q € A, the hyperplane orthogonally bisecting the vector gp divides &, into two
half spaces, one of them the set of points in x € &, for which N(x—q) < N(z—p),
and the other the xs for which N(x—p) < N(z—q). Points lying on the bisecting
hyperplane are equidistant from p and gq.

Next we define:

Definition: global star (of a point of a Delone set) The global star
ST,(A) of a point p of a Delone set A is the configuration of line segments
obtained by joining p to all of the other points of A.

Since A is countable, the star has a countable number of ”arms”.

To construct D(p), we orthogonally bisect the arms of ST,(A) by (n — 1)-
dimensional hyperplanes. Then D(p) is the smallest polytope about p bounded
by such hyperplanes.

Fortunately it is not necessary to bisect a countable infinity of line segments
to construct D(p):

Theorem 1 Let A be a Delone set with parameters ro and Ry. The Voronoi
cell of any point p € A is contained in the ball By(Ry).

Proof. Assume D(p) ¢ Bp(Rp), i.e., that 3z € D(p) such that |zp| > Ry.
Then B, (|zp|) N A = (), since x is nearer to p than to any other point of A. But
this contradicts the assumption that Ry is the maximum radius of an empty
hole. 0

This means that D(p) is completely determined by a finite set of vectors
issuing from p, all of length < 2R. To say this concisely, we define
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Figure 3.7: Constructing the Voronoi cell of a point of the Delone set represented
in Figure 3.1.

Definition: local star (of a point of a Delone set) The r-star ST, (A, )
of a point p of a Delone set A is the configuration of line segments obtained by
joining p to all of the other points of A that lie within a sphere about p of radius
r: STp(A,r) = ST,(A) N By(r).

Thus

Corollary 1 D(p) is completely determined by the 2Rg-star of p, ST, (A, 2Ry).

Proof. By Theorem 1, all the points of A contributing faces to D(p) must lie
in Bp(2Ry). O

Voronoi cells play a large role in lattice theory, as we will see in Chapter
5. We note here (but will prove there, proposition 11) that the Voronoi cells
of the points of A also tile E™, and this Voronoi tiling is orthogonally dual to
its Delone tiling. (That is, each k-dimensional face of one tiling corresponds
to an (n — k)-dimensional face of the other, and the corresponding faces are
orthogonal.) In particular, each edge (1-face) of a Delone tile is orthogonal to
a facet ((n — 1)-face)of a Voronol cell. We will also see that the vertices of the
Voronoi cells of A are the centers of its holes.

3.2 Lattices

We denote the number of congruence classes of stars of a Delone set A by
|ST(A)|. This number is a very rough measure of the randomness of A. Thus if
we are using A to model the set of centers of atoms in a gas or liquid (distributed
homogeneously in infinite space), we would expect the number of congruence
classes to be countably infinite; that is, |ST(A)| = Rg. If on the other hand
|ST(A)] is finite, then the Delone set is highly ordered. In this case A is said to
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Figure 3.9: A multiregular system of points formed by three orbits of the sym-
metry group; here |ST(A)| = 3.

be multiregular. Some authors (see [46]) call a multiregular Delone set an ideal
crystal, because (one can prove that) it is a union of a finite number of orbits
of a ”crystallographic” group (for more on these groups, see below).

A regular system of points is the special case of a multiregular Delone set
when all stars are congruent:

Definition: regular system of points The Delone set A is said to be a
regular system of points when |[ST(A)| = 1.

Delone introduced “r, R systems” in the 1930s to focus crystallographer’s
attention on local order. In 1976 he and his students Shtogrin, Dolbilin, and
Galiulin proved the remarkable fact that global regularity — in the sense of a
regular system of points — is a consequence of local regularity: a Delone set is a
regular system of points if all its local stars of a certain radius are congruent.

Theorem 2 Let A be a Delone set in E™ with parameters ro and Rg. There
exists a C = C(Rg/ro,m) > 0 such that if r > CRgy and |ST(A,r)| =1, then A

s a reqular system of points.
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Figure 3.10: Three examples of regular systems of points which are more general
than a lattice.

Figure 3.11: A point lattice in the plane.

For a proof see[43] and [46].

In two dimensions, C' = 4; the exact value of the constant C' has not been
determined for Delone sets of any higher dimension. There is an analogous
result for multiregular Delone sets [46].

The symmetry group of a regular system of points in E™ is still called a crys-
tallographic group for historical reasons, though today the definition of ” crystal”
has been broadened to include non-periodic crystals. In 1910 addressing the 18th
problem on Hilbert’s famous list (1900), Ludwig Bieberbach proved that every
crystallographic group G < E™ has an invariant subgroup of translations T of
rank n [28]. In slightly different words this means that every group of symmetry
operations in E™ which acts transitively on a regular point system X contains
n linearly independent translations.

Definition: point lattice A point lattice in £" is a regular system of points
whose stars are orbits of a rank-n translation group T' C E™.

Because a point lattice is an orbit of a translation group, the Voronoi cells
of its points are congruent polytopes that tile £™ by translation; the technical
term for polytopes with that property is parallelotope.

In group theory, the word ”lattice” is also used for the translation subgroup
T of which the Delone set is an orbit. Thus an n-dimensional lattice is any
subgroup of a real vector space V,, that is isomorphic to Z".

Considering a lattice L as a Delone set, we have rq = d(L), where d(L) is
the length of the shortest vector in the lattice.

A point lattice can also be defined as an orbit of a crystallographic group
with stabilizer of maximal symmetry. We will discuss lattices from this point of
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Figure 3.12: Three different bases of the point lattice represented in Figure 3.11.

view in Chapter 3.

Definition: basis A basis for an n-dimensional lattice L is any set of n
vectors {EJ} C L, 1 < j < n such that every vector in L is an integral linear
combination of the vectors I;j.

That is, with respect to a given basis {b;} the lattice vectors have integral
coordinates: . . .
VieL, 0= kb, kj€eL. (3.2)
J

The determinant of the vectors of a basis is the oriented volume of the
parallelepiped built on it. (We will see in Chapter 5 that this is also the volume
of a Voronoi cell of the lattice.)

The basis of a lattice L is not unique: any set of n vectors in L with deter-
minant +1 is a basis.

Let {b]} be another basis for L and m;; the coordinates of the vector b} in
the basis {EJ}

b; = Zmijbj, m;; € 7. (33)
J
Since every basis has determinant +1, the integers m;; are the elements of a
unimodular integral matrix A. Similarly the components of the vectors {l;j} in
the basis {l;;} form the matrix A=! which is also integral. Thus A € GL,(Z),
the group of n X n integral matrices.

Each matrix A € GL,(Z) corresponds to a basis in L and left multiplication

by elements of GL,(Z) maps each basis to the others. Thus

Proposition 3 The set of bases of a lattice L is an orbit of GL,(Z).

For specificity and for computation, it is useful to work with a specific rep-
resentative of this conjugacy class. As we will see in later chapters, the various
methods of classifying lattices are all concerned with this problem.

The elements of V,,/L, the quotient group of the vector space V;, by the
lattice, are identified with the cosets ¥+ L, & € V,,. A choice of representatives
of each of these cosets constitutes a fundamental domain of the translation group
T. For example, the interior of the parallelepiped formed by any set of k basis
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Figure 3.13: A fundamental domain for the lattice of figure 3.11. The choice of
fundamental domain follows equation (3.4) .
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Figure 3.14: Primitive and non-primitive cells for the lattice of Figure 3.11. The
volume of the non-primitive cell is twice as large as the volume of the primitive
cell.

vectors is a fundamental domain for T'. Or, given a basis {b;}, one can choose
as fundamental domain

Py={F=>) &b, —1/2<& < 1/2}. (3.4)

The topological closure Py, of Py is obtained by replacing < by < in (3.4).
Py is the translate, by the vector ¥ = —(%, ce %), of a parallelepiped that in
crystallography is called a primitive unit cell.

When its opposite faces are identified, P;, becomes a torus; Thurston and
Conway made this property the basis of their ”orbifold notation”, which we
describe in Chapter 3.

A primitive unit cell has lattice points only at its vertices. Crystallographers
often prefer to work with non-primitive cells (unions of two or more primitive

cells) to maximize symmetry, but we mainly use primitive cells in this book.

3.3 Sublattices of L

A sublattice is a lattice L’ which is a subset of another lattice L (a subgroup if
we are speaking of groups).
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If L is one-dimensional, then it has one generator @, and L = {jda,j € Z}.
Any sublattice of L has one generator too, say ma; the sublattice is the set mL,
and the quotient % is the cyclic group of order m.

Every lattice L, of any dimensions, has sublattices consisting of the vectors
m[, le L,1 < m € Z. The quotient group L/mL has m™ elements and its
automorphism group is GL,(Z/mZ). As we shall see in Chapter 5, the case
m = 2 plays a key role in the theory of Voronoi cells.

. Most sublattices of L are not of this special type. For example, if the vectors
b1,...,by, are a basis for L, then by, ...,b,_1,2b, generate a sublattice of index
2.

For lattices of dimension n > 1 we distinguish two types of sublattices: those
for which the dimension is also n, and those of lower dimension. Subgroups of
the first type are of finite index and the corresponding quotient is a finite group;
we consider them first. The ratio volL/volL' is the index of L' in L.

Each sublattice L’ of finite index of an n-dimensional lattice L is character-
ized by an integer matrix A’, whose columns are the coordinates of its basis. L’
has, of course, a countable infinity of bases and thus is described by a conjugacy
class of matrices under the action of GL,(Z). Again, it is convenient to select
a basis; that is, to work with a specific representative of this conjugacy class.
The Hermitian normal form serves our purposes here.

A matrix is in Hermite normal form if it is upper triangular, all matrix
elements are non-negative, and each column has a unique maximum entry, which
is on the main diagonal.! For example, the matrix

31 3
0 4 5
0 0 7

is in Hermitian normal form.

Any integer matrix can be transformed to the Hermitian normal form by
left multiplication by a unimodular integer matrix. The form is unique in its
conjugacy class. Thus it identifies the sublattice. We call the columns of the
Hermitian matrix the sublattice’s Hermitian basts.

Figure 3.15 illustrates different choices of sublattices of index two and three.
Basis vectors for these sublattices corresponding to the Hermitian normal form
are respectively:

What is the number of distinct sublattices of a lattice L of a given index m,
and how can we describe their bases explicitly? The answer to both questions
is to list the n x n Hermitian normal forms of determinant m.

1Some definitions specify lower triangular matrices; either can be transformed into the
other. For more on this, and how the transformation is effected, see [16].

(3.5)
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Figure 3.15: L, the square lattice in the plane, is shown here with the ”Hermitian
choice” of basis vectors (3.5) for its three sublattices (a, b, ¢) of index 2 and four
sublattices (d, e, f, g) of index 3.

Consider, for example, the case where m is a prime p. Since the determinant
of a triangular matrix is the product of its diagonal entries, if the index is a
prime p, one diagonal entry must be p and the others 1. By the definition
of Hermitian form, all the entries above each 1 must be 0; thus we need to
fill in only the column containing p. Suppose, for example, that n = 3 and
kaa =5 = p. Then the (single) entry above 5 can be any of 0,1,2,3,4.

Considering all possible positions for p, we see that the complete number of
different n x n Hermite normal matrices with prime determinant p is

2, .3 no1_ Pt —1
Il+p+p"+p°+---+p ij. (3.6)

We immediately have the useful corollary that the number of sublattices of
index 2 for an n-dimensional lattice is 2" —1. Otherwise, for the two-dimensional
lattice the number of sublattices of index p, with p being prime, is p + 1. See
figure 3.17 for an explicit example of three sublattices, D3, D5, D;L , of index 2
for the D lattice.

If the index m is not prime, we first find all factorizations of m into primes,
and then calculate the number of different choices for the off-diagonal elements
for each diagonal pattern.

Figure 3.15 suggests that ”distinct” sublattices may or may not be of the
same ”type.” This raises the question of equivalence of lattices (and sublattices),
and questions of symmetry. We turn to them in Chapter 3.

To conclude this subsection, we mention briefly sublattices of L that are not
of finite index.

The intersection of L with an arbitrary j-dimensional subspace of V,, spans
a vector subspace of dimension j' < j. In general, j' < j; it is useful to give a
name to the subspaces V; such that j = j.
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Figure 3.16: Examples of construction of dual bases.

Definition: j-plane of a lattice. The vector subspace V; <V, is called a
j-plane of the lattice L if L N'V; is a j-dimensional lattice.

Definition: j-sublattice. An L-subgroup isomorphic to Z7, j < n, is
called a j-sublattice if it is the intersection of L by a lattice j-plane.

A good algorithm for studying the sublattices of L and, for any pair of
sublattices, their intersection and the sublattice they generate, is given in [39)].

3.4 Dual lattices.

The scalar product allows us to define duality between lattices of the same rank
in the same vector space. The lattices L and L* are said to be dual if the scalar
product (Z, [;‘) of any pair of vectors, one from each lattice, is an integer.
Definition: dual lattice. The dual lattice L* of the lattice L is defined by
{yeE,, YlelL, (§,{)€Z}.
Properties of dual lattices following directly from the definition include:

1. L*™ = L.

2. If B = {b,} is a basis of L, then the vectors b7, i = 1,...,k satisfying
(Ef, gj) = §,; are a basis B* for L*;

3. B* =(B~H)T;
4. vol(L)vol(L*) = 1;

5. If L is a sublattice of L', then the dual of L’ is a sublattice of the dual of
L: L' < L%

6. The quotient groups L’'/L and L*/L'* are isomorphic.

An interesting particular case of lattices are the:
Definition: integral lattice. Integral lattices are defined by

vi.l"e L, (0,0")eZ, (3.7)

and the set of integers (£, £") is reduced, i.e. they have no common divisor > 1.
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From (3.7), a lattice is integral if and only if it is contained in its dual. The
following relation:

L < L' integral, L<L' <L"<L" (3.8)

will be very useful. Particular examples of integral lattices are the self~-dual
ones:
Definition: self dual lattice. A lattice L is said to be self-dual if L = L*.

As a consequence of property vol(L)vol(L*) = 1, if L is self-dual then det(L)
=1.

Dual lattices play an important role in the physics of x-ray diffraction by
crystals; they are the ”reciprocal” lattices observed in diffraction diagrams.

Examples of lattices: We give here some examples of dual and self-dual n-
dimensional lattices together with their most frequent notations. Figures 3.17,
3.18 illustrate discussed examples in two- and three-dimensional cases.

a) The n-dimensional lattice generated by an orthonormal basis is often de-
noted by I,:

é},é" = 51”7 I, = Aigiu N €7Z; vol(l,) =1. 3.9
J J

In crystallography it is called the cubic P lattice. It is self-dual.
b) A sublattice of index 2 of I, is

Dy ={> N, Y N€2L}; I,/D; =1Ly vol(Dj)=2. (3.10)

Note that D] is an even integral lattice.

c) The dual lattice of D7 is usually denoted by D¥. With the use of (3.8)
we find:
D" < I, < DY :=(D")* = I, U (@ + In), (3.11)

with . .

Ty = 5 Zé vol(Dy}) = 5.

With the remark that 2w, € D], when n is even and 2w,, ¢ D], when n is odd,
one easily proves:

Z3 when n 15 even, (3.12)
Z4 when n is odd.

D?Z/DZ—{

So when n is even, there must be three intermediate lattices (corresponding to
the three subgroups of index 2 of Z2) between D! and its dual. To construct
them we define:

n?

n—1
1 —
neven, @ = 5(+€ + ;:1: &) N(wF) = % (@}, @) = ”T (3.13)
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Figure 3.17: Examples of two-dimensional lattices. I5 - simple quadratic lattice.
D3 - index two sublattice of Iy, defined in (3.10) . D is the lattice dual to Dj.
Open circles indicate points added when compared with the I lattice (see eq.
(3.11)). DF are two intermediate lattices between D} and its dual Dy. Dy is
dual to D5 . Open circles indicate points added when compared with the Dj
lattice (see eq. (3.14) ). The color of the basic vectors is chosen in such a way
that for dual lattices the scalar product of basis vectors of the same color is
equal to 1, and the scalar product of basis vectors of different colors is zero.

We have seen that I,, is one of these intermediate lattices. The two others are:
neven: DX = DI U (w4 DL); det(Df)=1. (3.14)

With the remark that V¢ € D, (£,w*) € Z and equations ((3.13) and (3.14))
one obtains

Proposition 4 Forn =0 mod 4, DI are self-dual lattices. Forn =2 mod 4,
they are dual of each other: D; = (D;)*.

We mnote (see chapter 7 for more details) that the two lattices DI, are
identical and that DZ =1, and D;{ is the remarkable lattice Fg.
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Figure 3.18: Examples of three-dimensional lattices. I3 - simple cubic lattice.
D% - index two sublattice of I3. This sublattice is defined in eq. (3.10). D¥ is
the lattice dual to D5. Open circles indicate points added when compared with
the I3 lattice (see eq. (3.11)). The color of the basic vectors is chosen in such a
way that for dual lattices the scalar product of basis vectors of the same color
is equal to 1, and the scalar product of basis vectors of different colors is zero.
Basis vectors of the DY lattice are shown on DY by dashed lines.
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Chapter 4

Lattice symmetry

4.1 Introduction

In this chapter we study periodic lattices from the point of view of their symme-
try. That is, we describe the different classes of transformations leaving lattices
invariant. Depending on the class of allowed transformations the symmetry of
lattices will be different and thus symmetry classification can be more or less
detailed. For physical applications we choose the classification best suited to
the problem.

A related important notion is the equivalence of lattices. We need to specify
which two lattices could be considered equivalent and which should be treated
as different, and this varies with the type of classification.

For a simple example, let us consider three dimensional physical space as
a realization of an abstract Euclidean space &, with a chosen basis defining a
frame F. This allows us to associate with each point P of the three dimensional
space three real numbers z, y, z, the coordinates of the point P in the frame F.

Since &,, is homogeneous and isotropic, two lattices related by an arbitrary
translation or rotation should be considered equivalent (or, simply, to be the
same intrinsic lattice). Sometimes simultaneous scaling of the coordinates also
can be treated as “uninteresting“ and the lattice can be supposed to be normal-
ized, that is, the volume of its primitive parallelepiped (primitive cell) can be
chosen to be equal to one.

Obviously the same lattice can be constructed in different frames and the
corresponding transformation between different frames can also be treated as a
symmetry transformation of the lattice.

4.2 Point symmetry of lattices

Let us start by looking for the groups of orthogonal transformations leaving
one lattice point invariant; these are called point groups. (The point symmetry
groups of lattices are also called the holohedries in crystallography.)

51
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Figure 4.1: The only point group for a one-dimensional lattice is the group of
order two.

Looking at the actions of O,, on n-dimensional lattices that fix at least one
point of the lattice, and finding their stabilizers we establish the classification
of lattices by their point symmetry.

If one such transformation exists, any power of this transformation is a sym-
metry transformation as well. If there exist only a finite number of different
powers, these transformations form a cyclic subgroup of the symmetry group of
a lattice. Finding cyclic groups compatible with the existence of the lattice is
a first step in the description of lattice symmetry. The restrictions imposed by
the lattice have, historically, been called “crystallographic restrictions“, though
this terminology is out of date after the discovery of aperiodic crystals (qua-
sicrystals).

In this section we find the cyclic groups compatible with one-, two-, and
three-dimensional lattices. Generalizations to the arbitrary n-dimensional case
will follow in section 4.6.

One-dimensional lattices. All one-dimensional lattices have the same
point group, the group Cy = 2 of order two consisting of the identity transfor-
mation and reflection (inversion) in one point (see Figure 4.1).

Two-dimensional lattices. Two-dimensional lattices can have as symme-
try elements only rotation axes of order 2, 3, 4, 6 and reflection. This restriction
is rather obvious (see figure 4.2). Let o be a center of k-fold rotation of the lat-
tice and op be the shortest translation for the lattice. Then p is also a center
of k-fold rotation. Let the rotation through 27 /k about o transform p into p’,
and let the same kind of rotation about p (realized in the opposite direction)
transform o into p”. If kK = 6 the points p’ and p” coincide. In all other cases
we must have p'p” > op, since a lattice is a Delone set. This is possible only
if K < 4. Thus, the only possible rotational symmetries for two-dimensional
lattices are k = 2, 3,4, 6.

The point group of a lattice in any dimension has the subgroup of order
two generated by reflection in a fixed point. This restricts the possibilities for
two-dimensional lattices to four point groups. We give here both the Schoenflies
and ITC notations!: Cy = 2 (oblique), Dy = 2mm (rectangular), Dy = 4mm
(square), Dg = 6mm (hexagonal). The associated polygons are shown in figure
4.3 together with their symmetry elements.

Three-dimensional lattices. The crystallographic restrictions for three-
dimensional lattices are exactly the same as for two-dimensional: only reflections
and rotations of order 2, 3, 4, and 6 are allowed. We accept this fact, for
now, without proof; in section 4.6.3 we will explain that more generally the
crystallographic restrictions for lattices of dimensions 2k and 2k + 1 coincide,

1See Appendix C for discussion of different notations
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Figure 4.2: Crystallographic restrictions for two-dimensional lattices.

R .

Oblique Rectangular ~ Square Hexagonal

Figure 4.3: Four point groups for two dimensional lattices. Black rhombus -
rotation axis of order two; black square - rotation axis of order four; black
hexagon - rotation axis of order six. Dashed lines - reflection lines.
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Table 4.1: The seven three dimensional point groups for lattices and the asso-
ciated names of Bravais crystallographic systems.

Bravais CS Triclinic  Monoclinic ~ Orthorhombic  Tetragonal = Rhombohedral  Hexagonal Cubic
Abbreviation T M 0] Q R H C
Schoenflies Ci Cgh Dgh D4h D3d D6h Oh
ITC 1 2/m mmm 4/mmm 3m 6/mmm  m3m

for any positive integer k.

Every lattice in any dimension is invariant with respect to reflection in a
fixed point. In three-dimensional space, inversion is an ”improper” orthogonal
transformation (”improper” means its determinant is —1). Consequently, the
point groups of three-dimensional lattices have subgroups of index two consisting
of proper orthogonal transformations (pure rotations). Thus point groups are
characterized by their rotation subgroups; indeed their axes of order two suffice.
Any rotation of higher order for three-dimensional lattices is generated by axes
of order two (see, for example [42], Ch.1, sect 5).

There are three possibilities:

e The point group has no axes of order two.

e The point group has only one axis of order two.

e The point group has several axes of order two.

If the point group has more than one axis of order two, the crystallographic
restriction implies that the angles between the axes must be 7/6,7/4,7/3 or
7/2. These four possibilities yield five different sub-cases.

e 7/6: system of axes of a hexagonal prism;

e 7/4: system of axes of a quadratic prism;

e 7/3: system of axes of a rhombohedron;

e 7/3: system of axes of a cube.

e 7/2: system of axes of an orthogonal parallelepiped.

The specific arrangements of these two-fold axes are shown in Figure 4.4,
where the cases with several order-two axes are labeled H, Q, R, C, and O
respectively and shown together with case M (one order-two axis) and case T

(no two-fold axes).

Adding inversion we get the complete set of generators for the seven lattice
point groups listed in table 4.1.
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R Q H C

Figure 4.4: The seven three dimensional point groups for lattices represented
through arrangements of their order-two symmetry axes. T - triclinic crystal-
lographic system has no two-fold axes. M - monoclinic crystallographic system
has one two-fold axis. O - orthorhombic system has three mutually orthogonal
order two axes. R - rhombohedral (or trigonal) system has three two-fold axes
belonging to plane with 7/3 angle between them. @ - Tetragonal system has
four two-fold axes belonging to the plane with /4 angle between them. H -
hexagonal system has six two-fold axes belonging to the plane with 7/6 angle
between them. C - cubic system has six two-fold axes of a cube with 7/3 or
7/2 angles between them.
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Figure 4.5: These lattices have the same point group — the points of each are
stabilized by a pair of orthogonal mirror lines — yet they are ”different.”

4.3 Bravais classes

In the last section, we classified lattices by their point groups. But this clas-
sification is not fine enough for applications in crystallography and physics.
Figure 4.5 shows a pair of two-dimensional lattices that are evidently ”differ-
ent” — the primitive cell of one is a rectangle, while the primitive cell of the
other is a rhombus. Yet they have the same point group, 2mm = D5.

How can we characterize this difference mathematically? Let us use bases
shown in figure 4.5. The matrices o3 and o1 that describe reflections across the
vertical mirror lines in these two lattices are, left to right:2

- <(1) _01) S (2 (1)) . (4.1)

In fact o3 and o1, though they describe the ”same” reflection, are not inter-
changeable, in the sense that neither matrix can be obtained from the other by
a change of lattice basis. That is, though these matrices are conjugate in the
general linear group GLa(R), they are not conjugate in GL2(Z). To convince

yourself, let A = (CCL Z) be any matrix in GLy(Z); that is, a, b, ¢, d are inte-
d

—C

gers and ad —bc = 1. Then A~ = ( _ab) and an easy computation shows

that there is no choice of integer entries for A for which Aos A~ = 0.

These two lattices are said to be different Bravais types. Since the other
three two-dimensional point groups do not subdivide in this way, there are five
Bravais lattices in two dimensions.

Bravais himself classified lattices by choosing minimal possible cells (prefer-
ably rectangular) which keep the point symmetry of the lattice. Lattices having
the same point symmetry group but associated with different cells are referenced
now as belonging to different Bravais classes.

In more formal mathematical terms
the conjugacy class [Pf]ar, (z) defines the Bravais class of L;
the conjugacy class [Pr]qr, (r) defines the crystallographic system of L.

2This notation introduced by Pauli is usual in physics. In 1925, Pauli wrote the first paper
in quantum mechanics computing the spectrum of the hydrogen atom in a vacuum and in a
constant magnetic or electric field including the spin effects.
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Correspondingly, we call P} the Bravais group of L, while Py, is the point
group of L.

It is clear that several Bravais classes [Pf]cr,, (z) can correspond to the same
conjugacy class [Pr]ar, r) defining the point symmetry group of the lattice
up to conjugation within the GL,(R) group because GL,(Z) is obviously a
subgroup of GL,(R).

To see more examples of lattices with a given point symmetry group and
a different number of associated Bravais classes, let us now consider the n-
dimensional case.

In every dimension the generic lattices form only one Bravais class: by defi-
nition the point group includes only {I,,,—1I,}.

The situation changes, however, if we consider lattices with just one ad-
ditional reflection symmetry. In every dimension n > 2, although reflections
through a hyperplane are all conjugate in GL,,(R), this is not true in GL,(Z).
To see this, from the matrices 01 and o3 above, we build two reflection matrices
M; = 0; ® I,—2. They cannot be conjugate in GL,,(Z); if they were, this would
also be true of the two matrices I, + M3 and I, + M;. That is not possible:
indeed, the greatest common divisor (ged) of the elements of these matrices is
2 for the former and 1 for the latter; but conjugation by an element of GL,,(Z)
cannot change the ged of the elements of a matrix.

So there are at least two conjugacy classes of reflections in GL,,(Z); in fact
there are only two. Here we give a direct proof for n = 2. A reflection in GL2(Z)
has trace 0 and determinant —1; so its general form is

S_<Z b), a,bc€Z, a’+bc=1. (4.2)
If S # +03, it is not diagonal. We may not be able to diagonalize it by conju-
gation in GL2(Z), but we can make it upper triangular. Indeed, corresponding
to the eigenvalue 1, it has, up to a sign, a unique integral, visible eigenvector
U= (g) with o = b/k, 8 = (1 — a)/k where k = ged(b,1 — a). Then we can
choose a pair o', 3" of relatively prime integers such that a8’ — 8o/ = 1, to
complete a conjugating matrix:

o T TV R (R EE

where x = 2ad/' + b3"? — ca’?. Depending on whether z is even (z = 2y), or
odd (z = 2y + 1), the matrix 7" can be conjugate to o3 or o1 by the matrices

1 y 1 Y . .
(O 1) and (1 1 +y) respectively. Thus there are exactly two conjugacy

classes of reflections in GLy(Z).

Although explicit expression for z given above depends on a, b, c and o,
it is possible to give more direct and more simple formulae expressing parity of
x (or equivalently class mod 2 in terms of matrix elements of matrix S only.

Proposition. z mod 2 = (b+ ¢ + be) mod 2.

We leave derivation of this expression for the interested reader.
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Figure 4.6: 2D Bravais crystallographic systems (left) and corresponding Bravais
classes of lattices (right).

The two classes of reflections corresponding to the classes 0,1 of xz(mod2)
are labeled in [14] by pm and ¢m respectively. These symmetry groups cannot
be symmetry group of a lattice because lattice symmetry always includes point
reflection. These groups are subgroups of a larger lattice symmetry group and
naturally subgroups of GL,,(Z). More generally, classes of conjugated subgroups
of GL,,(Z) are named “arithmetic classes”.

A reflection from either class and —I5 generates a point group isomorphic to
73; they define two Bravais classes, pmm and emm. Since the two matrices of
(4.1) have the same determinant and the same trace, they have the same char-
acteristic polynomial, so they are conjugate in GL2(R). This conjugacy class
describes the 2D-crystallographic system called rectangular or orthorhombic.

Generalizing the n-dimensional lattices of the orthorhombic crystal system
leads to lattices with point symmetry described by the group of n x n diagonal
matrices with diagonal elements +1. The conjugacy class in GL,(R) of this
group is named A} = A; x A;--- x A; in the spirit of notations used for
groups generated by reflections and Coxeter groups [5, 7].> The number of
corresponding Bravais classes for n = 2,3,4 is 2, 4, and 8. With increasing n,
the number of Bravais classes grows exponentially.

Another example of a family of lattice point symmetry groups and corre-
sponding Bravais classes defined for arbitrary n is given by the symmetry group
of the cube (or the cross-polytope) in dimension n. Three Bravais classes cor-
respond to this conjugacy class in GL,(R) for every n except n = 1,2, 4; there
is one Bravais class for n = 1,2 and two for n = 4. Following crystallographic
convention, for n = 3 one calls the three Bravais classes Cubic P (or simple),
Cubic F (or face centered), Cubic I (or body centered).

3n = 3: ITC=mmm, SCH=Dy;,. For n = 2, ITC=2mm, SCH=Cs,.
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Figure 4.7: Surjective map {BC}y — {BCS}s from the partially ordered set
of Bravais classes (right) to a partially ordered set of Bravais crystallographic
systems (left) for two-dimensional lattices.
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Figure 4.8: 3D Bravais crystallographic systems (left) and corresponding Bravais
classes of lattices (right).
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Figure 4.9: Surjective map {BC}3 — {BCS}3 from the partially ordered set
of Bravais classes (right) to partially ordered set of Bravais crystallographic
systems (left) for three-dimensional lattices.

4.4 Correspondence between Bravais classes and
lattice point symmetry groups

In any given dimension n all lattice point symmetry groups form a partially
ordered set of subgroups of O(n) or GL,(R). Considered up to conjugation in
GL,(R) they characterize crystallographic systems.

In a similar way, the Bravais classes of lattices (as subgroups of GL,(Z))
form themselves a partially ordered set of subgroups of GL,(Z). There exists
correspondence between these two partially ordered sets which maps all isomor-
phic Bravais groups on corresponding crystallographic system.

Figures 4.6 and 4.7 show this correspondence for two-dimensional lattices,
where only one among four existing crystallographic systems has more than one
Bravais class.

The same correspondence for three-dimensional lattices is given in figures
4.8 and 4.9.

4.5 Symmetry, stratification, and fundamental
domains
The symmetry group of a lattice acts on the ambient Euclidean space and thus

we can classify all points of space into orbits according to their stabilizers.
Orbits of the same type (i.e., those whose stabilizers are conjugate within the



New Version, January 2014 BZ LZbookFull_R.tex 23 février 2015

a=b=c=d

Figure 4.10: Torus construction from a plane rectangle by identifying points on
its boundary.

symmetry group) form strata. Selecting one point from each orbit, we get a
fundamental domain of the lattice. This suffices to describe any local properties
of the physical system because any properties at other points can be obtained by
applying symmetry operations to points of the fundamental domain. Moreover,
the topological properties of the fundamental domain, i.e. topological properties
of the space of orbits, correspond to important global topological properties of
physical systems.

In this subsection we describe the strata, fundamental domains, and orbifolds
for two- and three-dimensional lattices.

We will use orbifold notion interchangeably with the space of orbits when we
want to introduce or to stress the topological representation of the fundamental
domain of the lattice taking into account the symmetry group. We analyze the
action of the symmetry group of the lattice on the ambient space, find its orbits,
and represent each orbit as a single point. Since each orbit is characterized by
its stabilizer and orbits with the same stabilizer form strata, the orbit space is
represented as stratified topological space.

If there are no additional symmetry transformations except the transla-
tion symmetry defining the lattice, the space of orbits (or orbifold) for a n-
dimensional lattice is a n-dimensional torus, obtained by taking the fundamen-
tal cell of the lattice and identifying those points on its boundary which belong
to the same orbit of the translation group action.

The two-dimensional case can be easily visualized with a little imagination.
To pass from the fundamental cell to the orbifold (see figure 4.10) we can first
take a rectangle made of paper and identify respective points on one pair of
opposite sides. This gives us a cylinder. Now we need to identify points on
the other two sides of the rectangle (which have become circles). Replacing the
paper cylinder by an elastic cylindrical tube, we see how this identification leads
to a torus.
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Figure 4.11: Group action on the fundamental cell for p2 and the corresponding
orbifold.

Adding symmetry transformations of the lattice is equivalent to introducing
group action on the torus.

Let now construct the system of strata, fundamental cells, and orbifolds for
the five different Bravais symmetry groups of two-dimensional lattices.

The Bravais group p2 has four C5 orbits within a fundamental cell, forming
four different zero-dimensional strata as shown in figure 4.11. In ITC these
four Cy orbits are called Wyckoff positions with site symmetry 2 = Cy. It is
important to note that although these four orbits have the same stabilizer as
an abstract group, these four Cs subgroups are not conjugate and belong to
different strata. This can be easily seen because there is no symmetry opera-
tion which transform one orbit into another. All other internal points of the
fundamental cell belong to generic orbits with trivial stabilizer.

Each generic orbit is formed by two points per primitive cell, related by
C5 symmetry. The pair of points forming the generic orbit transform one into
another by Cy symmetry transformation. To pass from the primitive crystallo-
graphic cell representation to the orbifold we need to keep only one representa-
tive point from each orbit. For example, we can keep the points in the shaded
part of the unit cell and identify points on the boundary of this part which
belong to the same orbit. This means that intervals of the boundary labeled
by the same letters should be identified. Identifying first two ab intervals and
next two cd intervals we get a topological disk whose boundary consists of two
intervals ac to be identified as well. This final identification leads to a topolog-
ical two-dimensional sphere with four special points. For an orbifold which is
a topological sphere, the Conway-Thurston notation indicates only the singular
points. Thus, the notation for the p2 orbifold is 2222.

To see the correspondence with the torus, we note that selecting one point
from each generic orbit on the torus is equivalent to taking one half of the torus,
which is a cylinder with two boundary circles aba and cdc. Identifying the two
ab half circles and two cd half circles leads to a topological sphere with four
marked points a, b, ¢, d.

The next two Bravais groups are p2mm and c2mm. The action of the
symmetry group on the crystallographic cell for these two groups is shown in
figures 4.12 and 4.13.
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Figure 4.12: Group action on the primitive crystallographic cell for p2mm and
the corresponding orbifold.

Figure 4.13: Group action on the crystallographic cell for c2mm and the corre-
sponding orbifold.

It is easy to see that the space of orbits for the p2mm group has a boundary
formed by symmetry reflection lines. Thus the space of orbits for p2mm is a
topological disk. There are four singular points on the disk boundary corre-
sponding to Co orbits; they belong to different strata (their stabilizers are not
conjugate in GL3(Z)). The boundary of the disk in its turn consists of four
intervals again belonging to four different strata.

The orbifold notation indicates the presence of a boundary by a x*, followed
by stabilizers of singular points on the boundary. Thus, the orbifold notation
for p2mm is %x2222.

To construct the orbifold for the Bravais group ¢2mm we note that the ITC
uses a double cell, rather than a primitive cell of this lattice. Figure 4.13 shows
the traditional ITC choice of a fundamental (double) cell for the ¢2mm group
together with one possible choice of a primitive cell (grey shading). To take
one representative point from each orbit of the symmetry group action on the
primitive fundamental cell means to take the yellow triangular region together
with its two mirror boundaries marked ab but belonging to two different strata
and to identify two subintervals bc on the third boundary. The resulting orbifold
is a topological disk with two singular points on its boundary corresponding to
two non conjugated stabilizers and one singular point inside. The two intervals
of the boundary again correspond to two different stabilizers. The orbifold
notation for the space of orbits is 2x22.

The action of the Bravais group pdmm on a primitive fundamental cell of a
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Figure 4.15: Orbifold for p6mm.

two-dimensional lattice is shown in figure 4.14, where the primitive cell is drawn.
The yellow region together with its boundary contains one representative point
from each group orbit. Points with different stabilizers belong to different strata
and different strata are marked by different letters and colors. The space of
orbits is a topological disk with three isolated orbits on its boundary. Two Cly,
orbits belong to different strata which are not conjugate, the third Cs, orbit
forms also its own isolated stratum. Three intervals on the disk boundary form
three different strata. The orbifold notation of pdmm orbifold is *x442.

The action of the Bravais group P6mm on a primitive fundamental cell is
shown in figure 4.15. The yellow region together with its boundary contains
one representative point from each group orbit. Points with different stabilizers
belong to different strata and different strata are marked by different letters
and colors. The space of orbits is a topological disk with three isolated orbits
on its boundary whose stabilizers are Cg,, Cs,, and Cs,. The three intervals on
the boundary of the disk are formed by orbits belonging to two different strata.
The orbifold notation is *632.

The construction of orbifolds for the symmetry groups of three-dimensional
lattices is naturally a more complicated task. We need to split this problem into
several subproblems.

One sub-problem is to describe local neighborhoods for representative points
of different strata of the orbifolds. For this purpose it is sufficient to find spaces
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of orbits for the local action of the three-dimensional point symmetry groups.
Moreover, as soon as we suppose that one point is fixed, we can restrict our
analysis from three-dimensional space to a surface of a two-dimensional sphere
surrounding that point. (The action of a group fixing one chosen point is in-
dependent of the radius.) Naturally, we analyze only point groups compatible
with three-dimensional lattices.

Three dimensional group actions can be divided into two cases, called re-
ducible and irreducible. In 1776, Euler proved that every rotation in R3 is a
rotation about an axis which maps all planes orthogonal to that axis into them-
selves. The so called reducible point groups are those which leave one rotation
axis invariant; the irreducible groups are those with no invariant axis. Passing
from group action on the space to orbifold, the invariant axis remains an in-
variant axis of the orbifold. In other words, a fibration of the space becomes a
fibration of the orbifold. Each fiber becomes either a circle or an interval.

If you imagine looking along the invariant direction of a fibered symme-
try group you will see one of the Euclidean plane groups. Thus orbifolds for
reducible symmetry groups can be constructed starting from two-dimensional
orbifolds.

Orbifolds for irreducible three dimensional groups must be studied each in
turn. Since only the cubic point group, O = Pm3m is irreducible, only the
three corresponding Bravais classes, Pm3m, Im3m, and Fm3m are irreducible.

Let us consider first spherical orbifolds for point group actions on a two-
dimensional sphere. We restrict ourselves to point groups which appear as
symmetry groups (holohedries) of three-dimensional lattices, C;, Cap, Doy, D3q,
D4h, D6h7 and Oh.

4.5.1 Spherical orbifolds for 3D-point symmetry groups

The lowest symmetry for holohedry of 3D-lattices is the C; group. The action
of the C; group on a two-dimensional sphere in three-dimensional space leads
to only one type of orbit. Each orbit is formed by two opposite points on the
sphere (see figure 4.16). This means that the set of orbits can be equivalently
interpreted as a set of straight lines passing through origin in three-dimensional
space. (This is real projective space.) Alternatively, the set of orbits can be
considered as a set of points on the half-sphere with additional identification of
opposite points on the boundary circle.

The action of the three-dimensional Cs; point symmetry group on three-
dimensional space is shown in figure 4.17, a. There are four strata formed by
orbits of different type. Restriction of this action on a two-dimensional sphere
leads to
i) zero-dimensional Cy stratum which includes two opposite points at the inter-
section of the C5 axis and the sphere,

ii) one dimensional stratum formed by points at the intersection of the symme-
try plane and the sphere,
iii) two-dimensional generic stratum.
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Figure 4.16: Construction of the orbifold for the 3D-point group C; acting
on two dimensional sphere. (a) - Action of the group C; consists in forming
two-point orbits. Each orbit includes two diametrically opposite points on the
sphere. (b) - To represent the space of orbits it is sufficient to take demi-sphere
and to identify the diametrically opposite points on the boundary circle. The
resulting orbifold is real projective space RPs.

Keeping one point from each orbit leads, for example, to taking half of the
upper demi-sphere and to identify points on the meridianal section which belong
to the same orbit under the Cy symmetry operation (see figure 4.17, b). The
resulting space of orbits is a topological disk with one singular point inside (see
figure 4.17, c).

The construction of orbifolds for Dy, D4y, and Dgp groups can be studied
through analysis of the whole D,,;, family of groups.

The group D,;, has order 4n. It can be obtained by adding to the C,,, group
the symmetry reflection plane orthogonal to the C,, symmetry axis. The system
of conjugacy classes for the D,,;, group is quite different for even n = 2p and for
odd n = 2p + 1. Thus we treat these two cases separately.

Group D,,, with n = 2p > 2 has 2(p + 3) conjugacy classes. In particular,
there are two different classes of order two rotation axes Cy and C%, and of
vertical symmetry reflection planes o, 4. The third class of symmetry reflec-
tion planes includes one element - reflection in the horizontal symmetry plane.
There are seven different strata for the action of D,,, with n = 2p > 2 on the
sphere. There are three zero dimensional strata with stabilizers C,,,, C2, and
CY,. There are three one-dimensional strata with stabilizers Cs, C%, C. At
last, a generic stratum has orbits with trivial stabilizer C;. There is only one
orbit with stabilizer C,,, consisting of two points (poles of the sphere). There is
one n-point orbit with stabilizer Cs, and one n-point orbit with stabilizer C3,.
Each orbit with stabilizer Cs, or C% or C! consists of 2n points. Each generic
orbit consists of 4n points. To form the space of orbits we can take the part
of the sphere bound by three symmetry planes. As a result the orbifold is a
topological disk with a boundary which has three singular orbits C,,,,, Cs,, and
C4,. The regular points on the boundary belong to three different strata Cs, C',
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Figure 4.17: Construction of the orbifold for the 3D-point group Caj, acting on a
two dimensional sphere. (a) - Action of the group Cyj, on the 3D-space. Stabiliz-
ers of points and the number of points in the corresponding orbit are indicated.
(b) - Schematic view of the action of the Cy;, group on a two-dimensional sphere.
The green rhombus indicates points belonging to the Cs orbit. Thick blue solid
line corresponds to the reflection plane. All other points of the sphere belong to
the generic C] orbits. The fundamental domain of the Cyj, group action fills half
of the upper demi-sphere. Its projection is shown as a yellow region together
with its boundary. Two dashed intervals of the boundary of the fundamental
domain should be identified. (c¢) - Representation of the orbifold 2« for the ac-
tion of the Cy;, group on the sphere as a disk with one special point (Cy orbit)
inside.
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Figure 4.18: (a) - Action of the group Dy on the sphere. (b) - Action of the
group Djy, on the sphere. Yellow regions represent fundamental domains. (c) -
The orbifold for action of the D, group on the sphere: *n22. There are seven
strata for D, groups with even n; there are five strata for D, groups with
odd n. See text for details.

and CY. Three singular orbits on the boundary also belong to three different
strata. The notation of the orbifold is xn22.

The group D, with n = (2p + 1) > 3 has 2(p + 2) conjugacy classes. In
particular, all vertical symmetry reflection planes belong to the same conjugacy
class. All C5 rotations also belong to the same conjugacy class. These facts
modify the stratification of the D,,;, with n = (2p+ 1) > 3 as compared to D,
with the n = (2p) > 2 case. There are only two zero dimensional strata with
stabilizers C},, and Cs,. Stratum C,, includes one two-point orbit. Stratum
Cy, includes two 2n-point orbits. There are two one-dimensional strata with
stabilizers Cs and C%.. Cy orbits are formed by points lying on all vertical
symmetry planes. C’ orbits are formed by points belonging to the horizontal
symmetry plane. The space of the orbits takes the form of a topological disk
with three singular orbits on the boundary. One of these singular orbits is C.,
two others are of the Cy, type. Three intervals of regular points on the boundary
of the orbifold are filled by two types of orbits. There are C, orbits between
Chy and Csg,, whereas there are C}, orbits between two Cy, singular orbits on
the boundary. The notation of the orbifold of the D,; action on the sphere,
namely *n22 is the same for even n and odd n.

Although we need only a D3y point group for description of holohedries
of three-dimensional lattices we can easily consider orbifolds for all D,,4 point
groups simultaneously.

The group D,q with n > 2 has order 4n. It can be obtained from D, by
adding n symmetry planes which include a C), axis and are situated between
neighboring Cs axes. For the D,4 group in both cases of even or odd n all
symmetry planes belong to the same conjugacy class. All Cs axes also belong
to the same conjugacy class. This means that we can describe strata of the D,
action on a sphere simultaneously for all n > 2. There are four strata: two zero
dimensional, one one-dimensional, and one two-dimensional generic stratum.
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Figure 4.19: Construction of the orbifold for the 3D-point group D, acting
on a two dimensional sphere. (a) - Action of the group D34 on the 3D-space.
Stabilizers of points and the number of points in the corresponding orbit are indi-
cated. (b) - Schematic view of the action of the D34 group on a two-dimensional
sphere. The blue rhombus indicates points belonging to the Cs orbit. The filled
red triangles correspond to points belonging to the Cs, orbit. The magenta lines
indicate Cs orbits. All other points of the sphere belong to generic Cy orbits.
The fundamental domain of the D34 group action is shown as a yellow region.
Respective points on two parts of the boundary marked by letter a should be
identified. (c) - Representation of the orbifold 2#n of the group D,q action on
the sphere as a disc with one special point on the boundary (C,,, orbit) and one
special point inside (Cs orbit).

One zero dimensional stratum is formed by one two-point orbit with stabilizer
Chy (two poles of the sphere). Another zero dimensional stratum consists also
of one orbit which has 2n points. The stabilizer of this 2n-point orbit is Cy. A
one-dimensional stratum is formed by 2n-point orbits with stabilizer C's. These
points belong to the symmetry planes. Finally the generic stratum is formed by
4n-point orbits. In order to form the space of orbits and to take one represen-
tative point from each orbit it is sufficient to take a 27 /n sector of the north
half-sphere together with the boundary formed by the intersection of the sphere
with the equatorial plane. Moreover, two halves of the equatorial arc should be
identified according to the action of the C rotation. This identification shows
that the space of orbits is a topological disc with a boundary. There is one
singular C,,, point on the boundary and one singular point Cs inside the disk.
The notation of the orbifold is 2xn.

The point symmetry group Oy, is a full symmetry group of a cube. There
are 48 symmetry operations in the Op group. The presence of two different
conjugacy classes of Cy rotations for the group O implies the existence of two
different conjugacy classes of reflection planes for the Oy, group. One conjugacy
class of reflection planes consists of three planes (orthogonal to the C axes and
named often “horizontal”’). Another conjugacy class consists of six reflection
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Figure 4.20: Construction of the orbifold for the 3D-point group Oj acting
on a two dimensional sphere. (a) - Action of the group O on the 3D-space.
Stabilizers of points and the number of points in the corresponding orbit are
indicated. Only one Cy axis, one C5 axis, one Cy axis, and one symmetry plane
from each of the two classes of conjugated elements are shown. (b) - Schematic
view of the action of the Oy, group on a two-dimensional sphere. A blue rhombus
indicates points belonging to the Cs, orbit. Red triangles correspond to points
belonging to (s, orbits. Green squares show points belonging to the Cy, orbit.
Thick black solid lines correspond to reflection planes forming a conjugacy class
of three reflection planes which do not contain C5 axes. Thick magenta lines
correspond to six reflection planes containing C'3 axes and forming one conjugacy
class of so called “diagonal planes“. All other points of the sphere belong to
generic C7 orbits. The fundamental domain of the Oy, group action is shown as
a yellow region together with its boundary. (¢) - Representation of the orbifold
%432 as a disk with three special points on its boundary.

planes. These planes are orthogonal to the C2 axes of a cube going through the
middle of the edges. They are named often “diagonal”’. Taking these facts into
account, the action of the group Oy, on the sphere yields three zero-dimensional
strata, two one-dimensional strata, and one generic two-dimensional stratum.
The Cjy, zero-dimensional stratum consists of one six-point orbit. The Cs,, zero-
dimensional stratum consists of one eight-point orbit. The Cs, zero-dimensional
stratum consists of one twelve-point orbit. The Cs and C? one-dimensional
strata are formed by 24-point orbits situated on “horizontal“ and “diagonal“
planes associated with two different conjugacy classes of elements of the Oy
group. These two different strata are marked by different colors in figure 4.20,
b. A generic stratum is formed by 48-point orbits with trivial stabilizer. The
fundamental domain of the sphere including one point from each orbit can be
chosen as the yellow region (figure 4.20, b) with the boundary. This means that
the orbifold is a topological disc with three special points (Cy, orbit, Cs,, orbit,
Cy, orbit). The fact that the boundary is formed by two different strata is
ignored in the Conway orbifold notation, *x432.
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4.5.2 Stratification, fundamental domains and orbifolds
for three-dimensional Bravais groups

Because the number of three-dimensional Bravais groups is relatively large (14
groups), we treat here only two examples, P4/mmm and I4/mmm. Irreducible
three-dimensional Bravais groups are illustrated in appendix E.

4.5.3 Fundamental domains for P4/mmm and I4/mmm

We have chosen P4/mmm and I4/mmm Bravais lattices to illustrate the strati-
fication and fundamental domain construction because these two Bravais groups
belong to the same point symmetry group Dyj and being relatively simple they
allow us to demonstrate dependence of stratification and topology of orbifolds
on Bravais groups within the same holohedry.

The zero-, one-, and two-dimensional strata of P4/mmm are shown in figure
4.21.

There are four zero dimensional strata with stabilizer Dy, = 4/mmm,
marked on the first sub-figure of figure 4.21 by small Latin letters a,b,c,d in
accordance with ITC notation for Wyckoff positions. These four stabilizers are
different non-conjugate subgroups of the Bravais group. Two more zero dimen-
sional strata, e, f have stabilizer Dsj, and they are also non-conjugate subgroups
of P4/mmm. There is one point per cell for strata with stabilizer Dy, and there
are two points per cell for strata with stabilizer Doj. Note that there are eight
points of type a which are shown in sub-figure 4.21 because each point a be-
longs to eight cells and only one point a should be chosen as a representative
of its stratum when constructing the fundamental domain and orbifold. In a
similar way, there is a quadruplet of points b (each point belongs to four cells)
and doublet of points ¢ (each point ¢ belongs to two cells). In contrast, there is
only one point d in figure 4.21 because this point lays inside the primitive cell.
Four points of type e are shown in figure 4.21. This corresponds to two points
of type e par primitive cell because each point belongs to two cells. There are
eight points of type f with stabilizer Dsj because each point f belongs to four
cells and this gives exactly two points per cell.

There are two one dimensional strata g, h with stabilizer C4;,. Each of these
strata has two points per cell in each orbit. Each stratum consists of two
intervals per cell situated symmetrically with respect to the middle symmetry
plane. Each interval includes one point from every orbit. One pair of intervals
is shown for the h stratum because this stratum belongs to the interior of the
primitive cell. Four pairs of intervals are shown for the g stratum because now
each interval (being an edge of a primitive cell) belongs to four cells.

There are seven different non-conjugate strata i, j, k, 1, m, n, o with stabilizer
C5,. Each of these strata has four points per primitive cell in each orbit and
consists of four intervals per primitive cell. Again each interval includes one
point from each orbit with stabilizer Cs,,.

There are five two-dimensional strata p, q,r, s,t. All have stabilizer Cy, but
they are non-conjugate within the lattice symmetry group. Each stratum has
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Figure 4.21: Different strata for P4/mmm.

eight points per primitive cell in each orbit. Each two-dimensional stratum
consists of eight open domains per cell. For p and ¢ strata these domains are
triangles. For r, s,t strata the corresponding domains are rectangles. Each such
domain includes one point from every orbit belonging to the stratum.

The detailed description of strata given above and their geometrical repre-
sentation in figure 4.21 allows us to single out the fundamental domain for the
action of P4/mmm on the three-dimensional space. This fundamental domain
including one point from each orbit is shown in figure 4.22. It is the triangular
prism whose internal points are representative of generic orbits with the trivial
stabilizer C; = 1 (stratum w in ITC notation for Wyckoff positions). The bound-
ary of the prism consists of six zero-dimensional strata (vertices of the prism),
nine one-dimensional strata (edges of the prism) and five two-dimensional strata
faces of the prism). From the topological point of view the fundamental domain
(or the space of orbits, or orbifold) is a three-dimensional disk.

Let us now study I4/mmm. We can choose a double cell which shows
explicitly the Dy, point symmetry. The stratification of the double cell by
Bravais group action is shown in figure 4.23 for zero- and one-dimensional strata
and in figure 4.24 for two-dimensional strata. It is instructive to compare the
stratification of the ambient space by the I4/mmm group with that by the
P4/mmm group studied earlier.
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Figure 4.22: Representation of the fundamental domain for the P4/mmm three-
dimensional Bravais group. Five faces of the prism are formed by five different
two-dimensional strata (See figure 4.21). All internal points belong to generic
stratum with the trivial stabilizer C;.
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There are two zero-dimensional strata for I4/mmm action with Dy, stabi-
lizer (a,b ITC notation). Each of these strata consists of two points per cell (this
reflects the fact that the cell is a double one). Stratum a of I4/mmm includes
two strata a and d of P4/mmm. Stratum b of I4/mmm includes strata b and
¢ of P4/mmm.

There is one stratum ¢ of I4/mmm action with stabilizer Dap,. It consists
of four points per (double) cell and includes strata e and f of P4/mmm action.

The zero-dimensional stratum d of I4/mmm action has stabilizer Da4. It
consists of four points per cell. The zero-dimensional stratum f of I4/mmm
action has stabilizer Cy;,. It consists of eight points per cell. There are no
analogs of zero-dimensional strata d and f of the I4/mmm group in the action
of the P4/mmm group.

Action of 4/mmm yields formation of six one-dimensional strata. Stratum
e with stabilizer Cy, includes four points in each orbit per cell and unifies strata
g and h of P4/mmm action.

Strata g, h, i, j of I4/mmm action have stabilizer Cs, and consequently have
eight points of each orbit per (double) cell. Stratum g of I4/mmm action
coincides with the stratum i of P4/mmm action. But each eight-point orbit
of type g of I4/mmm includes points from two orbits of type i of P4/mmm
action. In a similar way stratum h of I4/mmm includes two strata j and k
of the P4/mmm action; the stratum ¢ of I4/mmm includes | and o strata of
P4/mmm, and stratum j of I4/mmm includes strata m and n of P4/mmm.

One dimensional stratum k of I4/mmm has stabilizer Cy. It possesses 16
points per (double) cell in each orbit. There is no analog for this one-dimensional
stratum for P4/mmm.

There are three two-dimensional strata I,m,n of I4/mmm action. Each
stratum consists of 16 points per cell in each orbit. Stratum [ consists of 16
open disconnected components (interiors of 16 triangles). Each such triangle
includes one point from each orbit. One such triangle should be included in the
fundamental domain and in the orbifold.

Stratum m consists of eight open domains (interiors of rectangles - represent-
ing 1/4 part of a diagonal section of the prism). Each such rectangle includes two
points from each orbit. Consequently the fundamental domain should include
1/8 part of a diagonal section.

Stratum n consists of 16 open rectangles (each rectangle is a quarter of a
side of the prism). One such rectangle includes one point from each orbit of the
stratum n.

Stratum [ of I4/mmm includes strata p and ¢ of P4/mmm; stratum m
of I4/mmm coincides with stratum r of P4/mmm; stratum n of I4/mmm
includes strata s and t of P4/mmm.

To construct the fundamental domain for 74/mmm action we need to keep
one point from each orbit. This should be done with care to exclude appear-
ance of several points from one orbit. We comment now on the construction
illustrated in figure 4.25. We keep five points a, b, ¢, d, f representing each of
five zero-dimensional strata. A one dimensional stratum e is shown in figure
4.25 consisting of two edges of a prism (without points a and b). These two
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Figure 4.23: Different zero- and one-dimensional strata for the I4/mmm three-
dimensional Bravais group. For one dimensional strata one orbit is shown by a
set of open and filled dots. Filled and open dots distinguish subsets of points
related by GL(2, Z) transformation. The point symmetry group transformations
relate points of the same type only (transform open points among themselves
and filled points among themselves).
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Figure 4.24: Different two-dimensional strata for the I4/mmm three-
dimensional Bravais group.

edges consist of points belonging to different orbits except two upper end points
which form one orbit because of the Co symmetry transformation present at
point f. Four other one-dimensional strata g, h, 7, j represented in figure 4.25 as
edges of the prism without end points include each one point from each orbit.
The one-dimensional stratum k is represented as a median of the upper face of
a prism without end points and also includes one point from each orbit. Thus,
they should be included in the fundamental domain and in the orbifold.

The two dimensional stratum [ includes all internal points of the triangular
base of the prism. All these points belong to different orbits and should be
included in the fundamental domain and orbifold.

The two dimensional stratum m fills one rectangular face of the prism but the
pairs of points belonging to the upper edge of this face and located symmetrically
with respect to point f form one orbit. We need to take only one point from
each pairs, or (saying in other way) to identify respective pairs of points on
the upper edge. Two other rectangular sides of the prism are filled by points
belonging to stratum n. Again all points of these two sides belong to different
orbits except for points lying on the two upper edges. These two edges should
be identified because Cy symmetry transformation produced by the stabilizer of
k stratum transforms one edge into another.

All internal points of the prism represent generic C7 orbits. The upper face
of the prism is formed also by generic C'; points but points of this face located
symmetrically with respect to stratum £ belong to the same orbit and should
be identified.

It is possible to imagine the topology of the resulting space of orbits by
joining two halves of the upper edge of the m face together with two halves
of the upper side simultaneously joining two upper edges of the prism. The so
obtained object can be described topologically as a three-dimensional disk with
five special points on its boundary representing five different zero-dimensional
strata. The zero-dimensional strata d and f are connected by one-dimensional
stratum k situated inside the disk. All other one-dimensional and two dimen-
sional strata are located on the disk boundary. Their relative positions are
shown schematically in figure 4.26.
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Figure 4.25: Representation of the fundamental domain for the I4/mmm three-
dimensional Bravais group. Pairs of points on the upper base of the prism situ-
ated symmetrically with respect to stratum k should be identified (equivalently,
only one point from each pair should be used to represent the fundamental
domain).
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Figure 4.26: Schematic representation of the orbifold for the I4/mmm
three-dimensional Bravais group as a topological three-dimensional disk. In-
terior points belong to generic three-dimensional stratum o and to one-
dimensional stratum k. All other zero-dimensional (a, b, ¢, d, f), one-dimensional
(e,g,h,i,7,k), and two-dimensional (I,m, n) strata belong to the boundary sur-
face of the disk.

4.6 Point symmetry of higher dimensional lat-
tices.

In order to describe point symmetry groups for n-dimensional lattices, it is nec-
essary to take into account first of all the crystallographic restrictions on possible
types of rotation transformation. The useful observations for this analysis are:

Every rotation in E™ can be represented through rotations in a set of mu-
tually orthogonal one- and two-dimensional subspaces.

Every rotation symmetry of a lattice has a representation in E™ through a
unimodular n X n matrix with integer coefficients.

There is a natural bijection map between the conjugacy classes of the finite
subgroups of GL,(R) and that of O,,.

4.6.1 Detour on Euler function

Definition. Euler function ¢(n) is an arithmetic function which gives for a
positive integer n the number of integers k in the range 1 < [ < n for which
ged(n, k) = 1, where “ged means greatest common divisor.

The Euler function is multiplicative. This means that if gcd(m, n) = 1, then
p(mn) = g(m)p(n).

If p is prime, then evidently ¢(p) = p — 1. For ¢(p?) we immediately get
¢(p?) = p? — p and more generally for any integer k > 1 p(p*) = p¥ — pF—1
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Table 4.2: Several first values of the Euler function.

o(n) | +0 41 +2 +3 +4 45 +6 +7 +8 49
0+ I 1 2 2 4 2 6 4 6
10+ 4 10 4 12 6 8 8 16 6 18
20+ | 8 12 10 22 8 20 12 18 12 28
304 8 30 16 20 16 24 12 36 18 24

pF(1 = 3).

As soon as for any n > 1 we have a unique expression n = p’fl -pé” -o-pkrin
terms of the prime integers pi,ps,...,p, with k; > 1, applying repeatedly the
multiplicative property of ¢ and the formula for ¢(p*) we get the Euler product
formula for ¢(n):

1 1
e o) = o) plp) =yt Pl (1—p—1>---(1——>

oo 1) (). w

Several initial values of the Euler function are given in Table 4.2

In order to see why the Euler function is relevant to the construction of
possible cyclic symmetry groups of n-dimensional lattices let us first remember
the relation between the Euler function, roots of unity, cyclotomic polynomials,
and companion matrices.

4.6.2 Roots of unity, cyclotomic polynomials, and com-
panion matrices

The roots of ™ — 1 are called m-th roots of unity. They are
{ekmi/m — cos(2km/m) +isin(2kn/m): k=1,2,...,m}. (4.5)

In the complex plane, the roots of unity are placed regularly on the unit circle
starting at 1. They form a cyclic group of order m under operation of multipli-
cation of complex numbers. Generators of this group are called primitive m-th
roots of unity. Obviously, the root e27/™ is primitive if ged(k, m) = 1, where
ged stands for greatest common divisor. Alternatively, we can say that k& and
m should be relatively prime. Consequently, the number of different primitive
m-~th roots of unity is given by p(m), Euler’s totient function.
The d-th cyclotomic polynomial ®4(z) is defined by

04(z) = [[(z - w) (4.6)

w
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where w ranges over all primitive d-th roots of unity. By construction the degree
of ®4(z) is the values of the Euler function ¢(d). The cyclotomic polynomials
®,4(z) have integer coefficients?.

For d prime the cyclotomic polynomial has degree d—1 and the explicit form

d—1
D4(Z) :Zzi for d prime. (4.7)
i=0

For several other low d values the cyclotomic polynomials are

D1(Z)=2—1; (Z)=22+1; B(Z)=2>—2+1; (4.8
B(Z) =21 +1; D9(Z) =25+ 22+ 1; (4.9)
D1o(Z) =2 -2+ 22— 241, Opp(Z)=2" -2+ 1. (4.10)

Using cyclotomic polynomials one can for a given integer m construct a matrix
of order m and of dimension ¢(m) x ¢(m). For this it is sufficient to take a
“companion “ matrix whose characteristic polynomial is ®,,,(z). Generically, for
a polynomial p(z) = 2 + b1 2=t + .- + by_12 + by the companion matrix C,
i.e. matrix with characteristic polynomial being p(z), has the following form

0 1 0o . .. 0
0 0 1 . .. 0
0 0 0o . .. 0

c=| . : S . (4.11)
—bp —bi_1 —bp_o . . . —b

In particular in (4.11) we have

b = (—1)Fdet(C); b = —Tr(0). (4.12)
For a cyclic group Z,, its regular representation is generated by the “com-
panion matrix” M whose characteristic polynomial is Py; = 2™ — 1. This
polynomial can be expressed as a product
zZm —1 =[] ®al2), (4.13)
dlm

of cyclotomic polynomials over all divisors d of m. For example, 2% — 1 =
PyPo®Py = (22 +1)(2+1)(z —1).

Since the coefficients of ®4(Z) are integers the corresponding companion
matrix A of ®4(Z) is an integer matrix. Also, since ®4(Z) is an irreducible
factor of Z™ — 1, A™ = I, because the matrix satisfies its own characteristic
equation, and this is true for no lower power of A. This means that the matrix
A has order m.

4When k < 105, all coefficient values are 1,0,—1 but for k& = 105 (this is the smallest
integer product of three distinct odd primes), some +2 appear. The absolute value of the
coefficients of the cyclotomic polynomials are unbounded when k — oco.
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4.6.3 Crystallographic restrictions on cyclic subgroups of
lattice symmetry

We formulate now a theorem giving possible orders of elements of finite sym-
metry groups of a lattice. The formulation of the theorem below and its proof
follows [64].

€1,,62

Theorem 3 Let m = pi'p5* ---pi" with p1 < pa < --- < p;. Then GL,(Q),
and hence GL,(Z), has an element of order m if and only if

l
S pi—1piTt—1<n for pi =2, (4.14)
1=1
or

I
Z(pi — l)pfﬁl <n otherwise. (4.15)
i=1

Proof. Let W : Z — 7Z be defined for m = p{'p5*---p;* by W(m) =
Eézl (pi — 1)ps~' — 1 when p$* = 2 and W(m) = Eizl(pi —1)p%~! otherwise.
Then theorem 3 can be reformulated as : GL,(Q) has an element of order m if
and only if W(m) < n. Suppose that m is a positive integer with W (m) < n; we
produce an element of GL,,(Q) of order m. First suppose m = p7'p5* - - - p* with
p§* # 2. For each i we can construct matrix A; of dimension (p; — 1)p% " x
(pi — 1)pS~!, i.e of dimension ¢(p;) x (p;), and of order p¥. Then we can
construct matrix B

A0 0
0 A, 0
B=A @A --0A=]| "~ ' (4.16)
0 0o - - - A

which has order m. If W(m) = n, then A = B is the desired matrix. If
W(m) < n, then A = B @ I, is the desired matrix, where s = n — W(m). Now
suppose p;* = 2. Then W(m/2) = Zf:z(?i — 1)p¢~! < n, and applying the
previous construction, GL,(Q) has an element A of order m/2. Since m/2 is
odd, the matrix (—A) has order m. For the proof of the inverse statement which
is more technical we refer to [64]. O

Note, that both sums (4.14, 4.15) introduced in theorem 3 are always even.
This leads to the following interesting Corollary

Corollary 2 GL2k(Q) has an element of order m if and only if GLak+1(Q)
does.

We have already seen that both two-dimensional and three dimensional lat-
tices have elements of order 2, 3,4, and 6. Similarly, both four-dimensional and
five-dimensional lattices have elements of orders 2,3,4,5,6,8,10, and 12.
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Table 4.3 (taken from [26]) gives the orders of cyclic groups which are allowed
symmetries of n-dimensional lattice but do not appear for smaller dimensions
due to crystallographic restrictions.

4.6.4 Geometric elements

Now we can construct the geometric elements for n-dimensional lattices. Fol-
lowing Hermann [60], we denote simply by (k) the companion matrix with char-
acteristic polynomial ®;. For example:

0 1 0 0 100
0o 0 1 0010
G)=-00=114 o o ®=10 001
-1 -1 -1 -1 -1.0 0 0
0 100
0010
12=1 4 o o 1 (4.17)
-1.0 10

The Q-irreducible representations of Z,, are generated by the matrices (d),
d|m with d dividing m; the only faithful one is that generated by (m). But can
one obtain faithful reducible representations? Indeed any faithful n-dimensional
integral representation of Z,, is generated by the matrix A,, = ®;c;(k;) (the
¢;’s are the multiplicities of the matrices (k;)) where the set of different integers
k; satisfies the two conditions: ), c;¢o(k;) = n, lem;(k;) = m.

That establishes the “crystallographic condition”; we have proven more since
we know how to build all Q-inequivalent integral representations of the cyclic
subgroups of GL,(Z). Their generators are all the possible matrices A,,; they
form a set of representatives of the conjugacy classes of the elements of finite
order of the group GL,(Q); they are called the geometric elements of dimension
n by the crystallographers. We shall use the Hermann notation ® (Hl kf) for
the matrix A,, = ®;c;(k;). We summarize these results by the theorem

Theorem 4 The geometric classes of the cyclic point groups in dimension n
can be labeled by the Hermann symbols: (], ki*) with )", cip(k;) = n. The order
of the corresponding cyclic group is m = lem;(k;), the least common multiple of

the k;’s.

The last equality was introduced in Hermann’s paper [60] in the English abstract
(the paper is in German). For the dimension n, he called the cyclic groups Z,,
with ¢(m) = n transitive and called intransitive the cyclic groups Z,, which are
reducible on Q.

5In [60] Hermann did not impose to the matrices (k;) to be distinct, so it did not exhibit
the ¢;’s in the notation.
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Table 4.3: The orders of cyclic groups which are allowed symmetries of an
n-dimensional lattice but do not appear for smaller dimensions due to crystal-
lographic restrictions [26].

n orders of cyclic groups appearing for this n
1 1,2
2 3,4,6
4 5,8,10,12
6 7,9,14,15,18,20,24,30
8 16,21,28,36,40,42,60
10 11,22,35,45,48,56,70,72,84,90,120
12 13,26,33,44,63,66,80,105,126,140,168,180,210
14 39,52,55,78,88,110,112,132,144,240,252,280,360,420
16 | 17,32,34,65,77,99,104,130,154,156,165,198,220,264,315,330,336,504,630,840
18 | 19,27,38,51,54,68,91,96,102,117,176,182,195,231,234,260,308,312,390,396,
440,462,560,660,720,1260
20 | 25,50,57,76,85,108,114,136,160,170,204,208,273,364,385,468,495,520,528,
546,616,770,780,792,924,990,1008,1320,1680
22 | 23,46,75,95,100,119,135,143,150,152,153,190,216,224,228,238,255,270,286,
288,306,340,408,455,480,510,585,624,693,728,880,910,936,1092,1155,1170,
1386,1540,1560,1848,1980
24 69,92,133,138,171,189,200,266,272,285,300,342,357,378,380,429,456,476,

540,570,572,612,672,680,714,819,858,1020,1040,1232,1365,1584,1638,1820
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Table 4.4: Orders of transitive cyclic subgroups of point symmetry groups of
n-dimensional lattices. Only orders of transitive groups which do not appear in
lower dimensions are indicated for lattices of dimension n < 16.

n | allowed orders
1112

2 |3,4,6

4 |5,8,10,12

6 | 7,9, 14,18

8 | 15, 16, 20, 24, 30

10 | 11, 22

12 | 13, 21, 26, 28, 36

14 | -

16 | 17, 32, 34, 40, 48, 60

Table 4.5: Number ~,, of geometric elements in dimension n.

n 1 2 3 4 5 6 7 8 9
Y 2 6 10 24 38 78 118 224 330

A list of orders of transitive cyclic groups which do not appear in smallest
dimensions is given in table 4.4. It follows directly from inversion of the Euler
function (see table 4.2).

We denote by v, the number of geometric elements of dimension n. In his
paper Hermann gave the value of v, for n < 6 and n = 8. Some values of ~,
are listed in table 4.5:

We illustrate the construction of all geometric elements on the example of
an 8-dimensional lattice. We look for different possible splitting of dimension
n = 8 into Z-irreducible blocks of dimension 8, 6, 4, 2, 1, and count the number
of different cyclic groups with a prescribed block structure.

i) First, there are five transitive groups represented by eight-dimensional
irreducible (over Z) integer matrices of orders : 15, 16, 20, 24, and 30. This
follows from the inversion table of the Euler totient function (see table 4.4).

i) Next, let us consider geometric elements having a 6-dimensional irre-
ducible (over Z) block and two one-dimensional or one two-dimensional block.
There are four different choices for a six-dimensional block - elements of or-
der 7,9,14, and 18 - as follows from table 4.4. There are three possibilities
for two one-dimensional blocks, (12),(1.2), and (22) and three possibilities for
two-dimensional irreducible blocks, (3), (4), and (6). Combining these six possi-
bilities with four choices for 6-dimensional irreducible blocks we have 24 different
elements.

ili) The next possibility is: two irreducible (over Z) blocks of dimension 4.
There are 10 different cases: (52), (8%), (10%), (122), (5.8), (5.10), (5.12), (8.10), (8.12),
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and (10.12).

iv) One four-dimensional irreducible block can be combined with a four-
dimensional block formed in its turn from one and two-dimensional blocks. For
a four-dimensional block with structure 1111 there are five elements (1), (13.2),
(12.2%), (1.2%), and (2%). A four-dimensional block with structure 211 gives
nine elements (m.12), (m.2.1), and (m.22) with m = 3,4, 6. The block structure
22 corresponds to six elements (32), (42), (62), (3.4), (3.6), and (4.6). After
combination with four possibilities for a 4-dimensional irreducible block we get
80 geometric elements.

v) Finally we need to analyze eight-dimensional blocks having at most two-
dimensional irreducible sub-blocks. There are 15 elements with block structure
2222. There are 30 elements with block structure 22211, 30 elements with the
block structure 221111; 21 elements with block structure 2111111, and nine
elements with only one-dimensional blocks 11111111.

The total number of geometric elements for an eight-dimensional lattice is
equal to 224.

Since ¢(m) is even when m > 2, one obtains these classes for the odd
dimension 2n + 1 from those of the even dimension 2n by adding one of the two
one dimensional matrices (1) or (-1) of order 1, 2, respectively. To compute the
values of the table, or more, we define the following expressions:

Vam = the number of integers k satisfying the equation ¢(k) = 2m and Vék) =

(V%";Hk) (remark that Vé:i = Vo). We define also:

(2) (3)

po=1, pe=vo, pa=vat+vy", ps=vs+uraret+vy,
us = vg + vgla + l/f) + V4u§2) + y§4), e (4.18)
then
n
Yon+1 — Y2n = Ton = Y2n — V2n—1, Where 7o, = Z H2m- (4.19)
m=0

Let us denote by p(m), the smallest n such that GL,(Q) contains a cyclic
group of order m. As a corollary of Theorem 4, when m is a power of a prime
number, p(m) = p(m); but when m is divisible by different primes one has
always the inequality ¢ p(m) < ¢(m) as was noted first in [60]. Indeed the
value of p(m) is for all cases:

m=2kafi,
i

p(m) = (k> 2)p(2%) + Z epf) = (k>2)2" + Z(pi —pfit, (4.20)

where p; are odd primes and (k > 2) is an example of a Boolean function; its
value is 1 or 0 depending whether the relation between the brackets is true or

6 Although many papers, books and dictionaries of mathematics (at the entry “crystallog-
raphy”) state the contrary. This error was already pointed to in [61].
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Table 4.6: List of geometric elements in dimension 2,3,4. For each dimension, we
give first the Hermann notation, then the notation in [14] for n=2,3; for n = 3
we give also the Schoenflies notation in [14] for the generated cyclic group; then
the values of the order of the elements, and the values of the independent coef-
ficients of the characteristic polynomial (defined in (4.12)); notation: t=trace,
d=determinant.

n=1 ) ®)

n=2 ) 12 @ 6 @ ©

ITC 1 m 2 3 4 6

order 1 2 2 3 4 6

d=by 1 -1 1 1 1 1

t=—b; 2 0 -2 -1 0 1

n=3 ™ (221 (B31) (41 (6.1) 2% (212) (6.2 (42)  (32)
ITC 1 2 3 4 6 1 m 3 4 6
SCH 1 Co Cs3 Cy Ce C; Cs Cg; S4 Csp,
order 1 2 3 4 6 2 2 6 4 6
d= b3 1 1 1 1 1 -1 -1 -1 -1 -1
t=—b 3 -1 0 1 2 -3 1 -2 -1 0
n=4 1 (132 (%22%) (1.2%) 2%  (3.1%) (3%) (4.1%) (4.21) (4.2?)
order 1 2 2 2 2 3 3 4 4 4
d=bs 1 -1 1 -1 1 1 1 1 -1 1
t=—b 4 2 0 -2 -4 1 -2 2 0 -2
bo 6 0 -2 0 6 0 3 2 0 2
n=4 (4% (3.2.1) (32%) (6.1%) (6.2.1) (6.2%)  (6.3) (62) (5) (8)
order 4 6 6 6 6 6 6 6 5 8
d=bs 1 -1 1 1 -1 1 1 1 1 1
t=—b; 0 -1 -3 1 0 -1 0 2 -1 0
bo 2 0 0 4 0 0 1 3 1 0
n=4 (10) (4.3) (6.4) (12)

order 10 12 12 12

d=bs 1 1 1 1

t=—b; 1 -1 1 0

bo 1 2 2 -1
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Table 4.7: For each dimension given in the left part, the orders of cyclic groups
of GL2,(Q), 1 < n < 5 which do not appear in a smaller dimension; in the
right part, the Hermann notation of a generator for each representation of this
dimension is given for the cyclic group with the new order.

1] 12 (1); (2)
2 | 3,46, (3);(4);(6);
4 | 5,8,10,12 (5)5(8);(10); (12),(3.4),(4.6);
6 | 7,9,14,15,18,20, (7);(9);(14);(3.5);(18);(4.5),(4.10);
24,30, (3.8),(6.8); (3.10),(6.5),(6.10);
8 | 16,21,28,36, (16);(3.7);(4.7),(4.14);(4.9),(4.18);
40,42, (5.8),(8.10);(6.7),(6.14);
60, (3.4.5),(3.4.10),(4.6.5),(4.6.10),(5.12),(10.12);
10 | 11,22,35,45,48,56, | (11);(22);(5,7); (5.9);((3.16),(6.16);(8.7),(8.14);
70,72, (5.14),(10.14);(8.9),(8.18);
84, (3.4.7),(3.4.14),(4.6.7),(4.6.14),(12.7),(12.14);
90,120 (10.9),(10.18);(3.5.8),(3.10.8),(6.5.8),(6.10.8);

false. Because p(m) is the sum of the ¢’s of the essential factors of m while ¢(m)
is their product, the more factors has m the smaller is p(m) compare to ¢(m);
examples p(210) = 12, ©(210) = 48, p(2310) = 22, p(2310) = 480. Notice also
that (4.20) shows that the same orders of cyclic groups appear in GLa, (Q) and
GL2n41(Q).

Table 4.6 gives the list of the geometric elements for dimension 2,3, and 4;
they define the cyclic point groups in these dimensions. Table 4.7 gives for even
dimensions up to 10, the geometric elements whose order does not appear in
smaller dimensions.
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Chapter 5

Lattices and their Voronoi
and Delone cells

In this section we study lattices from the point of view of their tilings by poly-
topes.

5.1 Tilings by polytopes: some basic concepts

Definition: polytope A polytope P is a compact body with a nonempty
interior whose boundary 0P is the union of a finite number of facets, where
each facet is the (n — 1)-dimensional intersection of P with a hyperplane.

Two-dimensional polytopes are called polygons; three-dimensional polytopes
are called polyhedra.

Definition: k-face (of a polytope) For k =0,...,n—2, a k-dimensional
face (or k-face, for short) of a polytope is an intersection of at least (n — k)
facets that is not contained in the interior of a j-face for any j > k.

Thus a 0-face of a polytope is a point that lies in the intersection of at least
n facets but not in the interior of any 1-face, 2-face, etc. As a customary, we use
the terms vertex and edge, respectively for the 0-dimensional and 1-dimensional
faces of tiles, and facets for faces of dimension n — 1.

In the tilings we will study, the tiles will be convex polytopes in E™. Re-
member that the polytope P is convex if P contains the line segments joining
any two points in P or on its boundary.

Definition: tiling A tiling 7 of E™ is a partition of E™ into a countable
number of closed cells with non-overlapping interiors:

T={T,Ty...}, | JT:=E", intT;nint T; =0 if i#j. (5.1)

The words tiling and tessellation are used interchangeably; similarly, tiles
are often called cells.

89
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Figure 5.1: Two-dimensional tiling with a single prototile T'. Left : Corona of
a tile 7. Middle : Corona of a 1-face f1 (facet) of a tiling. Right : Corona of a
0-face fo (vertex) of a tiling.

Definition: prototile set A prototile set P for a tiling 7 is a set of
polytopes such that every tile of 7 is an isometric copy of an element of P.

When the prototile set contains a single tile T, the tiling is said to be mono-
hedral. A prototile set does not, in general, characterize a tiling completely.
Indeed a single prototile may admit different tilings. There are uncountably
many Penrose tilings of the plane with the same prototile set of two rhombs.

Definition: convex, facet-to-facet, locally finite (tilings) A convex
tiling is one whose tiles are convex. A tiling is said to be facet-to-facet if the
intersection of the interior of any two facets is either empty or coincides with
both facet interiors. A tiling is said to be locally finite if every ball in E™ of
finite radius meets only finitely many tiles.

We state without proof the important fact [59]:

Proposition 5 (Gruber and Ryshkov) A locally finite convex tiling in E™ is
facet-to-facet if and only if it is k-face-to-k-face (k =0,1,...,n —2).

Definition: corona of a k-face. Let fix be a k-face of a tiling 7, where
0 < k <n. The (first) corona of fy is the union of fi and the tiles that meet it,
i.e., the tiles whose intersection with fx is nonempty. When k& = 0, the corona
is called a vertex corona. When k = n (i.e. when fi is a tile T') the corona is
called the corona of T'.

Figure 5.1 shows different corona for an example of a two-dimensional tiling.

Definition: parallelotope A convex prototile P of a monohedral tiling
in which the tiles are translates of P is called a parallelotope. Every convex
parallelotope admits a facet-to-facet tiling; this is a corollary of the Venkov-
McMullen’s theorem [92, 67] characterizing convex parallelotopes in arbitrary
dimension. To formulate this theorem, we need the concept of a belt:

Definition: belt A belt of a parallelotope P is a complete set of parallel
(n — 2)-faces of P.

Note that when n = 3, the (n — 2)-faces of P are edges. Figure 5.2 shows
the two belts of a hexagonal prism.

Theorem 5 (Venkov, McMullen) A convex polytope P is a parallelotope if and
only if it satisfies the following three conditions:

1. P s centrosymmetric;

2. all facets of P are centrosymmetric;
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Figure 5.2: Different belts for a hexagonal prism. Left : Belt formed by six
edges, i.e. by six (d — 2)-faces. Right : One of three belts formed by four edges.

3. all belts of P have length four or siz.

Corollary 3 Of the five Platonic (reqular) solids in E3, only the cube is a
parallelotope.

It follows immediately that all other Platonic solids have triangular or pen-
tagonal facets which are not centrosymmetric. (See figure 5.10.)

Central symmetry of faces implies also that within a belt the number of
(n — 2)-faces equals the number of facets.

5.1.1 Two- and three-dimensional parallelotopes

Two-dimensional parallelotopes are called parallelogons; in three dimensions
they are parallelohedra. Since a monohedral tiling of the plane by convex poly-
gons can have at most six edges, parallelogons are either parallelograms or
centrosymmetric hexagons. To characterize their combinatorial type it is suf-
ficient to use single labels indicating the number of edges (1-faces) or number
of vertices (0-faces) which coincide. In order to use the same notation for two-
, three-, and arbitrary d-dimensional parallelohedra we prefer to use symbols
N(4-1).Np indicating both, the number of facets, i.e. (d — 1)-faces, and the
number of 0-faces.

Two combinatorial types of two-dimensional parallelogons are therefore 4.4
and 6.6. They were described by Dirichlet in 1850 [45]. For n = 3 Fedorov
found five combinatorial types of parallelohedra in 1885 [12].1 We label com-
binatorial types of three-dimensional parallelohedra by N2.Ng showing number
of 2-faces and of 0-faces of a parallelohedron. The five combinatorial types of
three-parallelohedra are: the cube 6.8, the hexagonal prism 8.12, the rhom-
bic dodecahedron 12.14, the elongated dodecahedron 12.18, and the truncated
octahedron 14.24. They are shown in figures 5.4-5.8.

n 1929 Delone found 51 combinatorial type for n = 4; this was corrected to 52 by
Shtogrin in 1972 [41, 87]. The number, 103769, of combinatorial types in five dimensions was
determined by Engel [51].
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14.24

|

12.18

VRN

12.14 8.12

N

6.8 6.6

L

4.4

Figure 5.3: Zone contraction family of three- and two-dimensional parallelohe-
dra. For three-dimensional polytopes the zone contraction can be equivalently
described as belt shrinking.

These five combinatorial types of parallelohedra can be related by the oper-
ation consisting in shrinking one of the belts. Such operation is very important
for a general classification of parallelohedra in arbitrary dimension. But instead
of belts (set of parallel (n — 2)-faces) one needs to consider zones (the set of all
edges (1-faces) parallel to a given vector). Obviously, for three-dimensional
parallelohedra zones are equivalent to belts. Nevertheless, to be consistent
with more general treatment we prefer to name the operation of shrinking
of belts for three-dimensional parallelohedra the zone contraction operation.
The zone contraction family of three-dimensional parallelohedra is represented
in figure 5.3. It includes the zone contraction operation which reduces three-
dimensional polytopes to two-dimensional ones and also the zone contraction be-
tween two-dimensional polytopes. Concrete geometrical visualization of a zone
contraction for all possible pairs of three-dimensional Voronoi parallelohedra is
shown in figures 5.4-5.8. Contractions for three dimensional parallelohedra are
complemented in figure 5.3 by zone contraction operations transforming three-
dimensional cells into two-dimensional: These are 8.12 — 6.6 and 6.8 — 4.4.
Also there is one zone contraction between two-dimensional cells : 6.6 — 4.4.
Note, that with each zone contraction operation we can associate inverse oper-
ation which is named zone extension.

5.2 Voronoi cells and Delone polytopes

We return to Delone sets A and to Voronoi cells and Delone polytopes introduced
briefly in chapter 3.
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Figure 5.4: Contraction of the 8.12 cell (hexagonal prism) into the 6.8 cell
(cube). Four edges shrink to zero, two quadrilateral facets disappear, two hexag-
onal facets transform into quadrilateral ones. There are three 4-belts to shrink.

Figure 5.5: Contraction of the 12.18 cell (elongated dodecahedron) into the
12.14 cell (rthombic dodecahedron). Four edges shrink to zero and four hexago-
nal facets transform into quadrilateral ones. There is only one 4-belt to shrink.

Figure 5.6: Contraction of the 12.18 cell (elongated dodecahedron) into the
8.12 cell (hexagonal prism). Six edges shrink to zero and four quadrilateral
faces disappear. There are four 6-belts to shrink.
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Figure 5.7: Contraction of the 12.14 cell (rhombic dodecahedron) into the 6.8
cell (cube). Six edges shrink to zero and six quadrilateral facets disappear.
There are four 6-belts to shrink.

Figure 5.8: Contraction of the 14.24 cell (truncated octahedron) into the 12.18
cell (elongated dodecahedron). Six edges shrink to zero and two quadrilateral
facets disappear. Four hexagonal facets transform into quadrilateral facets.
There are six 6-belts to shrink.
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Figure 5.9: Construction of the Voronoi and Delone cells for a two-dimensional
Delone set.

First we note that the Voronof cells of the points of A tile E™; that is, they
fill E™ without gaps or overlapping interiors. We denote the tiling by 7x. This
follows from the fact that every point of E™ is closer to a unique point of A,
or is equidistant from two or more of them. The tiling 7, is locally finite and
facet-to-facet.

Theorem 6 The vertices of the Voronoi cells of A are the centers of its holes.
Proof. A vertex v of a Voronoi cell D(p) is the intersection of at least
n + 1 hyperplanes bisecting the vectors from p to other points q1,...,qx of A,

where k > n. Consequently, the distances r;1 = ... = rp, = r between p and
qi, © = 1,...,k are all the same and v is the center of a ball of radius r. By
construction, there is no other point of A in this ball. O

Figure 5.9 illustrates construction of the Voronofi cell for a Delone set. The

construction consists of two steps:

i) construct the 2Ry star for a chosen point p,

ii) construct the orthogonal bisectors of the arms of the star.

Then the Voronoi cell is the intersection of the half-spaces containing p deter-
mined by these bisectors.

Definition: corona vector A vector f € A is said to be a corona vector
of the Voronoi cell D(o) if it joins o to the center of a Voronoi cell in the corona
of D(o).

We denote the set of corona vectors of D(0) by C,.

Definition: facet vector A facet vector f € A is a corona vector joining
o0 to a Voronof cell with which it shares a facet.

Alternatively we can say that a vector f € A is a facet vector of the Voronoi
cell D(o) if a facet f of D(o0) is contained in its orthogonal bisector. We denote
the set of facet vectors of D(o) by Fo.

The equation of the bisecting hyperplane is (f,7) = IN(f). Thus the
Voronoi cell of the point o is the set

—

D(o) = {z € E"|(&, f) < =N(f), VfeF}. (5.2)

DN =

When z € 0D(0), equality must hold in (5.2) for at least one f € F. The
definition of facet vector does not imply that the midpoint % f € f; it may lie
outside of D(0). But %fe f when A is a lattice.
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Proposition 6 Let fj, be a k-face of D(0), 0 <k <n—1, and let 0,p1,...,Pm

be the centers of the Voronoi cells in its corona. The m vectors pi,pa, ..., Pm
span an (n — k)-dimensional subspace E"~* orthogonal to fy,, so fy N E" % is a
single point o, and 0,p1,...,pm lie on a sphere in E"™* centered at x,.

Proof. Since fj; is the intersection of at least n — k facets of D(0), and since
D(0) is convex and compact, the corresponding facet vectors span an (n — k)-
dimensional subspace of E™. Thus m > n — k. By construction, these vectors
and thus this subspace are orthogonal to f;. The intersection E"~* N fy is a
single point z, (otherwise the points of fx could not all be equidistant from
0,P1,---,Pm)- Thus o,p1,...,pm lie on a sphere about z,. O

Next we describe the Delone tiling A, obtained by connecting points of A.
This tiling was in fact first introduced by Voronoi; later it was thoroughly stud-
ied by Delone. Today it is known as the Delone tessellation induced by A, except
in Russian literature, where Delone tessellations are called L-tessellations, the
name that Voronoi had given them.

Definition: Delone polytope The Delone polytope of a hole of A is the
convex hull of the points of A that lie on its boundary.

From this definition it follows immediately that the set Ay = A(x;,1;),i € Z
of Delone polytopes is a facet-to-facet tiling of E™.

To make the connection with the Voronoi tiling induced by A, we remember
that the center of any empty hole must be a vertex of the Voronoi tiling. For, the
vertices y;, 7 = 1,...,k of A(z;,r;), all points of A lie on the sphere about x; and
are the closest points of A to x;. Thus z; belongs to the all Voronoi cells D(y;).
Since there are n + 1 independent points among the y;, N%_, D(y;) = {x;}.

We will denote the Delone polytope associated with the vertex v of a Voronoi
tiling by A(v), the set of vertices of D(0) by V(0), and the set of vertices of the
Voronof tiling 7 by Vj.

Proposition 7 For each v € V(0), the polytope A(v) is circumscribable, and
so are its k-faces, k =0,...,n — 1.

Proof. The first statement follows immediately from the fact that the vertices
of D(0) lie on the boundary of an empty hole; the second is immediate since the
intersection of a ball with a plane of lower dimension is again a ball. 0

5.2.1 Primitive Delone sets

Definition: primitive (Delone set and Voronoi tessellation) A Delone
set and the Voronoi tessellation it induces are said to be primitive if all of its
Delone polytopes are simplices.

By the definition of the Delone polytope, we have

Proposition 8 A Delone set is primitive if and only if every vertex of the
Voronoi tessellation belongs to exactly n+ 1 Voronoi cells.
More generally we have

Proposition 9 In the Voronoi tessellation of a primitive Delone set, every k-
face, k=0,...,n—1 belongs to exactly n + 1 — k adjacent Voronoi cells.
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Proof. Voronoi proved this proposition for the case when A is a lattice but
it is true more generally. If a k-face f}, is shared by exactly n+ 1 — k cells, then
it lies in the intersection of exactly n + 1 — k hyperplanes. Now let f(;,1) be a
(k + 1)-face containing fy. It lies in the intersection of m < n — k hyperplanes,
and since it is (k 4 1)-dimensional, we must have m = n — k. O

Proposition 10 Primitivity is generic.
Proof. Since n + 1 independent points determine a sphere in E™, any addi-
tional points are redundant. O
Indeed in discrete geometry literature Delone tessellations are known as De-
lone triangulations. In addition to “most” lattices, many other important De-
lone sets are primitive.

5.3 Duality

We discussed dual lattices in chapter 3. Here we introduce dual polytopes and
dual tilings, for which duality has a different meaning.

Definition: combinatorially dual convex polytopes Two convex poly-
topes are said to be combinatorially dual if there is an inclusion-reversing bijec-
tion between the k-faces of one and the (n — k)-faces of the other.

For example, the cube and the regular octahedron are combinatorially dual,
while the combinatorial dual of a tetrahedron is again a tetrahedron (see figure
5.10).

Definition: orthogonally dual polytopes Two combinatorially dual
polytopes P and P’ are said to be orthogonally dual if the corresponding k and
(n — k)-faces are orthogonal.

Notice that we restrict these definitions to convex polytopes.

Duality for tilings is defined in an analogous way.

Definition: combinatorial and orthogonally dual tilings Two tilings
by convex prototiles are combinatorially dual if there is an inclusion-reversing
bijection between the k-faces of one and the (n — k)-faces of the other. When
the corresponding k and (n — k)-faces are mutually orthogonal, the duality is
said to be orthogonal.

Now we can formulate the duality relation between Voronoi and Delone
tilings.

Proposition 11 The tilings Ax and Tp are orthogonally dual.
Proof. This is an immediate consequence of Proposition 6. We select a
nested sequence of k-faces

Do)>f>of, 2D---Dfy=w. (5.3)

To construct an inclusion-reversing bijection 1 between 75 and A,, we first set
¥(D(0)) = 0. Let D(p1) be the Voronoi cell that shares f with D(o0). Then

op1 = ﬂ A(v) (5.4)

vef
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e
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Figure 5.10: Examples of combinatorial duality of regular polyhedra. The tetra-
hedron is auto-dual. The cube and octahedron are combinatorially dual. The
icosahedron and dodecahedron are also combinatorially dual.

and hence op; is an edge of Ay, so we set ¥(f) = op1. Next we set

Y(£—2) = convex hull {o,p1,...,pm}, (5.5)

where D(p2), ..., D(pm) are the cells, in addition to D(o) and D(p;), to which
f,,—2 belongs; this polygon is a 2-face of Ax. We continue in this way, taking
for ¥(fy,) the (n — k)-face of Ap that is the convex hull of the points of A whose
Voronof cells share fj,. Finally, the vertex v is associated to A(v). O

5.4 Voronoi and Delone cells of point lattices

5.4.1 Voronol cells

When a Delone set A is a regular system of points (point lattice), its Voronoi
tilings YV is monohedral and we can speak of “the” Voronoi cell of the set.
Thus by the Voronoi cell of a point lattice we will mean the Voronoi cell of the
origin, D(0). In this section we will discuss some of the fundamental properties
of Voronoi cells of point lattices.

Since point lattices are orbits of translation groups, their Voronoi cells are
parallelotopes. Since the Voronoi cell is the closure of a fundamental region for
the translation subgroup of the symmetry group of the lattice, the volume of
the Voronoi cell is equal to the volume of a lattice unit cell.
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The Voronoi cell of a lattice is invariant under the lattice’s point symmetry
group.

Proposition 12 The point symmetry group of a lattice L with fized point o is
also the symmetry group of the Voronoi cell D(0); the full symmetry group of L
is the symmetry group of the Voronoi tiling.

Proof. This follows immediately from the definition of D(o). O

Proposition 13 D(o) and its facets are centrosymmetric.

Proof. Every lattice point is a center of symmetry for the lattice; thus D(o)
is centrosymmetric by construction. The midpoint between any pair of lattice
points is also a center of symmetry for L; in particular if f is a facet vector,
then % f is a center of symmetry for L. Thus it is the center of symmetry of

D(0) U D(f) and of D(0) N D(f), and hence %fis the center of symmetry for
the facet f. O
Note: The k-faces of D(0), 2 < k < n — 2, need not be centrosymmetric;
for example, there are lattices in E* whose Voronoi cells have triangular or
pentagonal 2-faces.
Since every point of D(0) is a representative of a coset of L in R™, we can
reformulate the definition of D(0) in the following way.

Proposition 14 The Voronoi cell of a lattice in E™ is the set of vectors ¥ € E™
of minimal norm in their L-coset ¥ + L:

— —

D, ={Fe E"|N(Z) < N(@@-1), Vi e L}. (5.6)

The interior points are unique in their coset but two or more boundary points
may belong to the same coset: for example, if z is a point on the boundary
0D(0) of the Voronoi cell, then so is —z and these points are congruent modulo

—

L. This point « belongs to at least one intersection D(0)ND(f), and translation

—

by —f carries that intersection, and with it z, to D(—f) N D(o),

5.4.2 Delone polytopes

As in the case of general Delone sets, the tiles of the Delone tessellation induced
by a lattice are convex polytopes whose vertices are the lattice points lying on
the boundaries of empty spheres and the Delone and Voronoi tessellations are
dual.

In general the Delone tiling has several prototiles. However, when n = 2,
not only is the tiling monohedral, it is isohedral, i.e. the tiles form an orbit of
the symmetry group of the tiling.

Proposition 15 The Delone tiling associated to a lattice L in E? is isohedral.

Proof. Since the midpoints of the edges of the Voronoi cell of L in E? are
centers of symmetry for L, any pair of adjacent vertices can be interchanged
by inversion in the center of the edge joining them. Thus all the vertices of
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Figure 5.11: Illustration to Proposition 17. Left: Primitive two-dimensional
lattice with its Voronoi cell whose vertices are situated in the centers of holes.
Right: The same lattice with the Voronoi cell (red), the dual to the Voronoi cell
(green), and the Delone corona (blue).

the Voronoi cell are equivalent under the symmetry group of the lattice, from
which it follows that the Delone cells corresponding to the vertices of D(o) are
equivalent too. O

5.4.3 Primitive lattices

Primitive Voronoi cells have received the most attention in the context of both
lattices and quadratic forms. This is mainly due to the fact that the primitivity
is generic. The relation to quadratic forms will be discussed in the next chapter.
Here we describe several simple properties of primitive lattices.

Applying the definition of primitivity of Delone sets (see 5.2.1) to the lattice
we get the following obvious statement:

Proposition 16 A lattice L is primitive if and only if all its Delone cells are
simplices.

When D(o0) is primitive, exactly n + k — 1 Voronoi cells of the Voronoi
tessellation share a given k-face, K =0,...,n — 1.

Definition: Delone corona The set of Delone cells that share the vertex
o (the origin) is called the Delone corona of the lattice L.

Proposition 17 If L is primitive, then the Delone corona of L is a scaled copy
of the polytope dual to the Voronoi cell D(0).

This proposition is illustrated in figure 5.11.

We denote Vi, the set of vertices of the Voronoi tiling of L. It is easy to
check that Vy, is a Delone set. The minimum distance between vertices of D(o)
can be taken as rg, whereas Ry can be chosen to be the length of the longest
vertex vector of D(0). Recall that when D(o) is primitive, exactly (n — k + 1)
Voronoi cells of the Voronoi tessellation share a given k-face, k =0,...,n — 1.

For each k, 0 < k < n, the set of k-faces of a lattice Voronoi tessellation
belongs to a finite number of orbits of the translation group of the lattice; in
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general, each Voronoi cell contains several elements of each orbit. Let f; be a
k-face of D(0) and let {é}, 1 < m < n—k, be the set of vectors corresponding
to the centers of the other n — k Voronoi cells which share this k-face with D(o).
Each translation —¢,, transforms D(c,,) into D(0) and therefore i, into £, — &,
another k-face of the Voronoi cell D(o). Conversely, if f], is a k-face of D(o),
where f] +t = f; for some £ € L, then f is a k-face of D(t). Thus we have

Proposition 18 Fach k-face of a primitive Voronoi cell D(o) is equivalent,
under translations of L, to exactly n — k other k-faces of D(o).

This means that the number of k-faces of a primitive Voronoi cell should be
a multiple of n — k + 1. In fact for 0 < k < n — 1, it should be proportional to
2(n — k + 1) (see proposition 29).

The set Vr, can be decomposed into L-orbits. Selecting one Delone cell from
each orbit, we have the closure of a fundamental region of L, and so the volume
of the union of these Delone cells must be equal to the volume of the lattice
introduced in (3.2) as vol(L) = | det(¢;)].

Moreover the set C'(0) = Uycy(0)A(v) is the union of n + 1 fundamental
domains; hence the value of the invariant vol(L) for all primitive lattices is
equal to (n+ 1):

Proposition 19 When L is primitive,
vol(L) = volC(o) /vol(D) = n + 1. (5.7)

Any vertex of the Voronof cell of a primitive lattice L belongs to exactly n facets
of that cell; since the corresponding facet vectors are linearly independent, these
vectors form a basis of E™ though they may generate only a sub-lattice L’. But
there are many primitive lattices for which this set of vectors is a basis. For
example, this is the case for the primitive lattices in E?, E3, and E*.

Definition: principal primitive A primitive lattice, and its Voronof cell,
is said to be principal primitive if for each vertex of the cell, the facet vectors
of the n facets meeting at this vertex form a basis of the lattice.

The Delone cells of principal primitive lattices are simplices whose edges
issuing from 0 are the edges of a unit cell for L. Thus all these simplices have
the same volume, vol(simplex(zo, ..., x,)) = det(L)/n!.

Proposition 20 A principal primitive Voronoi cell has (n + 1)! vertices.
Proof. When all Delone cells have the same volume volA(v), denoting the
number of vertices of the Voronoi cell V' by No(V'), we have

No(V)  det(L)
n+1  volA(v)

= nl. (5.8)

Corollary 4 A principal primitive Voronoi cell has (n + 1)! n/2 edges.

Proof. Exactly n edges of the cell meet at each vertex, and each edge has
two vertices. (]

Taking into account that the Euler characteristic for a n-dimensional poly-
tope is 1 — (—1)" and it is expressed as an alternative sum of the numbers of
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Table 5.1: Values of the number of k-faces, Ni(n) for n-dimensional primitive
polytopes for n = 2,3, 4.

n  No(n) Ni(n) Na(n) Ns(n)
2 6 6

3 24 36 14

4 120 240 150 30

n

k-faces of an n-polytope, Ni(n), namely Y o\, 1 (—1)FNg(n) =1 — (-1)",
we can find immediately the number of faces for 3-dimensional principal primi-
tive polytopes. The table 5.1 gives values of Ny (n) for n = 2,3, 4 for principal
primitive polytopes. Note, that for n = 2, 3,4 all primitive polytopes are princi-
pal. Additional topological restrictions on the numbers of k-faces for primitive
higher dimensional polytopes will be discussed in the next chapter (see section
6.4).

5.5 Classification of corona vectors

In the geometry (and the algebra) of lattices, one is interested in the set of
vectors that are (relatively) short. Historically, the vectors of minimum length
have received the most attention. Here we consider three sets of “short” vectors,
all defined in terms of the Voronoi cell of the lattice. We begin with the largest
of these sets, the corona vectors of the lattice.

5.5.1 Corona vectors for lattices

The corona of a tile T in a tiling is defined in section 5.1. When T is the Voronoi
cell D(o) of a lattice then every tile in the corona is associated to a lattice vector.

Definition: corona vector The corona vectors of a lattice L are the
vectors ¢ from o to the centers c of the cells comprising the corona of the Voronoi
cell D(o).

Proposition 21 A lattice vector ¢ € L is a corona vector if and only if %5 €
0D(o).

Proof. Let ¢ be a corona vector. Let I(o,c) = D(0)ND(c). Then I(o,c) # 0,
and it is convex because D(0) and D(c) are convex. The midpoint 3¢ is a center
of symmetry of the lattice that interchanges D(0) and D(c) and hence stabilizes
I(o,¢), and again by convexity, %6 € I(o,c¢). The converse is immediate by the
definition of the corona vector. O

Corollary 5 ¢ € L is a corona vector if and only if %52’5 the center of symmetry
of the nonempty intersection D(o) N D(c).

Corollary 6 If a k-face of D(0) does not contain a center of symmetry, then
any tile that shares that k-face also shares one of higher dimension
We denote the set of corona vectors of L by C.
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Proposition 22 The number of corona vectors is even.
Proof. Since D(o) is centrosymmetric, ¢ € dD(0) <> —3¢ € dD(o). O

Theorem 7 C is a corona vector of L if and only if it is a vector of minimal
norm in its L/2L coset.

Proof. By definition, %8 belongs to the Voronoi cell of o and so, by Propo-
sition 21,

EECHN(%E) < N@/2—0), Viel. (5.9)
Thus

ZeCeo N@<N(@E@—20), Yiel, (5.10)
i.e. ¢is a vector of minimal norm in its L/2L coset. O

Note that ¢ and ¢’ are two vectors of the same length and ¢ — ¢’ € 2L if
and only if £(¢—¢’) € L. In this case, ¢’ is the image of & through the center
of symmetry 1(¢—¢’). With this observation it is easy to prove (Theorem 8
below) that if +¢ are the only vectors of minimal length in their L/2L coset,
then they are facet vectors.

The corona vectors of a lattice are of special interest because they encode

many of its properties.

Proposition 23 A corona vector is the shortest lattice vector in its mL coset
for all integers m > 3.

Proof. If ¢ € C and 7 # 0, then N(¢+ 2%) — N(¢) > 0, so (G, %) + N(&) > 0.
Then

N(Z+m7) — N(&) = 2m(C, &) + m2N(z)
— m(2(6,7) + mN (@) = m(2((&,7) + N(@)) + (m - 2)N(@)  (5.11)

which is positive for m > 2. Thus N(¢) < N(Z+ mZ). O
Note that when m > 2, ¢ and —¢ do not belong to the same mL coset.

Proposition 24 The set C is the set of vertices (except o) of the Delone corona
of o.

Proof. The Delone corona of 0 is U,cy (0)A(v). For each such v, the vertices
of A(v) are the centers of the Voronof cells that meet at v, and thus by definition
the vertices of A(v) are corona vectors. Conversely, every corona vector is a
vertex of some A(v), v € V(o). O

5.5.2 The subsets S and F of the set C of corona vectors

We distinguish now two important subsets of the set C of corona vectors of a
lattice L.

e The set S of vectors of minimal norm s in L, i.e. the set of shortest vectors.
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e The set F of facet vectors of the Voronoi cell.

We have already noted the simple criterion for determining whether a lattice
vector is an element of F.

Theorem 8 (Voronoi). The following conditions on ¢ € C are equivalent:
i) =€ are the facet vectors;
it) £¢ are the shortest vectors in their L/2L coset;
iii) (C,0) < N({W) VYo e L, 0#0, U #¢;
iv) the closed ball B.j(|3¢l) contains no points of L other than o and c.
Proof.
ii) = i). Assume =+¢ are the shortest vectors in their L/2L coset. Let f be a
facet containing %E’ Then the image of %E’ through the center of symmetry % f

is 3¢/ = f- 1¢, and hence N(¢') = N(¢) and ¢’ = 2f —& Thus our hypothesis

implies ¢/ = Cor ¢’ = —¢. If ¢/ = &, 5 was fixed by this symmetry and hence
¢ = f. The case ¢’ = —c is impossible, since in that case %E’ and —%E would

lie in the same facet of D(0). Thus ¢ is a facet vector, and the same argument
works for —¢.
i) = ii). Conversely, assume that ¢'is a facet vector. Then 1¢'is the center of a
facet and so is closer to ¢ and to o than to any other points of L. That is,
Wie L, 740, N(%a < N(%é— 7. (5.12)
Again the same argument works for —¢, so &€ are the shortest vectors in their
2L coset.
ii) = iii). This is equivalent to condition N(¢) < N(¢—2v), Vo € L, 0 #0,# ¢.
i) = iv). If ¢/2 is the center of a facet, then it is equidistant from o and ¢ and
all other points of L are farther away. But any lattice point w in B, /»(|32])
would be at least as close, a contradiction. The converse is obvious. 0

Corollary 7 S C F CC.

Proof. By the definition of a facet vector, F C C. It is also obvious that
S C C, since S vectors have minimal norm in L and hence also in the L/2L
cosets to which they belong. To show that S C F, we prove that no two S
vectors §1, §a, §1 # 83, can belong to the same L/2L coset. Let 6 be the angle
between §7 and §o; we may assume 0 < 0 < 7. If §1 = §5 + 2% for some i € L,
we have (§1 — &) =g§ € L, and

N<81;S2> zg(l—c059)<s, (5.13)

where s is the norm of the vectors in §. This is a contradiction. Thus S C F.
O

There is exactly one planar lattice for which S = F = C: the hexagonal
lattice, whose Voronoi cell is a regular hexagon. Surprisingly, there are no
examples in any higher dimension.

We next study some key properties of F. The next two propositions are due
to Minkowski [78].
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Proposition 25 (Minkowski). 2n < |F| <2(2" —1).

Proof. The lower bound is implied by the centrosymmetry of D(0). The 2™
cosets of 2L in L have as coset representatives the vectors {(e1,...,€,)} where
¢; € {0,1}. Since if f € F the only other facet vector in its L/2L coset is — f,
the maximum number of face vectors is twice the number of cosets, excluding
of cause the 0-coset. O

Proposition 26 (Minkowski). 2(2™ —1) <|C|] <3 —1.

Proof. The lower bound follows from the fact that every L/2L coset contains
at least two corona vectors. The upper bound is a corollary of Proposition 23
since there are 3™ cosets of 3L in L, one of which is represented by 0. O

The upper bound is attained in every dimension by the cubic lattice, whose
Voronoi cell is the unit n-cube. To calculate the number of corona vectors for
cubic lattices the notion of k-vector is useful.

Definition: k-vector. A vector ¢ € C is a k-vector if %8 lies in the interior
of a k-face of D(0), that is if it lies in the intersection of exactly n—k independent
facets.

For cubic lattices, the vector €'is a k-vector if and only if €; = £1 for exactly
n—Fk values of ¢ and is equal to 0 for all the others. Thus, since we do not include
the 0O-coset, the number of corona vectors for a n-dimensional cubic lattice is

|C|_sz(nfk>—1_3"—1. (5.14)
k=0

If L is primitive then F = C and L has exactly 2(2" — 1) < 3" — 1 corona
vectors (n > 2).

Taking into account that |F| is maximal if and only if F contains a repre-
sentative of every L/2L coset (except 0), we get

Proposition 27 |F| is mazimal if and only if F =C.

Lattices with maximal |F| are not necessarily primitive: if D(o) has “few”
vertices then some of them will be an intersection of more than n facets (this
occurs first when n = 4, see example in subsection 6.4.1). However, if |F| is
maximal and the number of facets at each vertex of D(o) is minimal, then L is
primitive. More precisely,

Proposition 28 L is primitive if and only if |F| is mazimal and exactly n
facets of D(0) meet at each vertex.

Proof. Suppose that L is primitive. Then every Delone cell is a simplex.
Since at least n facets of D(0) must meet at every vertex, all of the vertices
of the Delone cell, except o, correspond to facet vectors, so |F| is maximal.
Conversely, if |F| is maximal and exactly n facets meet at each vertex, then
every corona vector is a facet vector and hence the Delone cells are simplices.
O

Denoting the number of k-faces of the Voronoi cell of an n-dimensional prim-
itive lattice by Ny(n), we have:
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Proposition 29 For a primitive lattice, Ni(n) is a multiple of 2(n+1—k) for
0<k<n-—1.

Proof. Proposition 18 shows that this number is a multiple of n + 1 — k.
Consider a k-face f;, and its image f; = —fj;, through the origin. If f;, and f]
belong to the same translation orbit, there would be a translation —¢ carrying
fy. into f]. Then %86 fi.. Soc e C,but ¢¢ F since k < n—1. This is impossible,
since C = F. So fi and f], belong to two distinct translation orbits. Thus when
a Voronoi cell is primitive, the k-faces belong to an even number of translation
orbits, each containing (n 4+ 1 — k) k-faces of the cell. O

Proposition 30 In any lattice, the vectors of norm less than 2s are facet vec-
tors, where s is the minimal norm of the lattice.

Proof. Let N(77) < 2s; we will show that there is no ¥ in the same L/2L
coset with norm N (v) < 2s. Assume N (02) < 2s and 07 — 2 = ¢, ¥ € L. Then

N (@) — @) = N(2§)) = AN(3)) > 4s, (5.15)
SO
4s S N(’Ul - 172) = N(’Ul) + N(’UQ) - 1(171,’(72) S 4s — 1(171’[72) (516)

Choosing 75 so that (07, 72) > 0 - that is replacing vo by —@5 if necessary - we
have a contradiction. Thus ¥ is a facet vector. [l

Corollary 8 A wvector of norm 2s is a corona vector.
Proof. It follows from the proof of the preceding proposition that no vectors
of norm 2s can be in the same L/2L coset as a shorter vector. O

Corollary 9 The vectors of norm 2s in the same L/2L coset are pairwise or-
thogonal.

Proof. Let N(7;) = 2s; we will show that if there is a @5 in the same 2L
coset with norm N (¥3) = 2s and v # ¥y, then (v7,02) = 0. Let v — U = 27,
§ € L. Then again (5.15) and (5.16) takes place. Since if (77, 72) # 0 we can
replace Uy by —¥s if necessary and to assure that (07,72) > 0, we must have
(th, ) = 0. O

The following criterium, due to Venkov, allows us to distinguish the facet
vectors among the vectors of norm 2s.

Proposition 31 A vector of norm 2s is a facet vector if and only if it is not a
sum of two orthogonal vectors of S.

Proof. Let §1,82 € S where (81, 52) = 0. Then the four vectors 4(55 + §5)
all have norm 2s and belong to the same L/2L coset, so they cannot be facet
vectors. Conversely, if N(£¢;) = 2s but +¢; ¢ F then there are vectors +¢;
orthogonal to +¢; and in the same 2L coset. Then the four lattice vectors
:I:%(cﬁ + &) are elements of S and form two orthogonal opposite pairs, and
& =3@+)+ 3G - 7). O

The following obvious remark is also very useful:
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Proposition 32 F generates L.

Proof. Since the Voronoi tesselation is facet-to-facet, we can pass from any
cell, say D(o0) to any other, say D(z), by a path that does not intersect the
boundary of any face. This path defines a sequence of facet vectors from o to
T. O

The set S of shortest vectors may not generate L, even if it spans the whole
E™. Also note that a generating set need not include a basis. For example,
the integers 2 and 3 generate Z but neither 2 or 3 does. When n > 9, there
exist lattices in E™ generated by & which have no basis in that set. The first
example, in 11 dimensions, was found by Conway and Sloane [36].

5.5.3 A lattice without a basis of minimal vectors

Conway and Sloane have proved in [36] that the 11-dimensional lattice with
Gram matrix

60 ) ) 5 ) 5 —12 —12 —12 —12 -7
5 60 ) 5 5 5 —-12 -12 -12 -12 -7
5 ) 60 5 5 5 —-12 -12 -12 -—-12 -7
) ) ) 60 5 5 —-12 -12 -12 -12 -7
) ) ) 5 60 5 —-12 -12 -12 -12 -7

5 ) ) 5 5 60 —12 -12 —-12 -12 -7 |(5.17)
-12 -12 -12 -12 -12 —-12 60 -1 -1 -1 -13
-12 -12 -12 -12 -12 -12 -1 60 -1 -1 -13
-12 -12 -12 -12 -12 -12 -1 -1 60 -1 -13
-12 -12 -12 -12 -12 -12 -1 -1 -1 60 —13

-7 -r -1 -7 -7 =7 -13 -13 -13 -13 96

has minimal norm 60, is generated by its 24 minimal vectors, but no set of 11
minimal vectors forms a basis.

We want just to use this example to illustrate relations between facet vectors
and shortest vectors of the lattice. We note that for the lattice (5.17) all lattice
vectors with norm less than 120 are facet vectors. In particular, the basis
in which the Gram matrix is written is formed by facet vectors. Numerical
calculations made by Engel (private communication) show that there are 2974
facet vectors. The maximal norm for facet vectors is 168. The minimal norm of
lattice vectors which are not facet vectors is 122. There are 20 lattice vectors
with norm 122 which are not facet vectors.

We do not touch here the question of existence of a basis of facet vectors
conjectured by Voronoi and discussed later on several occasions [66, 52, 53].
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Chapter 6

Lattices and positive
quadratic forms

6.1 Introduction

Previous chapters were devoted to the study of lattices from the point of view
of their symmetry and their Voronoi and Delone cells. This analysis was done
essentially without explicit introduction of the basis in the ambient Euclidean
space, E™. Now we return to the study of lattices through associated positive
quadratic forms. This approach requires us to introduce initially a lattice basis
and to represent the translation lattice A™ in this basis

A" = {t|t = t1by + - - + tpby, t; € Z}. (6.1)

Here {I;l} is a basis of E". From the associated scalar products one can form
the Gram matrix Q:

qij = (bi,b;); Q=BB" =QT. (6.2)
Using the dual basis, defined in section 3.4 we obtain
QL") =Q(L)™". (6.3)

We emphasize that the bases in the same orbit of the orthogonal group have
the same Gram matrix; indeed VS € O,,, BST(BST)" = BSTSB" = BB, so
@ describes the intrinsic lattice.

This symmetric matrix @ defines also a positive quadratic form ¢( 3 on £
and, in particular on L, the lattice generated by the basis {Z;Z},

N(@) = q(l) ==Y Nigijh, (6.4)

where ¢ = Sy Aibi. Conversely, given the Gram matrix (), one can reconstruct
the intrinsic lattice.

109
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Real quadratic forms in n variables and, equivalently, n X n real symmetric
matrices ), form a group under addition and they can be considered as elements
of the vector space Q,, ~ R, where N = n(n + 1)/2. This vector space Q,
carries a natural orthogonal scalar product (@, Q") = trQQ’" = trQ’Q. Since the
sum of two positive quadratic forms is again a positive quadratic form, the set
of n-variable positive quadratic forms is the interior C4(Q,,) of a convex closed
cone C1(Q,). Notice that C,(Q,) can be identified as the orbit space of the
manifold B,, of bases under the action of the orthogonal group:

Bo|Op = GLy(R) : O, = C1(Qn). (6.5)

By a change of lattice basis, l;; =>; mijgj, M € GL,(Z), the Gram matrix Q
is changed into the matrix:

Q— MQ=MQM". (6.6)

So an intrinsic lattice corresponds to an orbit of GL,(Z) acting by (6.6) on
C+(9,). The problem of choosing a fundamental domain for the GL,,(Z) action
on positive quadratic forms is equivalent to construction of the so called reduced
forms. Also the overall scaling is unimportant for the study of intrinsic lattices.
Therefore, it is possible to restrict analysis to appropriate sections of the cone,
whose dimension is n(n +1)/2 — 1.

For two-dimensional lattices the corresponding cone of positive quadratic
forms is three-dimensional, it can be easily visualized (see figure 6.1). Moreover,
what we really need to look for in the case of quadratic forms in two variables is
the two-dimensional section of the cone of positive quadratic forms represented,
for example, in figure 6.2 where stratification of the cone is shown. Although the
case of quadratic forms in two variables and associated two-dimensional lattices
do not possess many complications arising for higher dimensional quadratic
forms and lattices, it is quite instructive to study this particular case especially
due to the possibility of visualization of corresponding structures.

6.2 Two dimensional quadratic forms and lat-
tices

6.2.1 The GLy(Z) orbits on C,(Q,)

The strata of the action of GL2(Z) on C4(Q2) are the Bravais classes (see section
4.3 for initial definitions and chapter 8 for further details).

The three dimensional generic stratum represents the Bravais class p2 = Zo.
After restriction to a section of the cone (see figure 6.2) we see only a two-
dimensional generic stratum.

Strata with stabilizers p2mm and ¢2mm are represented by one-dimensional
lines on the section. On the whole cone of positive quadratic forms these strata
are two-dimensional.
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Figure 6.1: Representation of the cone of positive quadratic forms depending
on two variables. Only interior points correspond to positive quadratic forms.
The cone is divided into sub-cones with a given combinatorial type of Voronoil
cell by planes passing through a vertex of the cone. One of such planes is shown
by a light brown shading. The cone is cut by the plane orthogonal to the axis.
The traces of walls on this plane are shown by thick black lines. The number
of walls is infinite and only a small number of walls is shown. Points on walls
correspond to rectangular Voronoi cells. Generic points represent 2-dimensional
lattices with the Voronoi cell being a parallelogon with six edges. Each generic
region is further stratified by the action of the GL(2, Z) group. The fundamental
domain of GL(2, Z) action consists of a sixth part of a generic domain together
with its boundary. It is shown in figure as a yellow region with its boundary.
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¢ pdmm

® p6bmm
p2

— ¢2mm

—  p2mm

Figure 6.2: Representation of the section of the cone of positive quadratic forms
depending on two variables. Stratification by the action of GL(2, Z) into Bravais
classes is shown. The fundamental domain includes a two-dimensional stratum
(p2 lattices); two one-dimensional strata (c2mm and p2mm); and two zero-
dimensional strata (pdmm and p6mm),

From the partial ordering of Bravais classes (see section 4.4, figures 4.6, 4.7)
we know that pdmm is generated by p2mm and c¢2mm. Consequently, in figure
6.2 the point at the intersection of p2mm and c2mm lines should correspond to
a pdmm Bravais class. For the 3d-cone, the pdmm stratum is one-dimensional.
It corresponds to intersections of the p2mm and c2mm planes. Similarly, the
pbmm-invariant lattices appear at intersections of three c2mm invariant strata.
On figure 6.2 the p6mm stratum is shown as a system of isolated points whereas
for the 3d-cone it is represented as a system of one-dimensional rays going
through the cone vertex.

In order to construct the fundamental domain of the GLy(Z) action it is
sufficient to choose one triangular domain (for example that shown in figure 6.1
by yellow hatching) with its three boundaries but without a point belonging to
the boundary of the cone.

Along with symmetry induced stratification of the cone of positive quadratic
forms it is useful to look for a combinatorial classification of the Voronof cells of
corresponding lattices. We know that for two-dimensional lattices there are only
two combinatorial types of Voronoi cells: hexagons for the generic primitive case
and rectangles for non-primitive case. Rectangular Voronoi cells are compatible
only with p2mm and p4mm symmetry. This means that from the point of view
of combinatorial classification big triangular domains in figure 6.2 formed by
p2mm boundary lines have in their interior points associated with primitive
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lattices (hexagon cells), whereas their boundaries (except vertices lying on the
boundary of the cone) correspond to non-primitive lattices with rectangular
Voronoi cells. Each such triangular domain consists of six fundamental regions
of GLy(Z) action, intersecting at their boundaries.

6.2.2 Graphical representation of GLy(Z) transformation
on the cone of positive quadratic forms

Remember that the action of a GL2(Z) element represented by matrix B =

bir b1 , satisfying condition by1b22—b12b21 = £1, on matrix Q = - qi2
ba1  bao g1 G22
is written as

Q—Q =BQB', (6.7)

where BT is the transposed matrix. The determinant of @ is invariant under
G L3 (Z) transformation. But on the representative section of the cone each point
is denoted by the [¢11, ¢12, g22] symbol which refers to the whole ray of quadratic
forms with all possible determinants. The [q11, ¢12,¢22] parameterization of
points and lines used in figures 6.3-6.5 is concretized in subsection 6.2.3 and
table 6.1.

GLs(Z) transformation is a continuous transformation of the disk represent-
ing the section of the cone of positive quadratic forms. Necessarily, it transforms
each connected domain of one combinatorial (or symmetry) type into a domain
of the same type and its boundaries into the respective boundaries. So to see
the automorphism of the disk under the action of a concrete element of the
GLs(Z) group, it is sufficient to study the transformation properties of special
points being the vertices of domains of a given combinatorial type.

Let us study the automorphism of the disk under the action of By = < (1) _11 >

and its inverse By ' = ( (1) i )

The point [1, 0, 0] is invariant under B; action. The orbit of the point [0, 0, 1]
under the action of B; includes an infinite number of points which are obviously
situated on the boundary of the disk

(5 () (L0 = (5 ) e

Expression (6.8) is valid for any integer K value, positive or negative. From
this transformation formula we see immediately that, for example, the trian-
gle ([1,0,0],[0,0,1],[1,1,1]) transforms under the action of B; into triangle
([1,0,0],[1,-1,1],[0,0,1]), then under the repeated action to triangle ([1,0, 0],
[4,-2,1], [1,—1,1]), next to triangle ([1,0,0],[9, —3,1], [4, —2,1]), etc. Figure
6.3 shows schematically these transformations.

In a similar way we can study the automorphism of the disk under the action

of32=<i ?)anditsinverse321:<_11 (1))
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[1,-1,1]

[4,-2,1]
[9.-3.1]
[0,0,1] [1,0,0]
[9.3.1]
— ¢c2mm [4,2,1]
— p2mm

[1,1,1]

Figure 6.3: The action of B; transformation on the section of the cone of
quadratic forms. Triangular domains shown by different colors transform con-
secutively one into another in a clockwise direction around the point [1,0,0]
under B; action. Transformation of all other domains follows by applying the
continuity arguments and invariance of combinatorial type under transforma-
tion. By ! action corresponds to counterclockwise transformation of consecutive
triangular domains around the same point [1, 0, 0].
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[1,-1,1]

[1,-3.9]

[0,0,1] [1.0.0]
[13,9]
[1,2,4]
— c2mm
[1,1,1] — p2mm

Figure 6.4: The action of By transformation on the section of the cone of
quadratic forms. Triangular domains shown by different colors transform con-
secutively one into another in a clockwise direction around the point [0,0, 1]
under By action. Transformation of all other domains follows by applying the
continuity arguments and invariance of combinatorial type under transforma-
tion.

Now the point [0,0,1] is invariant under the Bs action. The orbit of the
point [1,0,0] under the action of By consists again in an infinite number of
points situated on the boundary of the disk,

<1(1)>K((1)8)((1)1>K:<;1(£2) (6.9)

Expression (6.9) allows us to construct a graphical visualization of the By trans-
formation shown in figure 6.4 and to see, in particular, that the triangle ([0, 0, 1],
[1,0,0], [1, —1, 1]) transforms under Bs action into triangle ([0, 0, 1], [1,1, 1], [1, 0, 0]),
then under the repeated action to triangle ([0, 0, 1], [1,2,4], [1,1,1]), next to tri-
angle ([0,0,1], [1,3,9], [1,2,4]), etc.

Along with transformation of points we can directly analyze transformation
of lines. For example, we can find the image of the line g12 = 0 (corresponding
to the p2mm invariant boundary between generic combinatorial domains) under
the action of B,

10 gu O I K\ _ qi1 Kaqi: (6.10)
K 1 0 qo2 0 1 Kqai K?qii+q» ) '
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[1,-1,1]

[1,-3.9] [9,-3,1]

0.0.1] [1,0,0]
[1,3,9] [9.3,1]
[4.2,1]
— c2mm
[1,1,1] — p2mm

1—4: R;; 1—2:BRy; 1—5: RiByRy;
1—-3: BgRlRO; 1—6: R1B2R1R0.

Figure 6.5: Examples of GL2(Z) elements realizing transformation between six
equivalent sub-domains of the same connected combinatorial domain. Six sub-
domains are labeled by big bold numbers 1,2,3,4,5, and 6.

This means that the line g12 = 0 transforms under the action of BX into the
line g12 = K ¢q11. This allows us to easily label all boundaries between different
combinatorial domains going through the [0, 0, 1] fixed point of By action.

Obviously, one can apply the same transformation to lines which are bound-
aries between different fundamental domains of GL3(Z) action but which corre-
spond to the primitive combinatorial type (¢2mm invariant lines). For example,
for the q11 — 2g12 = 0 line we get

< 0 > < 2q12 qi2 > < 1 K ) _ ( 2¢12 (2K + 1)q12 )(6 1)
K 1 Q12 g2 0 1 2K +1)qi2 2K(K +1)q12 +q22 )
To see other important GLy(Z) transformations we need to add two reflec-

tions. The reflection Ry = < 1

0 _01 ) corresponds to a reflection in the g12 = 0

. . . 1.
line. It reverses the sign of g12. Another reflection, Ry = (1) 0 ) interchanges

q11 and go2. It may be geometrically seen as reflection in the g12 = 0 line.
The action of four elements By, B, Ry, R1 on the section of cone of quadratic
forms is shown schematically in figure 6.5. Using their geometrical visualization
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it is easy to find some simple sequences of transformations which allow passage
from one possible choice of fundamental domain to another one within the same
domain of the combinatorial type. Examples of such transformations between
six subdomains are given also in figure 6.5.

6.2.3 Correspondence between quadratic forms and Voronoi
cells

In order to see better the correspondence between points of the cone of positive
quadratic forms and the corresponding Voronoi cell we take in figure 6.6 a series
of points and represent in figure 6.7 the evolution of the corresponding lattice
and its Voronoi cell.

As we are interested not really in points of the cone but in rays, only two
qi1  qi12

q12 422
different nonzero determinants but with the same ratio g11 : q12 : g22 correspond

to the same ray of the cone. Thus we can represent a ray by its projective
coordinates [q11, q12, g22]. Figure 6.6 shows stratification of the cone of positive
quadratic forms in projective coordinates [q11,¢12,¢22]. Equations for several
lines corresponding to ¢2mm and p2mm strata are given in table 6.1. As a path
in the section of the cone of positive quadratic forms we take the line given by
equation goo = 2¢11. Along this line the 11 representative points a,b, ...,k are
chosen to cover different domains and to cross c2mm and p2mm strata. Lattices
with their Voronoi cell for all these representative points are collected in figure
6.7.

parameters are needed to define a ray. All matrices Q = ( with

6.2.4 Reduction of two variable quadratic forms

To build a basis for a lattice L, we can start with any visible vector. We will
choose a shortest vector 81 € S C L; §; defines a 1-sublattice {us1; p € Z}.
Then the 2-dimensional point lattice L becomes a union' L = UyezXy of one-
dimensional identical point lattices (“rangées”) with Yo := {u81} and Y14 its
nearest “rangées”. The second basis vector §2 should belong to ¥1;. These
two rangées contain at least one vector whose orthogonal projection on the axis
defined by 57 has the coordinate = which satisfies 2 —% < 2 < 0. When z satisfies
the inequalities, we choose the corresponding vector as §5. The quadratic form
defined by this basis is represented by the matrix with elements ¢;; = (8}, §;);
these matrix elements satisfy exactly the conditions;

0 < —2q12 < g1 < go2, 0 < qu- (6.12)

IThe arguments used here are those of [29]. Bravais wrote in French and used the words:
“rangée, réseau, assemblage” for 1-, 2-, and 3-dimensional lattices, respectively. That makes
his paper more colorful!

2The choice of the sign of z is arbitrary. We choose here the negative sign because this has
a natural generalization to arbitrary n.



118 CHAPTER 6. LATTICES AND POSITIVE QUADRATIC FORMS

[1,-1,1]

[1,-24 4,-2,1]

o |
H1-12] 21,

R

[13,0,1] - [1,0,0]

99

Figure 6.6: Section of the cone of quadratic forms with a path (red) along which
evolution of lattices together with their Voronof cell is shown in the next figure
6.7. Notation for different lines is given in a separate table 6.1.

TRe Ex E 8 E

a b c

N A T

f g h ) Ji k

e

Figure 6.7: Lattices and their Voronoi cells associated with points on the section
of the cone of positive quadratic forms shown in figure 6.6.
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Table 6.1: [q11, q12, g22] parameterization of several lines on the section of cone
of positive quadratic forms together with points lying on them and the combi-
natorial type of corresponding Voronof cell.

Line Points on line Combinatorial type
g2 =0 [0,0,1]; [1,0,0] 4-cell
g2 —q11 =0 [0,0,1]; [1,1,1] 4-cell
q12 — @22 =0 [1,0,0]; [1,1,1] 4-cell
qi2+qi1 =0 [0,0,1]; [1,-1,1] 4-cell
q12+qa2 =0 [1,0,0]; [1,-1,1] 4-cell
12 —2q11 =0 [0,0,1]; [1,2,4] 4-cell
q12 —2¢22 =0 [1,0,0]; [4,2,1] 4-cell
qi2 +2q11 =0 [0,0,1]; [1,-2,4] 4-cell
12 +2g22 =0 [1,0,0]; [4,—2,1] 4-cell
q11 — 3q12 +2¢22 =0 [1,1,1]; [4,2,1] 4-cell
2011 —3q12 + g2 =0 [1,1,1]; [1,2,4] 4-cell
11 +3q12 +2¢22o =0 [1,-1,1]; [4,-2,1 4-cell
2q11 + 312+ q22 =0 [1,-1,1]; [1,—2,4 4-cell
212 —q11 =0 [0,0,1]; [4,2,1] 6-cell
2q12 —q22 =10 [1,0,0]; [1,2,4] 6-cell
2q12+q11 =0 [0,0,1]; [4,-2,1] 6-cell
2q12 + g2 =0 [1,0,0]; [1,—2,4] 6-cell
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The set of quadratic forms defined by (6.12) is a fundamental domain of C4(Qs):
i.e. this domain contains one, and only one, quadratic form of each orbit of the
GLy(Z) action on C1(Qs).

Determining a fundamental domain on C4(9Q,) is known as the problem
of arithmetic reduction of quadratic forms. For n = 2 it was first solved by
Lagrange [65].

Another approach to classification of lattices and associated quadratic forms
was introduced by Voronoi ([94], p.157) and developed later by Delone [42].
Using Lagrange reduction, we can always choose a basis of a lattice such that
the coefficients of the associated quadratic form qi122 + 2¢122y + gooy? satisfy
(6.12) 0 < —2¢12 < q11 < @22, 0 < ¢11. With the variables A\ = ¢11 + 12,
L= qa2 + q12, ¥ = —q12, the quadratic form becomes a sum of squares:

M+ py? v —y)?, A>0, p>0, v>0. det(q;) = A+ pv +vA > 0.

(6.13)

As the value of the determinant shows, the quadratic form is positive if no
more than one of the three parameters vanishes. We have the norms:

N(é)z)\—i-u; N((1)>:u+u; NG):)\—FM; (6.14)

there is a complete syntactic symmetry among the parameters A, i, v. The do-
main in C4 (Qz) associated with generic lattices possessing a primitive (hexagon)
combinatorial type of Voronof cell is invariant by the group of permutations S
of the three parameters A, u,v. Indeed, it corresponds to the triangle [0,0, 1],
[1,0,0], [1,1,1] of Figure 6.6 and S5 permutes the six fundamental domains
contained in the domain of (6.13).

It is straightforward to describe the five Bravais strata by studying them in
the parameter space C4(Q2) with A, u, v parameterization. They can be labeled
by an elegant symbol invented by Delone: the three parameters are represented
by the three sides of a triangle.

First case: \uv # 0:

i) Generic Bravais class p2: represented by the Delone symbol A

ii) When two parameters are equal, an order 2 symmetry appears: the in-
variance by Rj in figure 6.6 (for instance A = p); it exchanges the two

equal sides of the triangle; it corresponds to the Bravais class ¢2mm: ﬁ

iii) When the three parameters are equal: we have the full symmetry Ss of
the triangle; with the inversion through the origin (=rotation by 7), one

describes the hexagonal Bravais class p6mm: ﬁ

Second case: one of the three parameters vanishes 3.

31f we choose v = 0 the quadratic form is diagonal (invariant by Rg in figure 6.6). The
cases A = 0 and p = 0 are obtained from the preceding one by transforming the quadratic

form by the SL2(Z) matrices ( _11 ? ) and( (1) _11 ) respectively.
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i) The two other parameters are different: Bravais class p2mm Q

ii) The two other parameters are equal: Bravais class pdmm &

An extension of Delone classification to higher dimensional lattices and
quadratic forms results in more fine classification of lattices than simply com-
binatorial or symmetry (Bravais) classification. (See Delone classification of
three-dimensional lattices in chapter 8, section 8.5 and the representation of
combinatorial types of lattices by graphs in section 6.7.)

6.3 Three dimensional quadratic forms and 3D-
lattices

The set of 3-dimensional quadratic forms {¢} (corresponding to symmetric real
3 x 3 matrices Q) forms a 6-dimensional real vector space R®, with the scalar
product (Q.Q') = trQQ’. The 6-dimensional submanifold of positive forms,
C.(Q3), is the interior of a convex, homogeneous, self-dual* cone. Since each
positive quadratic form represents a 3-dimensional Euclidean lattice, modulo
position, it is interesting to partition C;(Qs) both, into the 14 domains of
Bravais classes, and the 5 domains of combinatorial types of Voronoi cells.

This would be very redundant, however, because the representation of an
Euclidean lattice by a quadratic form depends on the choice of basis vectors,
as we have seen during the analysis of a more simpler case of 2-dimensional
quadratic forms in the preceding section.

To study the set of 3-dimensional lattices one has to consider only a funda-
mental domain of C;(Qs) for the GL3(Z) action. To choose such a domain was
a classical problem: the first solution was given by Seeber in 1831 [84]. The
interior of such a domain can be chosen, using the main conditions for obtuse
forms, to be:

0<qi1 <@g <gss, i1#7: q; <0; 2|gij| < qii; 2|12+ 13+ 23] < 11+ qo2.

(6.15)
On the boundary of that domain there occur only non-generic Bravais classes
with still some redundancy, which are solved by the auxiliary conditions ®. That
domain is unbounded. Since we are interested in lattices up to a dilation, we can
consider only a five dimensional (bounded) domain of the group GL3(Z) x R%.
The most natural way to do it is to choose the intersection of the domain (6.15)
by the hyperplane tr@) = ¢, with ¢ a positive constant. We shall choose tr@Q = 3
and call TC, (Qg) this 5 dimensional bounded domain. However it is still difficult
to draw its picture! For studying a 3-dimensional picture, we have to restrict
ourselves to a section of TC4(Qs) by a well chosen 4-dimensional subspace of

4Both Q and Q! are in the cone.
Slg23| < laus| if 11 = q22;  |qus| < |qu2| if g22 = g33;  qi2 =0 if 2|gas| = q22; q12 =0
if 2lq13| = qu1; @13 =0if 2|qi2]| = q11; g1 < |q12 + 2qu13] if 2|q12 4+ q13 + g23] = q11 + ¢22.
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C+(Q3). To check the dimension arguments we note that the C1(Q3) space is 6-
dimensional. If we intersect 6-dimensional space by a 5-dimensional (T'C1(Q3))
and by a 4-dimensional subspaces, generically the intersection of 5-dimensional
and 4-dimensional subspaces is 3-dimensional.

How to cut the maximal number of different Bravais class domains? There
are four maximal Bravais classes :

Pm3m, Fm3m, Im3m, P6/mmm.

For the partial ordering of the set of Bravais classes there is a unique largest
element (i.e. with largest symmetry), smaller than these four maximal classes;
that is the Bravais class Mono C = C'2/m, whose domain has dimension 4. We
choose a group G belonging to the conjugacy class of the C2/m subgroups of
GL3(Z). We denote by H = QY the 4-dimensional subspace of the G-invariant
quadratic forms. Its intersection with the hyperplane of the trace 3 quadratic
forms will define the Euclidean 3-plane of our model (Figures 6.8, 6.9). The
figure 6.8 shows a fundamental domain of the Mono C = C2/m Bravais class.
Its boundary shows, with some redundancy the fundamental domains of the
10 Bravais classes which have a larger symmetry. Moreover, the model shows
simultaneously parts of the 5 domains of combinatorial types of Voronoi cell
represented in figure 6.9.

6.3.1 Michel’s model of the 3D-case

We start by describing the stratification of the suggested above 3-dimensional
model into different strata corresponding to different Bravais classes and into
different domains associated with different combinatorial types of Voronoi cell.
Note that this 3D-model was designed by Louis Michel during his visits and
lecturing in Smith College, Northampton (USA) and Technion, Haifa (Israel).

We give now the description of the model and reserve some hints for its
construction till the end of this section.

The model is the tetrahedron ABCD (see figure 6.8). Four vertices, five
edges (except for the edge AD) and the facet ABC correspond to points repre-
senting quadratic forms with det Q@ = 0. All internal points, internal points of
the facet ABC and of the edge AD represent positive quadratic forms.

Stratification of the tetrahedron ABC'D into Bravais classes for three-dimensional
lattices is shown in figure 6.8. There are 0-, 1-, 2-, and 3-dimensional strata for
eleven Bravais classes (among 14 existing for the 3D-case). They are summa-
rized in the following table
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D

Figure 6.8: Partial model of the stratification of the cone of positive quadratic
forms into Bravais classes for three-dimensional lattices. Strata of Bravais
classes. Notice that det@ = 0 on the facet ABC and on five edges of the
tetrahedron, except for the edge AD.

Mono C :
Ort C:
Ort F:
Ort I:
Tet P :
Tet I:
Trig R :
Hex P :
Cub P :
Cub F :
Cub1:

C2/m
Cmmm
Fmmm
Immm
P4/mmm
I4/mmm
R3m
P6/mmm
Pm3m
Fm3m
Im3m

interior of tetrahedron except intervals PI, PF;
facet BC'D except BH, BH', BK;

facet BDA except LF', BF';

facet AC'D except KI',1'C,

BP, PK;

PF,PI;
BH,BH;
P;

F, I,
I,1.

In order to visualize stratification of the tetrahedron ABCD into domains of
different combinatorial types we use in figure 6.9 two images of the same tetra-
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D D

Figure 6.9: Partial model of the partition of the cone of positive quadratic forms
into sub-cones of different combinatorial Voronoi cells. Notice that detQ = 0
on the facet ABC and on five edges of the tetrahedron, except for the edge AD.
Left : Stratification of the facets ADB and ACD of the tetrahedron. Right :
Strata non-visible on the left figure.

hedron and keep in this figure only points and lines important for stratification
into combinatorial types. All points shown in figure 6.9 are equally present in
figure 6.8, but some lines and planes present in figure 6.9 are absent in figure
6.9 because they have no specific combinatorial meaning. Remember that the
lines and points absent in figure 6.9 but present in figure 6.8 are important to
see the topology of the space of orbits (redundancy).

The stratification of the tetrahedron by different combinatorial types of
Voronoi cell is given in the following table

14.24 : interior of DBF'K and ABF'K;
interior of DBF’, BF'A, and F'K A;
interval AF’

12.18 : interior of BACK,
interior of BF'K, DKF', and CK A;
intervals BF’ and F'D

12.14 : interior of ABK;
intervals K I/ and K A4;

point F”’
8.12: facet BC'D except BK
6.8 : interval BK

In order to see better the relation of the 3D-model to the six-dimensional
cone of positive quadratic forms of three variables we recall below the relevant
data for different combinatorial types of Voronoi cell and also on the dimension
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of these domains in the five-dimensional domain of positive quadratic forms with
a given trace:

short notation 14.24 12.18 12.14 8.12 6.8
number of facet vectors 14 12 12 8 6
number of non-facet corona vectors 0 4 6 12 20
dimension of the domain in T'C4(Q3) 5 4 3 3 2
dimension of the domain in model 3 3 2 2 1

6.3.2 Construction of the model

Now we return briefly to some points important for the construction of the
described above model.
The 4 element group G = Za(r) X Zo(—1I), generated by the two matrices:

010 -1 0 0
R=|100]|, -1=| 0 -1 0 (6.16)
00 1 0 0 -1

is a realization in GL3(Z) of the point symmetry of the monoclinic C2/m lat-
tices. Its invariant quadratic forms form the 4-dimensional space:

u Ty
H = Q?-{Q— z u y |, u,v,x,yeR}. (6.17)
y y v

In H, the hyperplane of the trace 3 quadratic forms is:

1—-2 T Y
H = {Q(z,y,z) = x 1—z Yy }, (6.18)
Y y 1422

ie. 2u+v =3, v—u = 3z. Given two quadratic forms ¢q,q" € H’, their
Euclidean distance is the square root of:

tr(Q - Q) =2((z —a)* +2(y —¢)* +3(z = 2')?). (6.19)

The positive quadratic forms of H’ form a bounded domain whose boundary is
given by the condition for the quadratic forms of (6.18) to be positive:

1
—§<z<17 —(l-2)<wx<l-z y*<(Q+z-2)(1+22)/2. (6.20)

In H' this is a convex domain K bounded by three planes and one sheet of a
(two sheet) hyperbolic quadric.

By construction of H, all G-invariant lattices are represented in it: those
are all lattices of the Bravais classes > Mono C = C2/m. We denote by N the
stabilizer of H in the linear action of GL3(Z) on the space Qz. It is easy to
prove that NN is the normalizer Ny, z)(G), i.e. the largest subgroup of GL3(Z)
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containing G as the invariant subgroup. The lattices of the Bravais classes >
Mono C are represented by the orbits of N inside HNC(Qs3). The represented
Bravais classes correspond to the strata of this action; the stratum representing
the smallest class, Mono C, is open dense and we want to choose a fundamental
domain in it. For this we have first to determine N.

We notice that G is in the center of N. Since G a4 N, every n € N has
to conjugate the 4 matrices of G into each other; since the matrices of G have
different traces, n commutes with them. So N is the centralizer of G in GL3(Z):

N = Cqryz)(G). (6.21)

To compute this centralizer, it is sufficient to find the integral matrices n which
satisfy nr = rn, r € G, and require their determinant to be +1:

a B 6
n=| B a § |, detn=(a—pB)(v(a+pB)—26). (6.22)
oy

Each factor of the determinant should be +1:
o1, =1, a-f=c Aa+f)-200=n  (623)

One can prove that N is generated by the matrices

10 0 1 0 1 100
IR, S=(01 0 |,p=[011]|,D=]010
00 -1 00 1 11 1

(6.24)

The matrices —I, R, S, generate a group of the Bravais class Ort C = Cmmm.
Each of the matrices D, D’ generates an infinite cyclic group (~ Z). Since the
stabilizer of any lattice is finite, the orbits of N in H N C4(Q3) are infinite.
In general the action of g € N on H does not preserve the trace of quadratic
forms; so we deduce the action of N on H' from the action on H by adding the
stereographic projection normalizing the trace.

By construction, the matrices —I, R act trivially on H; the matrix S changes
y into —y (both in H and H’); so from now on we make the convention:

convention: y <0. (6.25)

In H’, the intersection of the positivity domain (6.20) with the 2-plane y = 0
is chosen to be part of the boundary of our fundamental domain; its points
represent lattices of the Bravais class Cmmm or greater ones.

Finite subgroups of IV are crystallographic point groups; therefore each one
containing G as a strict subgroup will have a linear manifold of fixed points
containing a domain of a larger Bravais class. To find the finite subgroups of N,
we must first determine its elements of finite order. As for GL3(Z) their order
can be only 1, 2, 3, 4, or 6. Elements of order 3 must have as eigenvalues the
three cubic roots of 1, so their trace, 7 := trn = 2a + ~, must be 0. That is
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impossible since we know that v is odd [see (6.18)]. Hence N has no elements
of order 3 or 6 (the square of an element of order 6 would be of order 3). The
equation n? = 1 yields the following conditions in addition to those of (6.23),
and combined with them:

V24250 =1, 20(a—e)+65 =0, 6(r—e)=0=06(r—¢). (6.26)

Since the eigenvalues of these matrices are +1, their trace can be either —3 or
+1. In the former case we find easily that n = —I. When the trace 7 = +1 we
must have 7 + detn = 0 so

T=2a+7y=—en. (6.27)

That, with the first two conditions of (6.26), yields n = —1. Notice that for
elements of N which are four fold, ¢ = 1 = 1, so there are no elements of order
4 in N. That proves that in N, all non-trivial elements of finite order are of
order 2. Hence, all finite subgroups of N have the structure Z%, and we know
from the study of the finite subgroups of GL3(Z) that k < 3.

It is easy to verify that the largest finite subgroups of N represent three of
the four conjugacy classes of Z3 subgroups in GL3(Z); explicitly, they can be

generated by the matrices ©:

Cmmm : (R,S,—I), Fmmm: (RWT,=I), Immm: (R,W,—I), (6.28)

with
0 1 0
W = 1 0 0 . (6.29)
-1 -1 -1

The domains of these 3 Bravais classes are two-dimensional. We determine
those invariants by the three matrix groups chosen in (6.28); they belong to
the boundary of the fundamental domain that we have chosen to represent the
Bravais class C2/m.

We recall now that given a subgroup G of GL3(Z) it is easy to verify that
the linear map on the orthogonal space R® (see [11], Chapter 7.3):

Ci(Q2)3Q — G ¢"Qg (6.30)

geG

is an orthogonal projector over the subspace of G-invariant quadratic forms.
From (6.30) we obtain the equations of the 2-planes supporting boundaries of the
fundamental domain in H’ invariant by matrix groups in (6.28). The boundary
of the positivity domain (6.20) also has a facet supported by a 2-plane. We
define the 2-planes by

fi:ry=0; fo:l—z4+24+2y=0; f3:14+224+2y=0; fa:1—2z—2x=0.

6 Among the different method for distinguishing the two point groups Fmmm and Immm,
the fastest one is the computation of their fixed points (i.e. their cohomology group HO(P, L))
by their action on the lattice L: FFmmm has four and Immm two fixed points per unit cell.
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So the fundamental domain we have chosen in H’ is a tetrahedron ABC D whose
facets are

Cmmm = BCD C f1; Fmmm = ABD C f3; Immm = ACD C fs;
positivity boundary = ABC C fj. (6.31)

The coordinates x, y, z of its vertices are:

3 31 3 1 3 1
2,-22), B= 1 =(2,0,—2), D=(-2,0,—2). (6.32
(47 4’4)7 (070’ )7 C (2707 2)’ ( 2707 2) (63)

Notice that on the facet ABC' and on five edges of the tetrahedron, det Q = 0.
This is not true for the edge AD = ABD N ACD, so it represents the Bravais
class Tet I = I4/mmm or higher.

Now we pass to the analysis of the Bravais class domains of dimension 1 and
0in H'.

Besides the four orthorhombic Bravais classes” the Bravais class Trig R
= R3m is also a minimal supergroup® of C2/m. Its domain has dimension 1;
indeed in GL3(Z) there are two groups of the conjugacy class R3m which con-
tains G ~ C2/m defined in (6.16); these groups are generated by the matrices:

01 0
R3m = (R, —I,T), R3m' = (R, —I,S7'TS), withT=| 0 0 1 |, (6.33)
1 00

and the corresponding invariant subspaces in H’ are defined by z = 0 and x = y
or x = —y, respectively. Hence in our figure (we want y < 0) the trigonal
Bravais class R3m is represented by two open segments inside the tetrahedron:
in the subspace z = 0,

1 1
—§<x<0 when z = y; 0<x<§ when z = —y. (6.34)

Their boundary is made of 3 points representing the 3 minimal supergroups of
R3m, i.e. the three cubic Bravais classes: we call these points:
1 1 1 1
P = (0,0,0), I = (—g,—g,O), F = —=,0). (6.35)
Notice that the point I is invariant by the group R3m, the point F' by R3m’
and the point P by both groups.
There are two Bravais classes directly greater than the Bravais class Ort
C = Cmmm; those are Tet P = P4/mmm and Hex P = P6/mmm. The
representative domain of each is 1-dimensional and has to belong to the facet
BCD of the tetrahedron.

7Ort P = Pmmm is not represented on the figure; this is also the case of the two other
Bravais classes: Mono P = P2/m and Tric = 1.
8i.e. there is no Bravais class X which satisfies C2/m < X < R3m.
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The stabilizer in GL3(Z) of the 2-plane y = 0 is the normalizer N¢,,(z)(Cmmm) =
P4 /mmm which belongs to the Bravais class Tet P. Since Cmmm acts trivially,
its normalizer (which is a subgroup of O3(Z)) acts only through the quotient

(P4/mmm)/Cmmm ~ Zs.

This action must be the orthogonal symmetry through an axis and this invariant
axis represents the Bravais class Tet P. To realize the action of this quotient we

-1 0 0
can choose for instance the diagonal matrix 0 1 0 |, (in P4/mmm
0 01

but not in C'mmm); it changes x into —z and leaves z invariant. So Tet P
= P4/mmm is represented by:

Pi/mmm—z=y=0, —3<2<0<z<1 =]|BK[\o. (6.36)

Note that the point z = y = z = 0 = o is represented in figure 6.8 as point P.
In a similar way for Hex P = P6/mmm we have

1 i,
P6/mmm—y=0, z==x(1-2)/2, —5<#< 1=|BH[U]|BH'. (6.37)
The positions of the specified points H, H', K are given below
1

We emphasize the redundancy in the facet BC'D: when z # 0, the points
(£2,0, z) represent the same lattice. In the boundary of the open segments
defined in (6.36), only one point represents a Bravais class; thatisz =y =2=0
representing the Cub P class. This point (given in (6.35)) is common to the
boundaries of the domains representing Tet P and Trig R, the two Bravais
classes directly smaller than Cub P.

We noticed in 6.3.1 that no vertices and only one of the six edges of the tetra-
hedron represents a Bravais class: it is |JAD[ = |ABD N AC D], corresponding
to Fmmm N I'mmm, which represents Tet P = I4/mmm.

This edge must also carry two points F’ and I’ representing the two Bravais
classes Cub F and Cub I directly greater than Tet I. To find these points we can
use again the same method as for the facet BC'D representing Ort C = Cmmm.

The facet BDA represents Ort F = F'mmm; its stabilizer is

Neryzy(Fmmm) = Fm3m

belonging to the Cub F Bravais class. It acts on the plane as a linear repre-
sentation of the quotient Fm3m/Fmmm ~ S3. We can take as representative
of this quotient in F'm3m a subgroup conjugate to R3m defined in (6.33); it is
generated by the matrices:

R3m" = (-1, R'=M7"'RM, T =M"'TM), (6.39)
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0 1 -1
with M =] -1 0 1 |. Then, using (6.30) for this group we obtain the
1 0 0
point representing Cub F:
1 -
F' = (O,—§,O) € AD. (6.40)
Using (6.33), we verify
Qr = M'STQrSM. (6.41)

The same group transforms the segment AD into two other ones A’D’, A" D"
defined by:

_ 1
AD . A =0, —g, —5), D' =(0,0,1) = B; (6.42)

A'D" . A" =(-1,0,0), D" =(1,-1,0). (6.43)
The segment parts A’F and F'D” are in H' but outside the tetrahedron. The

segment A” F’ contains the point I defined in (6.34). The orbit of this point for
the group R3m' contains the two other points:

3 31

, /3 3 1 6 1
_(10’ 5’10)

D 1"=(0,-2 -1
< ’ (7 11’ 11)

(6.44)
The points I’ and F’ are on the edge AD, (which represents Tet I). The point
I" does not belong to the tetrahedron.

Similarly, the stabilizer of the facet AC D, which represents the Bravais class
Ort I = I'mmm, has normalizer Ngr,z)(Immm) = Im3m which belongs to the
Bravais class Cub 1. This class is represented by the Im3m invariant point I’
(defined in (6.44)). Moreover that normalizer transforms AD into two other
segments whose intersections with the facet ACD are K1’ and CI’.

Finally, similar to the case of the facet BC'D representing the class Ort C, we
notice the same type of redundancy for the facets BAD and C' AD representing
respectively the Bravais classes Ort F and Ort I. Indeed the intermediate groups

Fmmm < I4/mmm < Ngp,z)y(Fmmm) = Fm3m, (6.45)

Immm < I4/mmm < Ngr,z)(Immm) = Im3m, (6.46)

belong to the Bravais class Tet I = I4/mmm; they respectively leave invariant
the segments BF’ C BAD and KI' C CAD which both represent Tet I. We
notice that the interior of the triangles DLF’ C BDA, I'CA C CDA are not
redundant.

All the obtained information is used for the construction of figure 6.8.

To take into account all redundancies for points on the boundary of the
tetrahedron ABCD and to see the topology of the fundamental domain, the
following identification of domains of the boundary of the tetrahedron should
be done:
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e Triangle BK D should be identified with BKC.
e Triangle F'L B should be identified with F'LD.
e Triangle I’ KC should be identified with I’ K D.

This implies that the following identification of 1-dimensional and 0-dimensional
subsets on the boundary of ABCD should be done:

e BH should be identified with BH’.

e ['F’ should be identified with I'F.

e CF should be identified with DF’ and with BF”.
e F should be identified with F’.

6.4 Parallelohedra and cells for N-dimensional
lattices.

In this section we give a brief description of some important new features re-
lated to the combinatorial classification of lattices and to the associated cone of
positive quadratic forms which appear for lattices in higher dimensional d > 4
space as compared to the cases of planar d = 2 and space d = 3 lattices studied
earlier in this chapter.

First of all it is necessary to make the definition of the combinatorial type
of polytopes and their labeling for arbitrary dimension more precise.

The k-faces of a polytope P are partially ordered with respect to inclusion.
Together with the empty set {} the k-faces form the face lattice L(P). (See the
definition of a lattice as a partial ordered set in appendix A.) For any two faces
F and F’ of L(P), the least upper bound is given by the k-face F\, D F U F’
having the least k. The k-face F\, is unique because otherwise there would exist
aface F:= F, N F/, > F U F’ and thus, k would not be minimal. The greatest
lower bound is given by the I-face FA = F N F’.

Definition: combinatorial type Two polytopes P and P’ are combina-

torially equivalent, P’ Cogb P, and belong to the same combinatorial type, if
there exist a combinatorial isomorphism 7 : L(P) — L(P’).

The combinatorial type of P is denoted by the short symbol N, _1).Np.
For different combinatorial types having the same short symbol, additional let-
ter /number symbols A, a, B, b, ... are added to distinguish them. In particular,
we denote by nj, the number of 2-faces of P which are hexagons. In many cases
the short symbol with the addition of -nj; uniquely characterizes special sets of

parallelotopes [11]. More generally, for any k, 1 < k < n, let dgk) be the number

of k-faces of P which have fl-(k) subordinated (k — 1)-faces, i = 1,...,r. The
k-subordination symbol is defined by

(k) p(R) . p(k)
fld(lk)de(zk) ngk)v
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with fl(k) < fék) <--- < fr(k). We give a few easy examples. The 2-subordination
symbol of the 3-dimensional cubooctahedron is 446g, which means that there
are six quadrilateral facets (2-faces) and eight hexagonal facets (2-faces). The
4-dimensional cube has the 3-subordination symbol 6g (there are eight facets
(3-faces) possessing each six 2-faces) and the 2-subordination symbol 424 (there
are 24 quadrilateral 2-faces).

In order to verify combinatorial equivalence, the k-subordination symbols are
determined for k = (n —1),...,2. The concatenation of these k-subordination
symbols is called a subordination scheme. The subordination scheme does not
characterize a polytope uniquely in dimension d > 3, but it is sufficient for
parallelotopes in R™ for at least n < 7. A unique characterization of a polytope
obtained by the unified polytope scheme is described in [48].

As we have introduced in section 5.4, each vertex of a primitive parallelotope
in E™ is determined by the intersection of n facets. Let {f,,..., fi,}, be the
set of the corresponding facet vectors. These vectors are linearly independent
and determine a sublattice of the lattice L of index w(v). It was shown by
Voronoi [94], §66 that the upper bound for the number of vertices is reached
exactly if, for each vertex v of a primitive parallelotope, w(v) = 1. Ryshkov and
Baranovskii [83] gave upper bounds for the index w(v).

Theorem 9 For dimensions n = 2,3,4,5, and 6 the maximal values of the
index w(v) are 1, 1, 1, 2, and 3, respectively.

The index w(v) has direct correlation to the number of vertices Ny of a
primitive parallelotope P. The primitive parallelotope with w(v) = 1 for each
of its vertices is called the principal primitive. Voronol have shown [94] that the
number of k-faces Ny, 0 < k < d of a parallelotope in Edis

d—k
Ny <(d+1-k)Y (1) (d ; k) (1+0)% (6.47)
=0

For the number of facets (k = d — 1) equation (6.47) becomes an equality for all
primitive parallelohedra

Ng_1 =2(2¢ —1) for primitive parallelohedra (6.48)

and coincides with the upper bound in the inequality for the number of facets
vectors given by Minkowski [78] for a d-dimensional parallelohedron:

2d < |F| < 2(2% - 1). (6.49)

The equality sign in (6.47) holds for principal primitive parallelohedra for any
k.

In particular, from (6.47) we immediately have the following estimations for
the number of vertices Ny, edges N1 and (d — 2)-faces N(4_2), related to the
number of belts, for d-dimensional parallelohedra

d
No < (d+1), M <3(d+1), Ngo <3 (1 g+ 4 3d) . (6.50)
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Table 6.2: The numbers Ny of k-faces of primitive parallelohedra in E%, 2 <
d < 6. Different sets of numbers Ny, of k-faces for six-dimensional non-primitive
parallelohedra correspond to sixteen different values of ¢ = 1,2,...,16. The
table is based on the numerical data given in [25].

d No N Ny N3 Ny N5 Belts
2 6 6 61
3 24 36 14 66
4 120 240 150 30 625
5 720 1800 1560 540 62 690
708 1770 1536 534 62 639

6 5040 15120 16800 8400 1806 126 6301
5040 — 28t 15120 — 84t 16800 — 90t 8400 — 40t 1806 — 6t 126 | 6301—¢

The equalities in (6.50) hold only for principal primitive parallelohedra. We
note here that primitive parallelohedra contain sixfold belts only. This allows
the number of belts N, for primitive parallelohedra to be expressed as N, =
N(g-2)/6.

Non-principal primitive parallelohedra exist for d > 5. They have the same
number of facets as principal primitive parallelohedra but the number of k-faces
with k& < d—2 is less (for some k) than the maximal possible value for principal
primitive parallelohedra.

The number of combinatorial types of primitive parallelohedra in E? in-
creases rapidly with increasing dimension d. In dimensions 2 and 3 there exists
only one combinatorial type of primitive parallelohedra. In d = 2 this is a
hexagon and in d = 3 this is a truncated octahedron. In d = 4 there are three
combinatorially different parallelohedra which are all principal primitive. In
d = 4 there is also one non-primitive parallelohedron which has the same max-
imal number of faces as primitive ones. In dimension 5 as found by Engel [47],
there are 222 combinatorially different types of primitive parallelohedra among
which there are 21 non-principal. In dimension 6 only the lower bounds for the
number of primitive parallelohedra are known [25]. There are at least 567613632
combinatorial types among which there are 293517383 non-principal ones.

It is interesting to see the recently found results on the numbers Ny of k-
faces of primitive parallelohedra [25]. They are reproduced in table 6.2 in a
slightly different manner which explicitly shows that for non-principal primitive
parallelohedra the d + 1 dimensional vector of numbers Ny, k =0,1,...,d can
be written as a linear function of only one auxiliary parameter chosen in table
6.2 as t and taking for d = 5 only one value t = 1 and for d = 6 taking 16
consecutive values t =1,...,16.

The origin of this linear dependence on only one auxiliary parameter remains
unexplained for non-principal primitive parallelohedra. Several linear relations
between numbers of k-faces are known for a larger class of convex polytopes,
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namely for simple polytopes.

Definition: simple polytope A d-dimensional polytope P is called simple
if every vertex v of P belongs to exactly d facets of P.

The class of simple polytopes is larger than the class of primitive polytopes
defined in terms of primitive tilings. For example the d-dimensional cube is
simple but not the primitive polytope. For a simple d-dimensional polytope
the system of linear relations between numbers of k-faces (known as Dehn-
Sommerville relations) consists of | (d+ 1)/2] relations, where |z] is the integer
part of . The simplest way to introduce this relationship is to use the so called
h-vectors of the polytope [2].

Definition: h-vector Let P be a d-dimensional simple polytope and Ny (P)
be the number of k-dimensional faces of P (we agree that fq(P) =1). Let

hi(P) = Z(—ni*k <;> Ni(P) for k=0,...,d. (6.51)

The (d + 1)-tuple (ho(P),...,hq(P)) is called the h-vector of P.
It can be proved that the numbers of k-faces, Vi, can be uniquely determined
from hy(P):

d

Ni(P)=>_ <k) hi(P) for i=0,...,d. (6.52)

\ i
k=1
Now we formulate without proof the following important proposition.

Proposition 33 (Dehn-Sommerville relations). Let P be a simple d-dimen-
stonal polytope. Then

hi(P) = hg—p(P) for k=0,...,d. (6.53)
and
IL=ho<hy <...< hgp- (6.54)

For centrally symmetric simple d-polytopes Stanley [18, 90] improved inequality
(6.54), namely:

hi - hi—l Z (?) — (Z d 1), for 1 S |_d/2J (655)

For primitive parallelohedra we can apply Dehn-Sommerville relations to-
gether with the explicit expression (6.48) for the number of facets of primitive
parallelohedra and the upper bound for the number of k-faces of primitive par-
allelohedra given by Voronol (6.47). Also we take into account that the number
of k-faces of primitive parallelohedra should be a multiple of 2(d — k + 1) for
k <mn —1 (see proposition 29).

For d = 2 the only Dehn-Sommerville relation coincides with Euler charac-
teristic of the polytope. Together with N7 = 6 (6.48) this determines the unique
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vector of the numbers of faces (N7 = 6, Ny = 6) for the primitive 2-dimensional
polytopes.

For d = 3 the second Dehn-Sommerville relation appears which can be writ-
ten in a form applicable for any d > 3,

dNo(P) = 2Ny (P) for d > 3. (6.56)

Applying two Dehn-Sommerville relations to three-dimensional simple polytopes
we get for the numbers of faces expression

(No=2N; —4, Ny =3N,—6, Ny), (6.57)

which includes one free parameter, Ny. For primitive 3d-polytope the number
of facets is Ny = 14 (6.48) and we get the unique possible set of numbers of
faces for 3d-primitive parallelohedron: (Ny = 24, Ny = 36, N3 = 14).

The same two general linear Dehn-Sommerville relations exist for 4d-simple
polytopes. This means that we can express the numbers of k-faces for four
dimensional simple polytopes in terms of two free parameters, say N3 and Na:

(No = Ny — N3, N; =2N;—2N3, N, Ns). (6.58)

It follows that for primitive 4-polytopes after imposing N3 = 30 and Ny, =
150 — 6, we get for the number of faces and for the components of h-vector the
following expressions which depend on one free parameter a:

Ny =120 — 6a, Ny = 240 — 12a, N3 = 150 — 6, N3 = 30, Ny = 1; (6.59)
ho =1= h4, hl =26 = hg, hg = 66 — 6a. (660)

Applying relation (6.54) we get immediately that o can take only a small number
of values, namely a = 0,1,2,3,4,5,6. But among these values only a = 0 and
a = 5 give the number of vertices divisible by 10 and among these two possible
values only a: = 0 gives the number of edges divisible by 8. Consequently, we get
that the only possible set of the numbers of faces for primitive four-dimensional
parallelohedra is (Ng = 120, N; = 240, Ny = 150, N3 =30, Ny, =1).

For five dimensional simple polytopes there are three Dehn-Sommerville lin-
ear relations.

No— N1+ No— N3+ Ny —2=0; (661)
N1 — 2Ny +3N3 — 5Ny + 10 =0; (6.62)
Na — 4Ny + 10N, — 20 = 0. (6.63)

For primitive parallelohedra Ny = 62 and we can express Ng_s as N3 = 540 — 6«
taking into account that primitive parallelohedra have only six-fold belts (i.e.
Ng_s should be divisible by 6). This allows us to express all numbers of faces
in terms of one free parameter « and to explain the linear relation between
numbers of faces for 5d-primitive parallelohedra with 90 and 89 belts given in
table 6.2. Namely we get

(No =720 — 120, N; = 1800 — 30cr, Ny = 1560 — 24a,
N3 =540 — 6, Ny=62) with a=0,1,.... (6.64)
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This expression fits numerical results listed in table 6.2, but the restriction of «
to only two possible values o = 0, 1 remains unexplained. The inequality (6.55)
allows only to state that 0 < o < 40.

For six-dimensional simple polytopes there are again three linear Dehn-
Sommerville relations. Together with N5 = 126 this gives for six-dimensional
primitive polytopes expressions for the number of faces depending on two free
parameters.

N5 =126; N =1806—6a; N3 = 8400 — 83;
Ny = 16800 + 30a — 248; Ny = 15120 + 36 — 243;
No = 5040 + 12a — 8. (6.65)

We see that for any integer «, 5 the Ny is divisible by 6, the N3 is divisible by
8, the V7 is divisible by 12. At the same time Ny becomes a multiple of 10 only
for g = 5v, with v =0, 1,2,.... Replacing 3 by 5y we get

N5 = 126; Ny = 1806 — 6a; N3 = 8400 — 407;
Ny = 16800 + 30a — 120y; N = 15120 + 36a — 120~;
Ny = 5040 + 12a — 407. (6.66)

But we still need to check that Ny is divisible by 14. This is equivalent to
the requirement for (3cc — 10v) to be a multiple of 7. This is possible only for
a=0~vy=0,7,14,..;a=1,v=1,8,15,..; a =2,7v=2,9,16,..., etc. More
generally we should have v — a = 7k.

Taking into account that for any set of two free parameters, «, v, the numbers
of faces cannot exceed their values for principal primitive parallelohedra we
get general restrictions on possible values of free parameters 0 < 3o < 107.
Together with the divisibility constraint v = a4 7k, with k being any integer, it
follows that for v = 0 the only possible value of the second parameter is a = 0.
Similarly, for v = 1 we should have a = 1 and for v = 2, a = 2. Only starting
from v = 3, several values of the second parameter are possible, in particular
formal solutions are (y = 3, = 3) and (y = 3, @ = 10). Numerical results given
by Baburin and Engel [25] correspond to face vectors with « =y =0,1,...,16.
The fact that for six-dimensional primitive parallelohedra the whole observed
set of face vectors can be described as only one-parameter family should be
related to additional properties of primitive parallelohedra which are not taken
into account in the present analysis.

It is clear that with increasing dimension the number of free parameters
for the face vectors obtained within the adopted above scheme increases. For 7-
dimensional parallelohedra we still have two free parameters but for 8-dimensional
there are three such parameters, etc. The question whether the exact solution
for face vectors of primitive parallelohedra in arbitrary dimension can be de-
scribed by a one parameter family or a multi-parameter family is an interesting
open problem.
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10 30.120-36 30.120-42
9 28.104-24 28.104-30
8 26.88-12 26.88-18  26.88-24  28.94-12 28.94-18

7 2472-0 2472-12 247217 247224  26.78-6  26.78-12 28.88-0

6 24.62-0  24.62-6  24.62-12  26.68-0 26.68-6  26.72-0
5 24.52-0  24.52-6 24.56— 24.56—6i 26.62-0

4 24.42-0  24.42-6 24.46-0 26.56-0

3 24.36-0 24.40-0

2 24.30-0

1 24.24-0

Figure 6.10: Zone contraction/extension family of Voronoi cells in E4 consisting
of 35 combinatorial types including two primitive cells, 30.120-42 and 30.120-
36 and 24.24-0 cell (Fy). Each cell is denoted by a N3.Ng-ng symbol where
ng is the number of hexagonal 2-faces. When this symbol is insufficient for a
unique definition of the cell we give as a footnote the 3-subordination symbol:
a-8121012; b - 814108125; ¢ - 81610g; d - 818104125. The dimension of the corre-
sponding regions within the ten-dimensional cone of positive quadratic forms is
indicated on the left. Note that some minor modifications have been introduced
into the original figure taken from [11]. The modifications are justified by an
explicit graphical correlation discussed in the next section.

6.4.1 Four dimensional lattices

This section illustrates correspondence between description of the four-dimensional
lattices in terms of combinatorial types of parallelohedra and in terms of the
subdivision of the cone of positive quadratic forms.

In four-dimensional space E* there exist three types of primitive parallelo-
hedra which are principal (i.e. have the maximal numbers of k-faces for all
k, namely N3 = 30, Ny = 150, N7 = 240, Ny = 120). Corresponding quadratic
forms fill on the 10-dimensional cone of positive quadratic forms in four variables
the 10-dimensional generic domains. Along with three primitive parallelohedra
there exist one combinatorial type which is not primitive but has the maximal
number of facets. The face vector for this non-primitive but maximal type is
(N3 = 30, No = 144, N7 = 216, Ny = 102). The quadratic forms associated with
this non-primitive parallelohedron form a 9-dimensional domain.

Starting from these four maximal parallelohedra all other combinatorial
types can be obtained by a consecutive application of the zone contraction.
There are two zone-contraction/extension families consisting in 35 and 17 com-
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10 30.120-60

/
9 28.96-40 30.102-36
8 24.72-26  26.78-24

7 16.48-16 20.54-16 22.54-12 24.60-12

6 12.36-12 14.36-8 20,42-6  22.46-0

9}

10.24-4 14.28-0 20.30-0

4 8.16-0

Figure 6.11: Zonohedral contraction/extension family of Voronoi cells in E4
consisting of 17 cells. Notation is explained in caption to figure 6.10. The di-
mension of the corresponding regions within the ten-dimensional cone of positive
quadratic forms is indicated on the left.

binatorial types respectively. These two families are shown in figures 6.10 and
6.11. The whole list of different combinatorial types of 4-dimensional parallelo-
hedra was given initially by Delone [41] who found 51 types and was corrected
by Shtogrin [87], adding one missed type. The organization of combinatorial
types into two families was studied by Engel [11, 49]. (For a more detailed
recent analysis see [32, 91, 44]. We will discuss briefly this organization using
graphical representation in the next section 6.7.)

Each of the three primitive parallelohedra are associated with a 10-dimensional
domain on the cone of the positive quadratic cone bounded each by 10 hyper-
planes (walls). Schematic representation of these generic domains is given in
figure 6.12. (We return to the more profound discussion of this figure in sec-
tion 6.8 after introducing graphical representation.) We use in these figures an
abbreviated notation for primitive parallelohedra used by Engel [11], namely
30.120-60 is denoted by “2“; 30.120-42 is denoted by “3%; and 30.120-36 is
denoted by “4“. All walls between 30.120-60 and 30.120-42 (i.e. between “2%
and “3“) are of 28.96-40 type. It is important that the passage from “2% to
the 28.96-40 wall corresponds to the contraction of the 30.120-60 parallelo-
hedron whereas there is no contraction/extension transformation between “3¢
i.,e. 30.120-42 and the same wall 28.96-40. All walls between disconnected
domains of “3“ type (i.e. 30.120-42) are of 28.104-30 type. They correspond
to contraction of the cell “3*.

Each isolated domain of 30.120-36 type (i.e. of type “4“) has nine walls of
28.104-24 type separating “4“ and “3“ and associated with contraction from
both sides and one wall between two disconnected domains of the same type “4¢.
This wall is of 30.102-36 type. It corresponds to a non-primitive paralelohedron
with maximal number of facets and there is no contraction leading from the
region “4“ to that wall.
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Figure 6.12: Schematic representation of local arrangements of generic subcones
of the cone of quadratic forms for d = 4. Ten-dimensional domains with nine-
dimensional boundaries are represented by two-dimensional regions with one-
dimensional boundaries. 30.120-36 type is abbreviated as “4“, 30.120-42 type
as “3% and 30.120-60 type as “2“ in accordance with notation used by Engel
[11]. For comments on graphical visualization see section 6.8.

Finally the domain “3“ (i.e. 30.120-42 ) has six walls with similar discon-
nected domains of the same type “3“, three walls with domains of type “4“ (i.e.
30.120-36) and one wall with domain “2¢ (i.e. 30.120-60).

6.5 Partition of the cone of positive-definite quadratic
forms

We describe now in slightly more detail the algebraic structure of the cone
of positive-definite quadratic forms in n variables. Special attention will be
paid now to the evolution of combinatorial type along a path in the space of
positive quadratic forms going from one generic domain to another different (or
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equivalent by GL,(Z) transformation) domain by crossing the wall.
A quadratic form is defined by ¢(Z) := £'Q#. We denote by

ct = {Q e RUS)|p(@) > 0,v7 € B\ {0}} (6.67)

n;rl) _ n(n+1)

the cone of positive-definite quadratic forms. Its dimension is ( 5 -
The closure of the cone is denoted by C := clos(C)*, and its boundary by

cl:=c\Ct.
Given an orthonormal basis €7, ..., €, of R™, a basis of R"*" is obtained by
the tensor products €;; := €;®¢€}, i,5 = 1,...,n, with €;;€x = J;x;. Since @ is

symmetric, Q@ = @Q*, it follows that the cone C* can be restricted to a subspace
R("2") of dimension (";‘1), defined by €;; =¢€j;, i <j=1,...,n.

In R™*" the Gram matrix @ is represented by a vector ¢ with components
¢ij, 1 <i,j <n. Each zone vector z* has a representation in R"*™ by z* ® 2*.

One can study the symmetry of a lattice L by investigating the symmetry
of its Gram matrix in the cone CT. For any A € GL,(Z), Q' = AQA" is
arithmetically equivalent to Q. Thus, ¢’ = A*® A'¢is arithmetically equivalent
to q. If S € GL,(Z) fixes Q, Q@ = SQS*, then S* ® S* fixes ¢.

For any vector v* = v1dj,...,v,d;, in dual space, the tensor product [ =
" ® U* is denoted to be a ray vector. Since det(v™* ® ¥*) = 0, it follows that the
ray vector ['lies on the boundary C°. Let & be the representation of the identity
matrix in R™*™. Then A¢ is the axis of the cone C, because for any ray vector
l_: the cone angle v satisfies

el 2 402+ 402 1
cos = AL v14+ vt ot =—. (6.68)
|a|l] Vol 20kl 4. vk Vi

Thus C is a cone of rotation with rotation axis Aé. For n = 2 the cone angle ¢
is /4 (see figure 6.1). For large dimensions n, the cone angle 1 is close to 7/2.
The cone C is intersected by subspaces of dimensions (k;rl), k <n.

Let us now study partition of the cone C into domains of non-equivalent
combinatorial types.

Definition: domain of combinatorial type In the cone C, the domain
of combinatorial type of a parallelohedron P is the connected open subcone of
Gram matrices

comb

T (P)={QeCtP(Q) ~ P}. (6.69)
By ® = clos(®*) we denote its closure, and its boundary is given by ®° = &\ &,

Theorem 10 The domain ® of the combinatorial type of a parallelohedron P
s a polyhedral subcone of C.

Proof. We have to show that the border between two neighboring domains
of parallelohedra of different combinatorial type are flat walls. It is sufficient
to do that for generic domains, the walls are then hyperplanes in C. We give
the condition for the existence of a wall W C ®. Let ® be a generic domain.
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The length of at least one edge of P diminishes for some Q € ®* approaching
the boundary ®°, and when Q hits ®°, both vertices subordinated to that edge
coincide. By this coincidence at least n+ 1 facets meet in the common vertex v.
If a facet F; contains the vertex v then the corresponding facet vector ﬁ fulfills
the equation

S
UQfi=5f'Qf i=1,..n+1. (6.70)

As a sufficient condition that n + 1 facets meet in the vertex v, we have that
the determinant

EQUflj Eqng‘flj ﬁtQﬁ
=0. (6.71)
Y@t o X nifn ﬂf:fQan
S quifatty oo 2 nifatty fui1@Qfnta
Since fl, ceey f:L form a basis of a sublattice of L of index w, it follows that
ﬂ+1 :alfl—i—...—i—anﬁ, i, € L/WZ. (6.72)
Hence, the determinant can be transformed to
Yaifiy - Xl J?thf:i
=0, (6.73)
qujfnj Zanfnj f;thﬁl
0 0 A
where
n n—1 n
A=Y "l = DQAi+2) 0 > i, f;°Qf;. (6.74)
i=1 i=1 j=i+1
We set

Yafiy o iy
A, = . . . (6.75)
Y @ifg oo 2 Anjfug
The determinant thus becomes
AN, = A det(Q) det(fi,..., fn) =0. (6.76)

This product gives, in terms of the Gram matrix @), the condition that the n+1
facets meet in the vertex v. Either factor can be zero.
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o First consider the case A = 0. The term A is linear in the ¢;; and hence,
it determines a flat wall W C ®.

e The case det(Q) = 0, or det(fl, cey f:l) = 0 means that Q € C° and the
lattice L™ degenerates to LF, k < n.

The parallelohedron P has only a finite number of edges, and therefore ® is
bounded by a finite number of hyperplanes. Thus ® is a rational polyhedral
subcone of C. 0

Since w is finite, the term A can be represented by integral numbers h;;, and
thus the coincidence condition becomes

hi1qi1 + h12gi2 + ... + RounGun = 0. (6.77)
The wall normal
= h11€11 + h12€12 + ... + Rpn€nn (678)

is orthogonal to the wall W.

In general, the wall W separates two domains of different combinatorial type.
The wall itself is an open domain 3" for some limiting type.

The edges of ® are the extreme forms of @, and are referred to as edge forms.
An edge form is either

e a ray vector lying on the boundary C° which has a representation as a
tensor product z* ® z* with zero determinant, where z* is a vector of a
closed zone of P.

e a generic inner edge form of C™ having positive determinant.

e a non-generic inner edge form of CT having zero determinant, i.e. it is a
. S+ . .
generic inner edge form of a cone C ' of a lower dimension (kgl), k <mn.

Inner edge forms occur only in dimensions n > 4.

An effective numerical algorithm to determine the walls and the edge forms is
discussed in [25].

6.6 Zonotopes and zonohedral families of paral-
lelohedra

After looking at the system of different combinatorial types of parallelohedra
and their organization in families for four-dimensional lattices we return to some
systematic classification of combinatorial types of parallelohedra for arbitrary
dimension. We start with the definition of the Minkowski sum of polytopes.

Definition: Minkowski sum The vector sum or Minkowski sum of two
convex polytopes P and P’ is the polytope

P+ P ={z+4a|vePa €P} (6.79)
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Equivalently, we can describe P + P’ as the convex sum of all combinations of
their vertices. Let V(P) and V(P’) be the set of vertices of P and P’, then

P+ P’ = conv{v +v'|v € V(P),v' € V(P')}. (6.80)

This can be generalized to any finite number of summands in an obvious way.
Now we define one special but very important class of polytopes.
Definition: Zonotope A zonotope is a finite vector sum of straight line

segments.

We recall that a zone Z of a parallelohedron P is the set of all 1-faces (edges)

FE that are parallel to a zone vector z*,

7 :={E C P|B||z*}. (6.81)

In each edge at least d — 1 facets meet. The zone vector z* is the outer product
of the corresponding facet vectors. In the dual basis, z* has integer components

Z'=zd] + ...+ 2, 2z €Z. (6.82)
With respect to any zone vector z* we can classify the lattice vectors in layers
Li(z%):={te L™tz =i, |i|=0,1,...}. (6.83)

A zone Z is referred to as being closed if every 2-face of P contains either
two edges of Z, or else none. Otherwise Z is denoted as being open.

The zone contraction is the process of contracting every edge of a closed
zone by the amount of its shortest edges. As a result, the zone becomes open,
or vanishes completely, but the properties of a parallelohedron are maintained
and the result of the zone contraction is a parallelohedron of a new combinatorial
type. If a d-dimensional parallelohedron P collapses under a zone contraction,
then the resulting P’ parallelohedron has dimension d — 1.

A parallelohedron P, is referred to as being totally contracted, if all its
zones are open. It is relatively contracted, if each further contraction leads
to a collapse into a parallelohedron of a lower dimension. A parallelohedron
P, is maximal, if it cannot be obtained by a zone contraction of any other
parallelohedron in the same dimension.

Note that a polytope P is a zonotope if and only if all its k-faces are centro-
symmetric. In its turn, a zonotope is a parallelohedron if and only if all its belts
have 4 or 6 facets. This is a consequence of Theorem 5.

The parallelohedra which are at the same time zonotopes have a particular
simple combinatorial structure. They are named zonohedral parallelohedra.

For zonohedral parallelohedra P the following two conditions are equivalent:
i) each zone of P has edges of the same length;

ii) each zone of P is closed.

In each dimension there exists a unique family of parallelohedra which con-
tains all zonohedral parallelohedra, and which is named a zonohedral family. In
dimensions d < 3 all parallelohedra are zonohedral and belong to the unique
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family. The zonohedral family for d = 4 consists of 17 members shown in figure
6.11.

In dimensions d > 4 the zonohedral family includes several maximal zono-
topes. For d = 4 (see figure 6.11), for example, the zonotopes 30.120 — 60
and 30.102 — 36 are maximal. Each zonohedral family has one main zone-
contraction lattice corresponding to the maximal zonohedral parallelohedron
P, (A%) of the root lattice A which is a primitive principal and generic, i.e.
fills d(d+1)/2-dimensional domain of the cone of positive quadratic forms. This
main zone-contraction sub-family of the zonohedral family includes all parallelo-
hedra which can be obtained from the P,,(A) zonotope by zone contraction.
For dimension 4 (see again figure 6.11) the main zone contraction sub-family
consists of all zonotopes except one, namely 30.102 — 36. One contraction is
necessary to transform 30.102 — 36 to a parallelohedron belonging to the main
zone-contraction sub-family. Each maximal zonotope can be characterized by
the number of zone-contraction steps needed to attain the main zone-contraction
family. In dimension d = 4, the 30.102 — 36 parallelohedron is distanced from
the main zone-contraction family by one step (contraction till 26.78 —24). The
zonohedral family for d = 5, for example, includes 81 zonotopes (see section
6.7), among which there are four maximal, with the maximal distance from
main zone-contraction sub-family consisting of three contraction steps.

The minimal member of the zonohedral family has combinatorial type of a
parallelepiped (hypercube) and occupies a d-dimensional domain on the cone of
positive quadratic forms.

Apart from the zonohedral family in each dimension d > 4 there exist a
number of parallelohedra which can be represented as a finite Minkowski sum
of a totally zone contracted parallelohedron and a zonotope [51]. In dimension
d = 4 the family consisting of 35 parallelohedra (see figure 6.10) can be con-
structed by applying a zone extension operation to the totally contracted 24-cell
parallelohedron 24.24 — 0 associated with F} lattice.

Not every totally contracted parallelohedron can be extended by applying a
Minkowski sum with a segment (without extending the dimension of the par-
allelohedron). The maximal and simultaneously totally contracted parallelohe-
dron, for example, exists in d = 6. It is related to the Eg lattice [50, 57)].
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6.7 Graphical visualization of members of the
zonohedral family

The fact that all members of the zonohedral family can be represented as a vector
sum of a certain number of segments (vectors) allows us to construct relatively
simple visualization of different combinatorial types of zonohedral lattices using
graphs in such a way that each segment generating the Minkowski sum is repre-
sented by a segment whereas linear dependencies between vectors corresponds
to cycles of the graph. We cannot enter here into detailed mathematical theory
of such a correspondence which is based on the matroid theory (for introduction
see [23]). We hope that the more or less self-explaining correspondence shown in
figure 6.13 for dimensions d = 1,2, 3 and in further figures for dimension d = 4
and d = 5 will stimulate the interest of the reader to study the corresponding
mathematical theory.

The so called graphical representation for d-dimensional zonotopes consists
in constructing connected graphs with d + 1 nodes without loops and multiple
edges. For d = 1 we obviously have one graph, for d = 2 there are two graphs (see
figure 6.13, center). In dimension d = 3 we need to introduce the equivalence
relation between graphs, namely, for edges with one free end we should allow
the other end of the same edge to move freely from one node to another. This
means that all “tree-like“ graphs or subgraphs should be treated as equivalent
(see the equivalence between two three-edge graphs for d = 3 in the figure 6.13,
center). This gives five inequivalent graphs for d = 3. For the notation of
graphs (see left subfigure in 6.13) we follow the style used in the book [23].°
The most important for further applications is the notation K4 and its natural
generalization to Kg4y1, d > 3, which means the complete graph on four (or
more generally on d + 1) nodes. For dimension three, all five combinatorial
types correspond exactly to all five connected graphs on four nodes (taking into
account the introduced equivalence of graphs).

It is easy to see that the correlation between graphs (shown by connecting
lines) corresponds to removing or adding one edge, when this correlation is
within different graphs of the same number of nodes, i.e. between zonotopes of
the same dimension. Removing one edge corresponds to zone contraction and
all subgraphs of K, with four nodes can be obtained from K4 by successively
removing edges. Removing an edge with a free end leads to a graph with a lower
number of nodes, i.e. we go to lower dimension with such a transformation.

Along with the graphical representation for 1-,2,-3-dimensional zonotopes we
can equally use so called cographical representation which consists of replacing
the graphical representation by a dual graph. To construct a dual graph, the
original graph should be planar, i.e. when drawing a graph on paper (plane) no
intersection or touching points between edges are allowed (except at the nodes).

9n [35], Conway and Sloane use these five graphs among different alternative versions of
graphical visualizations and indicate as inconvenience the absence of symmetry transforma-
tions for this presentation. We note, however, that looking at these graphs up to topological
equivalence, including 2-isomorphism [97] removes this inconvenience.
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All graphs in figure 6.13 are planar. (It is sufficient to deform graph K4 to avoid
the intersection of two edges.) To construct for a planar graph the dual graph,
we need to associate with one connected domain of the plane a node and with
each edge of the original graph an edge of the dual graph crossing this edge
and relating nodes associated with left and right domains separated by an edge.
(It may occur that the domain is the same and we get a loop.) The following
simple examples give an intuitive understanding of the construction of the dual

graph.
=0

0 a
= o
[¢

We see that a loop at one node and multiple edges between pairs of nodes
appear naturally for a dual graph. Also we see that K, is self-dual. Elimination
of one edge for graphical representation corresponds to shrinking of one edge by
identifying two nodes for the corresponding dual graph. Increasing dimension
for the graphical representation by adding one edge with a free end (adding an
extra node) corresponds to adding a loop in the cographical representation. A
cographical representation for three dimensional combinatorial types of lattices
is given in figure 6.13, right.

A very interesting and new situation (as compared with the three-dimensional
case) appears for 4-dimensional zonotopes.

Let us extend our visualization approach to the 4-dimensional case. Figure
6.14 gives a graphical representation for all zonohedral lattices for d = 4 (with
exception of one case corresponding to maximal non-primitive 30.102-36). In
fact it is sufficient to construct all connected subgraphs of the complete graph K5
with 5 vertices possessing 10 edges and to take into account certain equivalence
relations. (The notations of graphs are summarized in figure 6.15.) Certain
equivalence relations in the graphical representation are shown in figure 6.14.
Namely, for Cs +1+1 and for C3 2,1 + 1 graphs the edge with one free end can
be attached to any node. To keep the figure more condensed we do not show for
C3+ 1+ 1 graph the isomorphism with the graph formed by a chain of length 2
attached to a 3-cycle. Starting from the complete graph K5 we easily construct
the zonohedral family consisting of 16 elements (except K3 3 shown in figure 6.14
in the special rectangle). To understand the logic of its appearance we need to
study along with the graphical representation and the cographical one. First let
us note that the K5 graph is not planar and we cannot construct a dual for this
graph. At the same time for all proper subgraphs of K5 the dual graphs can be
constructed. Figure 6.16 shows the result of cographical representations for all
proper subgraphs of K. But this family naturally includes one extra graph, K3 3

RN
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Figure 6.13: Graphical (center) and cographical (right) representations of zono-
hedral parallelotopes in dimensions d = 1,2,3 together with zone extension
relations between them. The left diagram gives the notation of graphs used for
graphical representation, as introduced in [32].

which can be obtained by an extension (point splitting) operation applied to the
K5 — 1 — 1 cographical representation. Point splitting is an inverse operation
to edge contraction for the cographical representation. It allows us to find
an additional zonotope belonging to a zonohedral family for four-dimensional
lattices. Returning now to the semi-ordered set of zonotopes shown in figure 6.14
we can explain the correlation between K5 —1—1 and K3 3 as follows. From the
graphical representation of K5 —1— 1 we pass to the cographical representation
and next realize point splitting of the only four-valence vertex. As a result we
have two answers (depending on the type of rearrangement of edges during the
point splitting), one is dual to K5 — 1, another is K3 3, for which we only have
a cographical representation. These transformation are graphically summarized
in the following symbolic equation.

N =

We use the four-dimensional case to introduce still one more representation
of graphical zonotopal lattices. Namely, instead of plotting the graph which
is a subgraph of K5, we can simply plot the complement, i.e. the difference
between K5 and the subgraph. The only useful convention now is to keep all
nodes explicitly shown. Such a representation is given in figure 6.17. This
representation becomes interesting when studying subgraphs with a number of
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Figure 6.14: Zonohedral family in d = 4. A graphical representation is used for
all zonohedral lattices except for the K33 one. The arrangement of zonotopes
reproduces the zonohedral family of lattices given in figure 6.11.
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Figure 6.15: Conway notation [32] for zonohedral family in d = 4. (Note the
misprints in [32]: K4 used by Conway should be replaced by Cag1 + 1, whereas
K, corresponds to the primitive combinatorial type of the three-dimensional
lattice.)
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Figure 6.16: Cographical representation for 4-dimensional zonotopes.

edges close to the maximal possible value, i.e for subgraphs close to a complete
graph K5 and in higher dimensional cases close to K441, or in other words for
graphs with a small number of edges absent from the complete graph. This
representation allows us to easily find equivalence between different graphical
representations taking into account the topological equivalence of a complement
to a graph. In contrast, for graphs with a small number of edges it is easier to
see equivalence by looking directly at the graphical representation.

The five dimensional zonohedral family

To show the interest in the application of graphical visualization of zonohedral
lattices we give now the application to five-dimensional lattices. The zono-
hedral family of five-dimensional lattices has been described by Engel [53],
who has found 81 members of the family among which eight do not belong
to the principal sub-family corresponding to the complete graph Kg and its
subgraphs. Engel characterizes members of the zonohedral family by symbols
Nyacets-Nvertices — Nhezagonal 2—faces and gives the correlation between them
corresponding to zone contraction. Figure 6.18 reproduces Engel’s diagram with
additional distinction between zonotopes belonging to the main Kg-subfamily
and correlations between members of this subfamily and zonotopes for which
graphical representation is not available. Note that for the five-dimensional
zonohedral lattices there exists one example of a lattice, namely 60.332-0, which
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Figure 6.17: Representation of zonotopes through complement to graphical rep-
resentation within the complete K5 graph.

L
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has neigher graphical nor cographical representation.

Figure 6.19 keeps the same organization of zonohedral lattices as that shown
in figure 6.18 but now each graphical lattice is given by its graph. Eight zono-
topes which do not belong to the main family of subgraphs of K¢ are described
by cographical representation or do not possess neigher graphical nor cograph-
ical representations. Their symbols are replaced in figure 6.19 by an yellow
rectangle. These lattices and their correlations with graphical lattices are dis-
cussed separately below.

To simplify the visualization for graphical representations we use graphs only
when the number of edges is less than or equal to 10, whereas for graphs with
the number of edges being more than or equal to 10 we use the representation of
a complement to the graph with respect to the K¢ complete graph. For graphs
with 10 edges both direct graphical and complement to graphical representations
are given to clarify the correspondence.

Let us now give some comments about zonohedral lattices which do not
appear as subgraphs of the complete graph Kg. First consider 60.332-0, which
is a special R1o graph introduced by Seymour [86], or E5 used by Danilov and
Grishukhin [38]. This graph cannot be described as belonging to the graphical
or cographical representations. It can be considered as an extension of the K3 3
cographical four-dimensional lattice by adding one loop. Seymour [86] uses for
R the presentation of the type
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Figure 6.18: A representation of a zonohedral family in five-dimensional space
made by Engel [53]. Lattices possessing graphical representation are shown by
shown by blue together with correlations between them and lattices possessing

black, whereas lattices for which graphical representation is not available are
graphical representation.
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Figure 6.19: A representation of zonohedral family for five-dimensional lattices.
For graphs with no more than 10 edges the direct representation is used, whereas
complement graphs are drawn for graphs with 10 and more edges. Both direct
and complement representations are shown for graphs with 10 edges in order to
simplify the comparison between both representations. Graphs which are not
subgraphs of Kg are not shown in this figure. They are discussed separately.
Their places in the original diagram by Engel are left free (yellow rectangle).
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Figure 6.20: A cographical representation for seven zonohedral lattices associ-
ated with two maximal ones, 56.408-186 and 58.432-192. They are not shown

in figure 6.19.
/\/ @

Note that the graphical presentation of 48.230-0 as a subgraph of Kg (which in
fact equivalent as a graph to the K3 3 representation) assumes that this graph
corresponds to a five-dimensional lattice rather than the graph K3 3 considered
earlier and representing a four-dimensional zonohedral lattice. Because of that it
is more natural to use K3 5 notation for the four-dimensional lattice 30.120—30.

Let us now turn to cographical representation of seven zonohedral lattices
which are not subgraphs of K. These seven cographical lattices are shown in
figure 6.20.

Figure 6.21 demonstrates using the example of the 58.432-192 polytope
how to realize different contractions. It is possible to make two contractions
for 58.432-192. One consists in the contracting edge between nodes 1 and
2. (Numbering is given in figure 6.21.) It leads to cographical representation
of the 52.336-132 polytope. Another contraction (15) leads to cographical
representation which can be transformed to a dual graphical representation
showing that the result is the polytope 50.330-132. The complementary graph
is given for 50.330-132 along with the image of the graph itself in order to
simplify the identification of the graph.

In its turn the cographical representation of the 52.336-132 polytope shows
that five different contractions are possible. Two among these contractions,
namely (34) and (45) lead to two lattice zonotopes possessing only cographical
presentation. Three other contractions (14), (12), and (23) lead to cographical
presentation of zonotopes possessing graphical presentation and being subgraphs
of Kg. Their transformation to graphical presentation through construction of



154 CHAPTER 6. LATTICES AND POSITIVE QUADRATIC FORMS
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Figure 6.21: Different contractions of the 58.432-192 zonohedral polytope
shown in the cographical representation and transformed into the graphical
representation for subgraphs of Kg.

a dual graph is explicitly shown in figure 6.21.

Graphical representation of subgraphs of Kg gives us an opportunity to
see explicitly an application of important notion of 2-isomorphism of graphs
introduced by Whitney [97]. Namely, for the 30.162-60 zonotope two appar-
ently different graphs can be assigned, but nevertheless these two graphs are
2-isomorphic as the following graphical equation demonstrates.

Q-0 P-1-Q-©

6.7.1 From Whitney numbers for graphs to face numbers
for zonotopes

Simple visualization of zonohedral lattices by graphs would be much more inter-
esting if it is possible to find zonotopes characteristics directly form graphs. And
this is indeed possible. Face numbers of zonotopes can be expressed through
rather elementary formulae in terms of topological invariants of graphs, the so
called Whitney numbers [96, 82, 56]. A short guide to the calculation of Whit-
ney numbers for simple graphs is given in appendix B. Here we simply give
several explicit expressions for face numbers of 3- and 4-dimensional zonotopes
in terms of doubly indexed Whitney numbers of the first and second kind.

For three dimensional zonotopes, i.e. for all combinatorial types of three-
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dimensional lattices we have

No = wiy + wa; + Wiy + wys; (6.84)
Ny = wi; +wi, +wly; (6.85)
Na = wi + w3s; (6.86)
N2(6) = dwgy — 2wiy; (6.87)
N2(4) = 4w}y — 6wd,. ( )

where wj;
kind.
In fact, the total number of k-faces can be expressed more generally for

arbitrary dimension d as [56]

are absolute value of doubly indexed Whitney numbers of the first

d
Ni =Y wfh. (6.89)
j=k

For four-dimensional zonotopes we add several expressions for particular
types of k-faces.

NS = w15 + dwgs + 2Wys;

N2(4) = —2w13 — 6wz — 2Wi3;

N = 2w1wo2 + 12wgs — 56wos + 4wy — 32wys — 24wsg — 8Wis;

N = —dwgywoy — 24wos + 96wo3 — 8wyz + 50wys + 36wss + 14Ws;

N = dawgywoz + 24wos — T8wo3 + 8wis — 36ws — 24wss — 10Wys;

N = —2wg1won — 12w + 36wos — 4wy + 16wis + 10wss + 4Wis.
Although these expressions are slightly complicated because they include one

quadratic term, the existence of such expressions clearly supports the tight
relation between zonohedral lattice and representative graph.

6.8 Graphical visualization of non-zonohedral lat-
tices.

We have noted earlier in section 6.4.1, that in dimension four there exist two
families of parallelohedra, the zonohedral family and the family obtained from
the 24-cell polytope by making zone extension. This 24-cell family was repre-
sented in figure 6.10 taken (with minor modifications) from Engel’s book [11].
In spite of the fact that these two families are often considered as completely
independent and not related, there is a tight relation between them. The ori-
gin of this relation is the fact that all members of the 24-cell family can be
constructed as a Minkowski sum of the 24-cell, Pyy = 24.24-0 and a zonotope
which we denote Z(U) and which in its turn can be constructed as a Minkowski
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sum of one, two, three, or four vectors. Thus, we can try to associate with each
non-zonohedral polytope a zonotope (one-, two-, three-, or four-dimensional)
which after making a Minkowski sum with the 24-cell leads to a required poly-
tope. We need however to mention here a very important remark made by Deza
and Grishukhin [44]. For a zonotope Z(U) itself it is not important whether
the summing vectors are orthogonal or not. A parallelepiped and a cube have
the same combinatorial type. But the orthogonality of summing vectors in
Z(U) influences heavily the combinatorial type of the sum P4 + Z(U). This
means that the number of different types of Pay + Z(U) can be larger than
the number of different Z(U) and we need to introduce an additional index
characterizing orthogonality or non-orthogonality of vectors in the sum asso-
ciated with a zonotope Z(U). Nevertheless the contraction/extension relation
between different non-zonohedral polytopes should respect the corresponding
contraction/extension relation between zonotopal contributions. This allows us
to represent all non-zonohedral polytopes (or lattices) in a way similar to zono-
hedral ones. Figure 6.22 is a graphical visualization of the organization of the
24-cell family shown in 6.10. In figure 6.22 the 24-cell contribution to the sum
is symbolized by an elliptic blue disk. The zonotope contribution is represented
inside the blue disk in a way similar to the representation of zonotopes discussed
in the preceding subsection. The additional index is added when it is necessary
to distinguish between the Minkowski sum with the same zonotope contribu-
tion but with special orthogonality between vectors forming the zonotope. This
additional index is shown on the blue disk and takes values «, 3,7. It is use-
ful equally to make the distinction between correlations (contraction/extension)
associated with elimination of one edge without changing the number of points,
i.e. within the zonotopes of the same dimension, and with elimination of the
edge together with one point. The correlations associated with modification of
the dimension of a zonotope are represented by a thick green line. Graphical
correlation allows us to localize small misprints in the figure representing a par-
tially ordered set of non-zonohedral lattices in book [11], figure 9-7. Namely, in
the notation used in [11] it is necessary to change the line 26-7—24-14 by the
line 26-7—26-3; the line 26-6—26-3 should be changed into 26-6—24-14; the line
28-2—26-7 should be changed into 28-2—26-6.

Using the discussed above graphical visualization of non-zonohedral lattices
we can better understand the system of the organization of walls between generic
domains for a cone of positive quadratic forms (see figure 6.12). The wall be-
tween the 30-2 and 30-3 domains is of 28.96-40 type represented by (K5 — 1)
graph. Taking into account that the 30-2 domain corresponds to the K5 zono-
tope graph and the 30-3 domain corresponds to the Pay+ (K5 —1) non zonotopal
graph it is clear that going from domain 30-2 to the wall 28.96-40 is a simple
zone contraction graphically visualized as removing one edge. At the same
time going from domain 30-3 to the same wall is not a zone contraction trans-
formation. This transformation can be described as “elimination of the Poy
contribution“.

In a similar way going from the 30-4 domain to the wall 30 — 102-36 has
the same type. This transformation is again associated with “elimination of the
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30.120-36 30.120-42

10

28.104-24 28.104-30

24.72-0 24.72-12b 24.72-12a 24.72-24 26.78-6 26.78-12 28.88-0

24.42-0 24.42-6 24.46-0 26.56-0

@ 4

24.36-0 24.40-0
& ’

24.30-0
@ :
24.24-0

& 1

Figure 6.22: Graphical visualization of four-dimensional parallelohedra represented as a
Minkowski sum Payg + Z(U) of a zonotope Z(U) and the 24-cell, Poy = 24.24 —0. Blue elliptic
disks symbolize the P24 cell. Graphs for zonotopes coincide with those used to visualize
zonohedral lattices. Symbols «, 3, make further distinction between zonotope contributions
Z(U). Depending on the number of mutually orthogonal vectors in the Minkowski sum for a
zonotope Z(U), this additional index characterizes the cases with no orthogonal edges, with
a pair of orthogonal edges and with three mutually orthogonal edges. A single thin line
corresponds to elimination/addition of one edge without changing the number of points. A
double thin line symbolizes transformation to the dual representation. A thick green line
corresponds to elimination of one edge together with one point.
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30.120-60
28.96-40 30.102-36
24.72-26 26.78-24

X0
=

16.48-16 20.54-16 22.54-12 24.60-12
& N < S
12.36-12 14.36-8 20.42-6 22.46-0

X £ ¢
N

10.24-4 14.28-0 20.30-0

X g O -
N/

8.16-0

N)
D

Figure 6.23: Graphical visualization of zonohedral four-dimensional parallelo-
hedra.
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P54 contribution” and is not of a standard contraction type. All other walls
between generic domains are of simple contraction type, which are graphically
represented by removing one edge from the graph.

The comparison of graphical representations of zonohedral lattices (figure
6.23) and non-zonohedral ones (figure 6.22) clearly indicates that there are sim-
ilar transformations with “elimination of the Ps4-contribution” during passage
from lower dimensional subcones to their walls. For example the non-zonohedral
lattice 28.104-24 represented as Pog + (K5 — 2 x 1) and filling a 9-dimensional
subcone can have as one of its 8-dimensional boundaries the zonohedral lat-
tice 24.78-24 which is graphically represented as (K5 — 2 x 1). Going from
Py + (K5 —2x 1) to K5 —2 x 1 is not of a zone-contraction transformation
but the “Ps4 elimination”.

To conclude the discussion of graphical representations of non zonohedral
polytopes we note that this approach can be generalized to higher dimensional
spaces. In order for the reader to follow this rather active direction of research
we mention the recent paper [88] (and the most important of its predecessors [93,
38, 57, 58]). In [88] the description of six-dimensional polytopes represented in
a form of Py (FEs)+ Z(U) is studied. The Py (Es) is the parallelotope associated
with the root lattice Fg. (See chapter 7 of this book for an initial discussion of
root lattices.)
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6.9 On Voronoi conjecture

When discussing parallelohedra associated with facet-to-facet tiling of the space
and corresponding lattice we have not stressed the difference between paral-
lelohedra and Voronoi cells of lattices. It is clear that any Voronoi cell is a
parallelohedron but the inverse is generally wrong.

In his famous paper [95] Voronoi formulated an important question: “Is an
arbitrary parallelohedron affinely equivalent to the Dirichlet domain for some
lattice?”. Now the term “Dirichlet domain“ is more often replaced by the
“Voronoi cell“ but the positive answer to this question is still absent and the
affine equivalence between Voronoi cells of lattices and arbitrary parallelohedra
is known as Voronoi’s Conjecture.

Voronoi himself gave a positive answer to his question in the case when the
parallelohedron P is primitive, i.e. when every vertex of corresponding tiling
belongs to exactly (d 4+ 1) copies of the d-dimensional parallelohedron P, or, in
other words, each belts of P contains 6 facets. Since then, some progress has
been made by extending Voronoi’s Conjecture to a larger class of parallelohedra.
The most serious steps are the following:

Delone [41] demonstrated that the conjecture is valid for all parallelohedra
in dimensions d < 4.

Zhitomirskii [99] relaxed the condition of primitivity of parallelohedra for
which Voronoi’s Conjecture was proved to be valid. According to [99], a paral-
lelohedron P is called k-primitive if each of its k-faces are primitive, i.e. every
k-face of the corresponding tiling belongs to exactly (d + 1 — k) copies of P. In
particular, if each belt of P consists of 6 facets the parallelohedron is (d — 2)-
primitive. Zhitomirskii [99] extended the result of Voronoi on (d — 2)-primitive
parallelohedra.

Another class of parallelohedra for which the Voronoi’s Conjecture was also
proved [54] includes zonotopal parallelohedra.

Engel checked the Voronoi’s Conjecture for five-dimensional parallelohedra
by computer calculations [50, 51]. He enumerated all 179372 parallelohedra of
dimension 5 and gave a Voronoi polytope affinely equivalent to each of the found
parallelohedra.

Assuming the existence of an affine transformation that maps a parallelohe-
dron onto a Voronoi polytope, Michel et al. [77] have shown that in the primitive
case and in few other cases these mappings are uniquely determined up to an
orthogonal transformation and scale factor.



Chapter 7

Root systems and root
lattices

7.1 Root systems of lattices and root lattices

A hyperplane H, of a n-dimensional vector space E,, is a (n — 1)-dimensional
subspace. It is completely characterized by a normal vector 7.

Definition: reflection through a hyperplane. The reflection o, through
the hyperplane H, is a linear involution of FE,, which leaves the points of H,
fixed and transforms 7’ into —7".

Reflection through a hyperplane is an automorphism of E,, completely char-
acterized by 02 = I,,, Tr o, = n — 2. Explicitly !,

@7 (7.1)

Vi€ E,, o.(&)=1- 2N

Assume now that o, is a symmetry of the n-dimensional lattice L, i.e.

vielL, o.()¢€lL. (7.2)
Then .
7 7 (8777) N
(—o,(0)eL < 2 L, ,
or(l)eLl & N(F)Te (7.3)
2

which shows that the 1-dimensional vector subspace { A7} contains a 1-sublattice
of L. From now on we choose 7 to be a generator of this 1-sublattice, so it is
a visible vector®. This implies that the coefficient of the vector 7 in (7.3) is an
integer. We call these vectors the roots of the lattice; their set is called the

1 As we should expect from the definition of a reflection, the expression of o, is independent
of the normalization of 7; in particular o = o_.

2Concept defined in section 3.3.

3There are no shorter collinear vectors in the lattice.
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lattice root system,

S N (4, 7)
R(L)={Fe L, 7visible: V¥l € L, 2N(F) € Z}. (7.4)
We write R instead of R(L) when L is understood. Notice that ¥ € R & —7€ R
and that the dilation L — AL of the lattice changes simply R into AR. Moreover
different pairs +7° of roots correspond to distinct reflections.

We denote by G the group generated by the |R|/2 reflections o, ¥ € R; it
is a subgroup of the Bravais group P7 of L. We know that |Pf| is finite, so |R|
is also finite.

We can write R = U;R; where the R; are the different orbits of P7. The
reflections o, ¥ € R; form a conjugacy class of this group; we denote by Gr,
the subgroup they generate. Since in a finite group G, any subgroup generated
by one (or several) conjugacy classes is an invariant subgroup of G, we have:

GRiQPf, GRQPE (75)

When Gz is R-irreducible, any of its orbit spans the space F, (if it were
not true, Gr would leave invariant the subspace spanned by the orbit, and that
contradicts its irreducibility). So each R; spans E,; that is also true of the
short vectors S = S(L).

Proposition 34 When Gr (L) is R-irreducible, the norm of any root satisfies
N(7) < 4s(L).

Proof: The proposition is true for roots in S. Let 7 be a root not belonging
to S. Since S spans the space we can choose § € S such that (7,3) > 0. The
transformed vector 3, = 0,.(5) = §— ur, with 0 < p = 2(3,7)/N(7), is also in S
since it has the same norm as §. Since 7 is visible and N(7) > N(3), Schwarz’s

inequality
|(5,7)| < VN(S)N(7) (7.6)

implies |(5,7)| < N(¥). Thus g =1, i.e. ¥=5— §,. Thus N(¥) < 4N(3). O
Definition: root lattice. A root lattice is a lattice generated by its roots.
As a trivial example, any one dimensional lattice L = {n¥,n € Z} is a root
lattice; indeed o, (n") = —n7. We recall that any one dimensional lattice can
be scaled to I;.

Proposition 35 The vectors of norm 1 and 2 of an integral lattice are roots of

the lattice.

Proof: In an integral lattice /,7 € L = (£,7) € Z. Assume N (%) = 1 or 2; so &

is visible. Then 2(7,7)/N(7) is an integer, so  is a root. O
As we will see, this proposition gives important information on the symmetry

of the lattice. From the definition of the root lattice we obtain:

Proposition 36 An integral lattice L generated by its vectors of norm 1 and

1
2 is a root lattice which is the orthogonal sum L = Ly & Lo where L1 = I is
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generated by the morm 1 vectors and Lo is generated by its shortest vectors of
norm 2.
Proof. From Proposition 35, L is a root lattice. If 5;, §; are two linearly
independent norm 1 vectors of L, Schwarz’s inequality (7.6) implies (5;, 5;) = 0.
Let k be the number of mutually orthogonal pairs £3;; these short (norm 1)
vectors generate a lattice I. Let 7 be a root of norm 2; the value of € = (7, 3;)
is either £1 or 0. In the former case N(¥ —¢e§;) = 1 so ¥ = €§; + §;, and 7
visible requires that it is the sum of two orthogonal short roots, i.e. ¥ € I}, =
L+. Obviously, the norm 2 roots 7 orthogonal to all lattice vectors of norm 1,
generate L. O

Note that an integral lattice which has no vectors of norm 1 and 2, may
contain a root lattice; a trivial example is given by a non reduced integral
lattice, i.e. the lattice /mL, m € Z with m > 3 where L is an integral lattice
with minimal norm s(L) = 1.

Let 7 and 7’ be two linearly independent roots of L and ¢ the angle between
them. From (7.4) we obtain:

!l

4cos®(¢) = AT €Z. (7.7)

N(F)N(’)

)

<

Thus
T T 27T ™ 37T T 57

2 [ NS R R —
4dcos“(¢) =0,1,2,3 = ¢ = 5 3 3T 18 6 (7.8)

Since 0,0, and its inverse o, o, are rotations by the angle 2¢ in the 2-dimensional
space spanned by 7,7/, we have

(or00)™ =1, where m=2, 3, 4, 6. (7.9)

The groups whose relations between generators are given by these equations are
called Weyl groups. They are studied in the next subsection. To write explic-
itly the integer 4(7,7')2/(N(F)N(7')) as a function of m we use the Boolean
function m +— (m = 6) whose values are 1 when m = 6 and 0 when m # 6.
Then

4(7:»7 2
N(FN()
Application to dimension 2
We have seen in section 4.3 that there are two maximal Bravais classes: pdmm
(square lattices L) and p6mm (hexagonal lattices Lp). Their groups are ir-
reducible (over C). So we can consider the two integral lattices. Since their
shortest vectors satisfy s(Ls) = 1, s(Lp) = 2, and generate the lattice, Propo-
sition 35 shows that Ls and Lj are root lattices. For each one, the root system
has two orbits of roots; one of them is the set of short vectors of the lattice. We
use the value 7 of the root norm as an index for the root orbit R;. In the next
equations we list the roots by giving their coordinates in the basis defined by
the Gram matrix Q(L).

=m—2—(m=06). (7.10)

==
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For the Bravais class pdmm (square lattice),

0

Q(Ls) =1, Ri(Ls)=S8(Ls) = {+ <(1)) =+ (1

N Rz =1,

Ra(z) = 121 )2 (1)1 Ra(zo] =1 (7.11)

For the Bravais class p6mm (hexagonal lattice),

Q(Ly) = ( _21 _21 ) , S=Ro(Ln) ={=£ (é)i(?)i(i)h |R2(Ln)| = 6,

Re(Lp) = {+ (?)i(é)i(_‘z)} |Re(Ln)| = 6. (7.12)

Finally, the lattices of the other two non-generic Bravais classes, p2mm and
c2mm, have the same point symmetry, 2mm ~ Z3%, which is reducible. The
lattices of the Bravais class p2mm are root lattices; those of ¢2mm are not. For
the latter Bravais class, depending on the lattice, there might be 4 or 2 shortest
vectors; in the latter case, these two shortest vectors are roots. The generic
lattices (Bravais class p2) have no roots.

7.1.1 Finite groups generated by reflections

We will give in this subsection the list of irreducible finite groups generated
by reflections, for short finite reflection groups. Those which satisfy equation
(7.9) were introduced by H. Weyl in 1925 in his study of the finite-dimensional
representations of the semi-simple Lie groups and they were listed by E. Cartan
[30] (p. 218-224). Here we shall give the results of Coxeter, who established the
complete list of finite reflection groups * [37]. A finite reflection group G' acting
linearly on the orthogonal vector space E,, is defined by n’ generators and the
relations:

1 S ) S ’I’LI, (O'FiU;‘j)m” = In, my; = 1, ) 7é j, 2 S mij eZ (713)

and this abstract group is realizable as a finite subgroup of O,, with the genera-
tors o, represented by reflections through hyperplanes whose normal vector is
denoted by 7;. If the 7; span only a subspace of dimension ng < n, the group
acts trivially on its orthogonal complement. This case is equivalent to a reflec-
tion group on a space of dimension ng; from now on, we consider only the action
on E,, of the “n-dimensional” reflection groups; the number n’ of generators of
such a group satisfies n’ > n.

We will now prove that n’ = n. The reflection hyperplanes of G partition
E,, into |G| convex cones; each one is the closure of a fundamental domain for
the action of G on FE,,. Choose one of these cones and orient its root vectors to
the outside. The product of the reflections through two contiguous hyperplanes

4See also his classical book [6].
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H,,, H,,, is arotation in the 2-plane spanned by 7, 7; of order m given in (7.9).
Then the scalar product of any pair of these normal vectors is < 0; moreover
the scalar product of each of them with a fixed vector ¢ in the interior of the
cone is also < 0. It is easy to prove that these normal vectors are linearly
independent. Indeed, assume the contrary: if Z is any vector inside the cone, it
can be written with two different decompositions @ = 3, a7 = >, 8;7; with
a; < 0, B; <0, the domains of ¢ and j are two disjoint subsets of 1,2,...,n’.
Since 0 < (&, %) = >_,; i3;(75,75) is a sum of terms < 0, it vanishes for 7' = 0.
So the r; are linearly independent and n’ = n.

The Gram matrix of these n normal vectors can be computed from the
“Coxeter diagram” of the reflection group G. In it, each vertex corresponds to
a generator r;. Edges are drawn between the vertices r;, r; when the order m;
of o0, is > 2 (see (7.13) and each edge carries as a label the value of m; (the
tradition is to omit label 3 since (see below) at most one edge has a label > 3
in each connected part of the graph).

Proposition 37 The irreducibility of a reflection group is equivalent to con-
nectedness of its Cozeter graph.
Proof: The reducible representation of a finite group G on the space E,, is a
direct sum of p irreducible representations on the mutually orthogonal subspaces
E,, with1 <a <p, Y no =mn. If G is generated by reflections, a reflection
o, maps a subspace onto itself only if 7; belongs to it. So the set of root vectors
is partitioned into mutually orthogonal subsets labeled by «; each one generates
a reflection group G, acting on E,,_. From the set of rules for building Coxeter
graphs, the graph of G is disconnected into p pieces. Conversely, for a graph
disconnected into p pieces labeled by «, G, ---, (7%, FJB) = 0 when « # [, so the
subspaces F,_ are mutually orthogonal. Moreover, from (7.10), the subgroups
G, < G generated by each connected part commute between each other, and
each G, acts trivially on all E,, with 3 # «; this shows that G = x,G,
transforms each FE), , into itself. d
The positivity of the Gram matrix implies that the Coxeter graph of an
irreducible reflection group is a tree with at most one branching node, and gives
some restriction on the nature of this node. So we have two cases to consider

i) one branching node: it has only three branches with the number of vertices
p,q,T > 2 (one counts the vertex at the node) satisfying the relation:

1 1 1
S, (7.14)
poq

and all edge labels are 3;

ii) no branching nodes: then all labels are 3 except possibly one of them.

A more refined study gives the list of finite irreducible reflection groups. As we
have seen, every reflection group is a direct sum of irreducible reflection groups
(including eventually the trivial reflection group {1}).
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Table 7.1: List of finite irreducible reflection groups. For each reflection group
we give its traditional symbol with the dimension as a subscript, its order, and
its Coxeter diagram. As is customary, we omit the label 3. It is clear from the
diagrams that A,, is defined for all m > 1, B,, for n > 2, D,, for n > 4.

A, (n+1) e—e—e0—o— --0e—0o—o

B, 2"n! e o o o o o'e
D, 2" 1lpl oo o o - 70—1—0
Fy 1152 o o'e o

Gy 12 PRI

FE¢ 72-6! o—o—I—o—o
E; 72-8! o—o—o—I—o—o
Es 192-10! o—o—o—o—I—o—o

The following ones are not Weyl groups or symmetry groups of lattices:
H, 10 e Hy 120 o—ee

H, 14400 e—eo—e>e Iép) 2p eole,p>7

Table 7.1 gives the list of finite irreducible reflection groups with the symbols
used by most mathematicians; they were used first in the theory of Lie groups.

To give the abstract structure of most of these groups, we must introduce
the following notation: S,, denotes the permutation group of n objects and A,
denotes its index 2 subgroup of even permutations ®; G 1" denotes the n-wreath
product of G, i.e. the semi-direct product G™ > §,, where G™ is the direct
product of n copies of G and S,, acts on it by permutations of these n factors.
We have the isomorphisms:

Ap ~Sntt, B~ On(Z) ~Zol"~ A1 1", Dy ~ (Z5)25%8) > 8,5 (7.15)

Indeed Ay ~ Zo; its Coxeter diagram is a point. Notice that the diagram of
D5 could also be denoted Ej; similarly one could have defined D3 as Az from
the diagram shape (which justify the group isomorphism: Z3 > Sz ~ Sy). We
follow here the usual convention, but we shall use these remarks later. We have
already seen that B,, is isomorphic to O, (Z), the group of orthogonal matrices
with integer elements; it is generated by the diagonal matrices with diagonal
elements +1 (they form the group Z%) and the group II, of n x n permutation
matrices (all their elements are zero except one by line and by column which
is 1). To restrict B, to its index 2 subgroup D,,, among the diagonal matrices
defined above, one keeps only those of determinant 1. We denote by C,,, the
dihedral group; its order is |Cy,,| = 2n. Its definition by generators and relations

5The A of A, is to remind the most usual name of this group: the “alternating group”.
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is: Cpp @ 22 = y" = (2y)? = 1. More isomorphisms of reflection groups are:

Ay ~ Csy, By ~ Cuy, Hy ~ Csy, Go ~ Coy, IS ~ Cpyy, Hs ~ As X Zs. (7.16)

7.1.2 Point symmetry groups of lattices invariant by a re-
flection group

As we have seen in (7.9), among the n-dimensional reflection groups, only
the Weyl groups, i.e. those with m;; = 2,3,4,6 are symmetry groups of n-
dimensional lattices. While the others are not automorphisms of lattices in
E,, as abstract groups they can stabilize higher dimensional lattices ®; indeed
Hy < A,, Hs<Bs, Hy<Es, I <B,.

From the knowledge of the Coxeter diagram of an irreducible Weyl group, we
can write a quadratic form of the root lattice invariant by this group. Indeed,
starting from (7.13) which defines a reflection group we have seen how to build a
set of vectors 7; normal to the reflection hyperplanes of a fundamental cone and
oriented outside the cone. These linearly independent vectors define a basis of a
lattice invariant by the Weyl group; we denote by @ := {g¢;;} the corresponding
Gram matrix. Equation (7.10) yields the following relations (depending on the
integers m;; which define the group) between non diagonal and corresponding
diagonal elements of Q:

L, i 1
i # J, = —=y\/mij — 2 — (mi; = 6). 7.17
= = M = 2= (i =0) (7.17)

This equation is independent of the length of the vectors 7;; we verify case by
case that we can require the elements of the Gram matrix @ to be relatively
prime integers and this fixes the lengths of the root vectors 7;. For instance in
the groups of types A, D, E' (with all non vanishing non-diagonal m’s being 3),
the reflections form a unique orbit; that must be also the case of the roots 77,
so the non vanishing non-diagonal elements of the Gram matrix are —1 and the
diagonal ones are 2 = N(7;). We give explicitly the Gram matrices for n = 8:

9 -1 0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0

QUAs)=| o o 0o 21 2 -1 0 o (7.18)
0 0 0 0 -1 2 -1 0
0O 0 0 0 0 -1 2 -1
O 0 0 0 0 0 -1 2

6Indeed H> is the symmetry group of the pentagon, Hz ~ As x Zs that of the dodecahedron
and the icosahedron (dual of each other), Hy4 that of two dual regular polyhedra in 4 dimensions
with respectively 120 and 600 faces, and the 1. ép ) are the symmetry groups of the regular p-gons
in the plane.
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2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
Q(Ds) = 0O 0 0 -1 2 -1 0 0 (7.19)
O 0 0 0 -1 2 -1 -1
o 0 0 0 0 -1 2 0
o 0 0 0 0 -1 0 2

The explicit form of Q(E,,) depends on the way we label the nodes of the F,
diagram. Naturally the branching node has label n — 3. Here we label n — 2 the
unique node of the short leg (above the line in the diagrams of Table 7.1) and
n — 1,n those of the characteristic F,, leg.

9 -1 0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0

QES)=| o o 0o 21 2 -1 -1 o0 (7.20)
0 0 0 0 -1 2 0 0
0 0 0 0 -1 0 2 -1
O 0 0 0 0 0 -1 2

The quadratic forms Q(A,) and Q(D,,) for n > 8 are obtained by the same
modification which is obvious for Q(A4,,). One obtains the corresponding ma-
trices for values of n < 8 by suppressing the first 8 — n lines and columns. The
matrix determinants are:

det(Q(A,)) =n+1, det(Q(D,)) =4, det(Q(E,)) =9—n. (7.21)

These matrices invite us to define the quadratic forms for D and E below the
conventional lower bound for n given in the caption of Table 7.1. For instance
Q(A3) and Q(D3) are equivalent (by permuting the indices 1,2). 7 Similarly
Q(FE5) ~ Q(Ds) (inverse the ordering of the matrix elements), Q(E4) ~ Q(A4)
(exchange the indices 1, 2). 8

The Coxeter diagrams of the Weyl groups B,,, Fy, G2 contain exponents
m;; with two different values: 3, 4 or 3, 6 for G2. That corresponds to two
conjugacy classes of reflections. From (7.17) one sees that the two orbits of
roots can generate an integral lattice only if the two orbits of roots have different
norms. That the matrix elements of the quadratic form of these root lattice be

7 Ay, Dy, are the Weyl groups of the Lie algebras SUp+1 and SOgzy,. The algebras SU4 and
SOg are isomorphic. The Lie algebra of SO4 is isomorphic to SU2 x SUas.

8For the A, D, E systems, the matrices we have defined coincide with the Cartan matrices
which play a great role in the theory of Lie algebras. It is worth recalling that the quadratic
forms for Eg, E7, Es have been first introduced in the study of perfect lattices by Korkin and
Zolotarev [63]. That was more than fifteen years before the classification of the corresponding
simple Lie algebras by Killing and Cartan.
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relatively prime impose the pair of values of the root norms to be 2,1 for B, 2,
4 for Fy, 2, 6 for G3. So the quadratic forms defined by the Coxeter diagrams
are

2 -1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0
0O -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
Q(Bs) = o 0 0 -1 2 -1 0 0 |’ (7.22)

O 0 0 0 -1 2 =1 0
o o0 o0 0 0 -1 2 -1
o 0 0 0 0 0 -1 1

2 -1 0 0

-1 2 -2 0 2 -3

0 0 -2 4
The determinants of these matrices are:
det(Q(B,)) =1, det(Q(Fy)) =4, det(Q(G2))=3. (7.24)

So B, is a self dual lattice. Let m be an n X n triangular lattice with 1’s on the
diagonal and above it and 0’s below it. Then mQ(B,)m ' = I,,. Similarly we
have the equivalence of quadratic forms:

mprQ(Fy)mjp = Q(Da); maQ(Gz)md = Q(Az) (7.25)

where mp and mg are:

1 0 0 0
0 1 0 0 1 0
-1 -2 -1 -1

To summarize: the lattices with point symmetry groups B,,, Fy, G2 are gener-
ated by their orbit of shortest roots and they are identical to the root lattices
I,, D4, Ao respectively. These lattices have a second orbit of roots of norm 2,4, 6
respectively.

7.1.3 Orbit scalar products of a lattice; weights of a root
lattice

For a lattice L we introduce the notation L, for the set of vectors with norm
a. For an integral lattice L = UgenL,. We introduce the natural notation
Ym € Z, mL, = {m[, le L.}; hence mL, C L,,2,.

When the lattice has a large symmetry group G (e.g. a maximal Bravais
group) each L,, for low values of a, is one, or the union of a few G-orbits. It is
useful to define the following concept for non vanishing vectors:

T£04£0 T0eL, |5,0c¢Y max (7,7). (7.27)
F€G.T,§€G.0
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In words: |7, v | is the maximum of the scalar product between these two vectors
when they run through their respective G-orbits. We call this positive number
the scalar product of the two orbits; we have defined it for any symmetry group
of L. Equivalent definitions are:

5,0 ¢ L, |5,0|¢ = max (7,7) = max (Z,7). (7.28)
gea.l FEG.T

When the two vectors are in the same orbit, their orbit scalar product is equal
to their norm. When G is the maximal symmetry group of the lattice, i.e. its
Bravais group P7, we will simply write |7, ¢|; since P} contains —I, we have
|7,0] > 0 or, when P7 is R-irreducible, |7, 71> 0.

The set of values of |7, v | gives interesting information about the lattice. It

-,

has to satisfy some bounds: e.g. N(7 — £) > s(L) implies:

L1 a 1
|0,¢] < 5((N(17)+N(€)—3(L)); v§e S(L), |5,¢| < §N(€). (7.29)
A similar inequality will also be useful:
1
§; € S(L), 51 75 :|:§2, |(§1,§2)| < §S(L) (730)

For lattices with high symmetry we will build their tableau of orbit scalar
products with G as the symmetry group. In order to avoid redundancy, we write
in the tableau only the orbits of visible vectors. This tableau is a symmetrical
matrix whose rows and columns are labeled by L, or L/, L”, --- when several
orbits have the same norms with the norm chosen in non-decreasing order. Here
is the beginning of the tableau of the lattice called L, in (7.11) and that we shall
call from now on Io; its Bravais group is O2(Z) (it is isomorphic to Bs):

Ri Re2 Ls Lip L1z Liz Las Log Loag L3y

4 Ry 1 1 2 3 3 4 4 ) ) 5)
4 Ry 1 2 3 4 5 5 7 6 7 8
8§ Ly 2 3 95 7 8 9 1 11 12 13
8 Lip 3 4 v 10 11 13 15 16 19 18
8 Liz 3 5 8 11 13 14 18 17 19 21 (7.31)
8 Ly 4 5 9 13 14 17 19 21 22 23
8 Los 4 v 11 15 18 19 25 23 26 29
8 Ly b 6 11 16 17 21 23 26 27 28
8 Lo 5 v 12 19 19 22 26 27 29 31
8 Lszs b § 13 18 21 23 29 28 31 34

We have written R, Ro instead of Ly, Lo to emphasize that these are orbits
of roots. The first column gives the number of lattice vectors in the orbit. Indeed
the orbits of nonzero lattice vectors have either 8 or 4 vectors. The former case
occurs when the coordinates of the orbit vectors are, with respect to the basis I,
(e111,€2p2) or (napa,nip) with €2 = 1 = n? when the two positive integers p;
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are different. In the latter case the orbit is generated by a vector (u,0) or (u, )
(only the value = 1 corresponds to visible vectors). Since N(£) = 2 + 12,
the only possible values of the norm are the sums of two squares. There can be
two orbits with the same norm only for two different such decompositions. The
smallest value for which that occurs is N = 25 = 52 + 0 = 32 + 42; then only
the second orbit of the visible vectors is entered. The smallest norm value with
two orbits of visible vectors is 170 = 72 + 112 = 12 4 132, It is important to
note that along a row or a column of such a tableau the value of elements may
decrease locally; in (7.31) such examples are given by Li3, Laos, Las.

We know (see section 3.4) that an integral lattice is a sublattice of its dual
lattice. The dual of a root lattice L is also called the weight lattice® of L.

Definition: weights of an integral root lattice. The weights of an
integral root lattice L are the vectors @ € L* whose orbit scalar product with a
root 7 € L satisfies |(w, 7)| = 1.

For the lattices A,,; D, n > 4; E,, n =6, 7, 8, that we shall call for short,
the simple root lattices, the Cartan quadratic forms defined above use a basis
among the short vectors, i.e. the orbits of norm 2 roots. So the vectors of the
dual basis are weights. The diagonal elements of the corresponding quadratic
form show that for nearly all simple root lattices there are weights of different
norms.

7.2 Lattices of the root systems
7.2.1 The lattice I,

In order to give some examples of lattices and their duals, we have already
introduced in section 3.4 some lattices we shall study in this section in relation
with root systems.

In E,, we choose an orthonormal basis {€;}. The Gram matrix of these
vectors is [, (the unit matrix) that we use as the symbol for the lattice they
generate. This lattice is integral and self-dual. We have seen that its Bravais
group is Oy, (Z) and that it is a maximal Bravais group in all dimensions. The 2n
element set {£¢€;} is S(I,,), the set of shortest vectors of the lattice I,,. It is an
orbit of O, (Z). According to Proposition 35, S(I,) = Ry is an orbit of roots;
s0 |R1| = 2n. The corresponding reflections oz, are represented by diagonal
matrices with all coefficients being 1 except for one entry which is —1. Since
the roots of R; generate I,,, it is a root lattice.

For n > 1 the lattice I,, has vectors of norm 2. Proposition 35 tells us also
that these vectors are roots. They are, up to sign, €; £ €, with 1 < j <k < n.
So there are 4(2) = 2n(n — 1) of them; it is easy to verify that they form an
orbit of O,,(Z) that we shall denote by R2. The corresponding reflections og; 1,
have only n non-vanishing matrix elements. Since a reflection matrix has trace
n — 2, it must have at least n — 2 elements of the diagonal equal to 1; so there

9This agrees with the theory of Lie algebra, but this is not the case for the definition of
the weights; those defined here are akin to the “fundamental weights”.
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are in O,(Z) only the two conjugacy classes of reflections that we have found
and R(I,) = R1 URa, |R(I,)| = 2n>.
For n > 1 one verifies easily that the n vectors b;:

1<1< n, 51 = gz — €i+1; gn = gn, (732)
form a basis of the lattice I,; the corresponding quadratic form is that of B,
(given in (7.22)). That shows the equivalence of quadratic forms: Q(By,) ~ I,.

7.2.2 The lattices D,, n > 4 and F}
In section 3.4, eq. (3.10) we defined D}, as a sublattice of index 2 of I:

D ={>) Né, Y N€2L}; I,/Dj =1Ly vol(D})=2. (7.33)

and noticed that Dj, is an even integral lattice. Its shortest vectors are of
norm 2 and by Proposition 35 they are roots. Obviously they generate D;;
thus it is a root lattice (our notation is justified!); but to follow the commonly
used notation, from now on we simply denote it by D,,. From the definition
of the lattice given in equation (3.10), the point symmetry group B, acting
on I, transforms the index 2 sublattice D,, into itself. So B, is a group of
isomorphisms of D,, and we have already shown that Ro is an orbit. We
expect another orbit of roots whose reflections and those corresponding to Ro
will generate B,,. Beware that the tableau of D,, is not a subset of that of I,,.
Indeed the double of the roots in Rq C I,, are not visible vectors in I; but are
visible in D”; and they are roots of it. The set of these roots, {(2,0"71)},
form a B,, orbit of roots that has 2n elements. We denote it by R4; with Ro it
defines the 2n? reflections of B,,.
We can extract the following basis from Rs:

1<t <n, Z_); =é; — €i+1, gn =€,_1+€En. (734)
The corresponding Gram matrix is exactly the quadratic form Q(D,,) defined
by (7.19).

One can prove that, by a change of basis if necessary, one can always trans-
form the quadratic form of an integral lattice into one represented by a tridiag-
onal matrix . For D,, such a change of basis is obtained by replacing the root
b, in (7.34) by the root b/, = 2¢,. The Gram matrix for n = 8 is

5 -1 0 0 0 0 0 0
1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
, 0 0 -1 2 -1 0 0 0
QPs)=1 4 o 0 -1 2 -1 0 0 (7.35)
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -2
0O 0 0 0 0 0 -2 4

10That is a matrix whose non-vanishing elements qi; satisfy the condition |i — j| < 1.
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For n > 4, the tableau of orbit scalar products of D,, is therefore the union
of the even norm vector orbits of I,, and the orbit R4 of roots {(£2,0"~1)}. It
is trivial to check that the orbit L} = {([#1]*,0"~*)} and the one (when n = 5)
or two (when n > 6) orbits of Lg are not root orbits; so according to Proposition
34, the lattice has no roots outside Ro and R4. As we have seen the reflections
corresponding to these two orbits generate the holohedry B,, but in a Bravais
class different than O,,(Z), since the tableau of B,, and D,, differ by more than
a dilation.

For n = 4, one verifies easily that both By-orbits of norm 4 (i.e. in L)
{(£2,0%)} and {([£1]*)} are root orbits. That is exceptional and shows that
the holohedry is larger than B4. To verify that a given set of 4 lattice vectors
of D, forms a basis for this lattice, we need only to verify that the determinant
of its Gram matrix is 4. That is the case of the four vectors:

D4 basis : bl = 51 —52, b2 = 52 —53, bg = 2€3, b4 = —51 —52—53—54. (736)

Their Gram matrix is Q(Fy), given in (7.23). Since F, is a maximal finite
subgroup of GL4(Z) it is the Bravais group of D4. Sometimes F} is used as a
label of the lattice Dy.

We give now the beginning of the tableau of orbit scalar products for Fy =
D,. The first column gives the cardinal of the Fj-orbit, the second one gives
the stabilizer, the third one gives the nature of the lattice vectors (i.e. their
components in the orthonormal basis of the space). We recall that By is a
subgroup of index 3 of Fy and |Fy| = 1152.

R2 Rs Le¢ Lio

24 B {([£1]2,02)} Ry, 2 2 3 4

24 B {([E1]%) U (2, 0%)} Ry 2 4 4 6

96 Al X AQ {(iQ, [:l:l]Q, O)} L6 3 4 6 7

144 By  {([£22 =)} U{(£3,£1,00} Ly, 4 6 7 10
(7.37)

7.2.3 The lattices D}, n >4

We already defined in section 3.4 the dual lattice of D,; there we wrote it
Dy, where w is the initial letter of the word weight. Indeed D;; is the lattice
generated by the weights of the root lattice D,,.

As in section 3.4, from the orthonormal vectors €; we define the vectors:

1 & n
— - . B >z -4\ o
W, =3 E €, W, =W, —é,, N@W")= 1 (7.38)

n n
=1

Then we can use either vector for the decomposition of D} into two cosets of
the lattice I,,:

1
D = I, U (i + L), vol(D}) = 5. (7.39)
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Dual lattices have the same point symmetry group and their Bravais groups
are contragredient. (See the definition of the contragredient representation in
2.6.)The only problem is to know whether these Bravais groups are identical
(i.e. conjugate in GL,(Z)). We have two cases to consider: n = 4, holohedry
Fy, and n > 4, holohedry B,,.

i) n = 4. Then N(&E) = 1, so their By orbit {3([+1]*)} and that of the
vectors {£é;} = {(£1,0%)} form the 24 element set S(D}) of shortest
vectors. They form a Fy orbit of roots (identical to %R4 where R4 is one
of the root orbits of Dy (see (7.37)) and they generate the lattice. The
other orbit Rs of 24 roots is exactly that of the shortest vectors of Dy4. It
is straightforward to prove that the tableau of D} is obtained from that
of D} by multiplication by % It is also easy to verify that the four vectors
Wy, —€1, €1 — €2, —€2 — €3 form a basis of D} and the corresponding Gram
matrix is 2¢(Fy). That proves that the lattice %F;; is isodual and that
F has only one Bravais class.

ii) n > 4. Then N(wi) = 2, so the set of shortest vectors S(D;;) consists
of the 2n vectors +¢é;. S(D,,) does not generate the lattice'*. Since
|S(Dy)| = (n—1)|S(Dz)| the two tableaus cannot be proportional, so for
n > 4 the holohedry B,, has three different Bravais classes, corresponding

to the Bravais groups of the three lattices D,, < I,, < Dy,.
We recall here that the weights of the root lattice D,, are the 2n vectors +¢;
of norm 1 and the 2" vectors {([+4]")} of norm %. They form two orbits of B,,.
7.2.4 The lattices D/ for even n > 6

Using the fact that the sum of the coordinates of the vectors of D,, is even, we
already verified that:

D, wh is odd
n>2, ogtlfDn whenniso (7.40)
€ D, when n is even.
So the four cosets of D,, in D},
D,, D,+w}, D,+¢é, D,+d, (7.41)

form a group Z4 when n is odd, Zs X Zo when n is even (this was already
proved in (3.12)). So when 7 is odd and > 3, we have studied the three lattices
invariant under B,,. When n is even, each of the three non-trivial cosets of D,
generates with that lattice a sublattice of volume 1, having index 2 in D} . One
of them is I,,. The others are

neven: DI =D, U W+ D,); det(Df)=1. (7.42)

11 Historically, Dz was the first known lattice not generated by a set of successively linearly
independent shortest vectors (Dirichlet’s remark).
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Since the vectors w* are exchanged by the reflection 0z, € B,, which transforms

D,, into itself, oz, exchanges the two lattices D;¥. That proves that they have
the same symmetry, i.e. the same Bravais class.

Without going into details we just formulate here the results of the descrip-
tion of D lattices in a theorem

Theorem 11 Let 0 < k € N. For n = 4k, the lattices D;} are integer self-
dual; their Bravais group is a mazximal subgroup of GL4k(Z) and one of the 4
arithmetic classes of D,, except for k=1, DI ~ Iy and k =2, D = Eg. For
n = 4k + 2, the lattices D;f are isodual with the Bravais group D, and v/2D;
are integral lattices.

7.2.5 The lattices A,

For small dimensions, n < 4, it is easy to study directly the lattices invariant
under A,. But the easiest method which can be generalized to arbitrary n is
to study these lattices as sublattices of I,41. In the space E,11 we choose
an orthonormal basis a, 3 € N, (€a,€3) = dap, where N,, denotes the set
{0,1,...,n} of the first n + 1 non negative integers, and we define

f=—— 3, N@=—0 (7.43)

n—|—1a€Nn n+1

We denote by H,, the subspace orthogonal to €. The sums of the coordinates of
the points in H,, are equal to zero. It will be useful to consider the vectors in
H,:

—

Uy =

s (7.44)

™y

and also the set of norm 2 vectors in H,,,

Ro = {Faﬁ =€y — gﬁ = Uy — ﬁg}, |R2| = TL(TL + 1) (745)

Then we verify that each reflection o7, , exchanges the basis vectors €y, €3
and leaves the others fixed. That proves that the reflections associated with the
vectors of Ry generate the group S,41 of permutations of the basis vectors of
En+1. This group leaves fixed the vector € it acts linearly and irreducibly on
the subspace H,. In this section, the n-dimensional lattices that we study are
in H,.

We first prove that the lattice A,, is the intersection of the lattice I,,41 with
H,,; explicitly:

Ap=1In1NH,. (7.46)

It is easy to verify from this definition that this lattice is an even integral lattice;
its shortest vectors are of norm 2. They form the set Ro and generate the lattice.
We can take as a basis the set of n vectors:

{(f =7 1i=@_1—&E =11 —1;} CRa i€N,], (7.47)



176 CHAPTER 7. ROOT SYSTEMS AND ROOT LATTICES

where N} = {1,2,...,n} denotes the set of the first n positive integers. The
Gram matrix of the 7;’s, ¢;; = 2d;; — (|i — j| = 1) ( for a definition of a Boolean
function, see (7.10)) is usually called the Cartan matrix of (the Lie algebra) 4,,.
Moreover we have shown again explicitly that S(A,) = R, is a set of roots,
so A, is a root lattice invariant by the symmetric group on n + 1 letters (see
(7.15)). Since the symmetry through the origin, —I, 41, is a symmetry of any
lattice, we use the notation A, for the 2(n + 1)! element group generated by
A, and —1I,, ;1. The Bravais group A, is defined by its linear representation on
H,; it is a maximal irreducible subgroup of GL,(Z). The set of roots Ro forms
an orbit of A,,. Since the permutation of a, 3 in (7.45) has the same effect as a
change of sign, R is also the orbit A,, : A,,_2 of A,,.

From R we can extract another interesting basis:

ieNt, b=¢ —a. (7.48)

If we denote by J, the n X n matrix all of whose elements are 1, the Gram
matrix corresponding to the basis (7.48) is:

Q(An) = In + Jn, with (Jn)ij =1. (749)

7.2.6 The lattices A}

It is easy to compute the dual basis of (7.48) and the corresponding quadratic
form:

- 1 1

To find the set W of weights of the root lattice A,, one has to look for the
elements of A} whose scalar product with the roots 7,z are £1, 0. An easy
computation leads to (we recall that C is a strict inclusion):

0#£ACN,, W={wa=) da}, wWatiigz=0; W =22"-1),
acA
(7.51)
where A is the complement in A, of the subset .A.
The set W splits into n orbits of the Weyl group A,,, each orbit containing all
w4 whose defining subsets A have the same cardinal |A| = k; we denote these
orbits by W and note that [Wjy| = (”Zl) We can choose as a representative

of these n orbits:
k

W =Y i1, 1<k<n. (7.52)
i=1
These n vectors form the dual basis of that of A,, defined in (7.47) (indeed,
(W;,7;) = di5); so the W;’s define an A’ basis.
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Table 7.2: Three and four dimensional lattices associated with root systems of
reflection groups.

n=3
Group | Order Type Graph
Bs 48 680
As 8 12140 L J
A; 48 14248 X
n=4
Group Order Type Graph
By 384 8.16-0
Fy 1152 24.24-0

Gy1Gy | 288  12.36-12
Gy ®Gy | 144  30.102-36
Ay 240 20.30-0
A 240 30.120-60

BOEX@C

7.3 Low dimensional root lattices

To conclude the chapter on root lattices we return to the examples of three and
four dimensional lattices which are at the same time root lattices. Table 7.2
gives the group, its order, combinatorial type, and graphical visualization.
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Chapter 8

Comparison of lattice
classifications

In previous chapters we have discussed translation lattices from the point of view
of their symmetry, their Voronoi cells and associated quadratic forms. In this
chapter we analyze the applications of these different approaches to the most
evident and straightforward physical example, the description and classification
of periodic crystal structures, and compare the advantages and disadvantages
of alternative approaches and possibilities of their generalizations to arbitrary
dimension.

We follow in this analysis the works by Michel and Mozrzymas [76] and
Michel [75, 73, 74].

We remember that one-to-one correspondence exists between the set B, of
translation lattice bases defined in the Fuclidean space R™ with a fixed or-
thonormal basis {e;}, e;e; = d;;, and elements of GL,(R). Every basis b € B,
defines a lattice L,,

L, = {Z?’Libi, n; € Z}, (81)
i=1
with all other possible bases being of the form
b; = Z mijbj, m;; € GL, (Z) (82)
j=1

The relation (8.2) shows that £,,, the set of lattices of dimension n is the variety:
L, =GL,(R): GL,(Z) = B,|GL,(Z). (8.3)

Let us denote LY the set of lattices obtained from L,, by an orthogonal trans-
formation, i.e. the orbit of the O(n) group action on £,,. The corresponding set
of orbits we denote by L)

LY = £,|0(n). (8.4)

179
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The simplest initial classification of lattices by symmetry is given by the stabi-
lizers of orbits of the O(n) action. The system of strata, £,]|O(n) of the O(n)
action on the set £, of lattices defines crystal systems. Note that a relatively
small number of point symmetry groups (subgroups of O(n)) can appear as
stabilizers of O(n) orbits on the set of lattices.

From equations (8.2), (8.3) we deduce that the set of O(n) orbits £? is the
set of double cosets: GL,(Z)\GL,(R)/O(n). This means that if b is a basis of
L, the set of bases of lattices LY is the double coset

GL,(Z)bO(n) = {mbr—*,Vm € GL,(Z),¥r € O(n)}. (8.5)

Alternative interpretation of this double coset is an orbit of the direct product
GL,(Z) x O(n) acting on GL,,(R) through b — mbr~!. The stabilizer H of b
is the subgroup {(m,r) € GL,(Z) x O(n), mbr—* = b}.

Let 7, and 7, be the canonical projections of GL,(Z) x O(n) on its fac-
tors: w,(m,r) = m, mo(m,r) = r. The geometrical interpretation of H is as
follows: 7,(H) is the group of orthogonal transformations r which transform
the lattice L,, into itself because any basis m’b of L,, transforms into the basis
m/br~! = m’mb. The stabilizer H is the point symmetry group of the lattice
(holohedry of the lattice is the historical terminology). The stabilizer is defined
up to conjugation in GL,(Z) x O(n); moreover, there are the isomorphisms:
7. (H) ~ H ~ m,(H). We have noted that the conjugation class [7,(H)]o()
defines the stratum named the crystal system. There are four crystal systems in
dimension two, seven crystal systems in dimension 3, 33 (47 taking into account
enantiomorphic groups) crystal systems in dimension 4. In dimensions 5 and 6
there are respectively 59 and 251 crystal systems.

The classification of stabilizers [r.(H)]qr, z) up to conjugation in G L, (Z)
defines the Bravais class of the lattice L,,. We can define Bravais classes of
lattices also as strata Q,||GL,(Z) of GL,(Z) action on the set of quadratic
forms, Q,,, associated to all lattices LY.

Let b be the basis of lattice L,, and bb" a symmetric positive definite matrix
(=quadratic form) with elements (bb");; = b;b;. We denote Q,, the set of
positive quadratic forms which is a convex cone. The polar decomposition of
invertible matrices: b = VbbT s = sVbTb, s € O(n) shows that

Q, = GL,(R) : O(n) = GL,(R)|O(n). (8.6)

This means that Q,, can be identified with left cosets of O(n) in GL,(R), or
else as a space of orbits of O(n) acting by left multiplication on GL,(R). The
action of GL,(Z) x O(n) on b € GL,(R) can be transported to the action on
bb" € Q,,. The group O(n) acts trivially and GL,(Z) acts through:

Vm € GL,(Z), bb' +— mbb' m?. (8.7)

The orbit of GL,(Z) is the set of quadratic forms associated to all bases of all
lattices of L. This allows us to give an alternative definition: Bravais classes of
lattices are the strata Q,||GL,(Z) of the action (8.7), with the quadratic form
bb" being associated to the base b of L.
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Figure 8.1: A fundamental domain of the action of GL2(Z) on the cone of pos-
itive quadratic forms ¢ or, equivalently, on intrinsic lattices. Positive quadratic
forms are parameterized by ¢ = (q11 — q22)/(Tr @)™, 1 = 2q12(Tr q) 7}, where
Tr ¢ = q11 + g22 > 0. With this parameterization the quadratic form becomes
qg = (1/2)(tr q)(I2 + o3 + no1) with o1, 03 being usual Pauli matrices. The
positivity implies €2 + n? < 1. The fundamental domain is the triangle HQC
minus the vertex C(1,0) which belongs to the surface of the cone. H(0,1/2)
represents the p6mm lattices, Q(0,0) the pdmm lattices, the side QC' the p2mm
lattices. The two sides QH and HC represent cmm lattices with, respectively,
four shortest vectors (half of the diagonal is shorter than the sides of rectangle)
and two shortest vectors (half of the diagonal is longer than one of the sides).

The fundamental domain of the stratification of the cone of positive quadratic
forms by GL,(Z) action is shown in figure 8.1. Each stratum corresponds to
the Bravais class of two-dimensional lattices. The numbers of Bravais classes in
dimensions d = 1,2, 3,4, 5,6 are respectively 1, 5, 14, 641, 189, and 841 [81, 89].

In order to demonstrate the relation between Bravais classes and point sym-
metry groups of lattices (i.e. crystal systems) we note first that there exists
a natural mapping ¢ from the set of conjugation classes of finite subgroups of
GL,(Z) < GL,(R) into subgroups of O(n).

This statement follows from the well known fact that all finite subgroups
of GL,,(R) are conjugate to a subgroup of O(n) < GL,(R), and the existence
of natural mapping from the conjugation classes of subgroups of GL,(Z) <
GL,(R) into subgroups of GL,,(R). If two finite subgroups of O(n) are conjugate
in GL,(R), they are conjugate in O(n) as well. This gives the correspondence

(b ([WZ(H)]GLn(Z)) = [TrO(H)]On' (88)

110 Bravais classes are split into enantiomorphic pairs and if one counts enantiomorphic
forms as different, there are 74 Bravais classes in dimension 4.
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The restriction of ¢ to Bravais classes gives a mapping ¢ of {BC},, from the set
of Bravais classes, on { BC'S},, the set of crystal systems in n-dimensional space.
(Louis Michel [76, 75] uses (BCS)=Bravais Crystallographic Systems instead of
simply Crystal Systems in order to stress the difference with the “crystal family “
notion widely used in crystallography.) Note, however, that not all conjugation
classes which are inverse images ¢! of crystal systems are Bravais classes.

8.1 Geometric and arithmetic classes

We have seen that very small number of finite subgroups of O(n) could be
realized as symmetry groups of a translation lattice, i.e. to be a point group
defining the crystal system (a holohedry). At the same time any subgroup of
a holohedry group can be a point symmetry group of a multiregular system of
points or, in more physical words of a crystal formed of several types of atoms.
Point symmetry group of a n-dimensional crystal defined up to conjugation in
O(n) is named a geometric class. Geometric classes form a partially ordered set
which includes all the holohedries. Partially ordered set of three-dimensional
geometric classes is represented in figure 8.2. It includes, in particular seven
groups which are the holohedries and characterize the crystal systems. In 3-
dimensional space there are 32 geometric classes or 32 crystallographic point
groups. The adjective “crystallographic” is used to stress that the existence
of a translation lattice imposes certain restrictions on subgroups of O(n) to
be a point symmetry group of a lattice. In dimensions 4,5, and 6 there are
respectively 227, 955, and 71032 geometric classes. If one counts enantiomorphic
pairs as different, then in dimension 4 there are 227+44 different geometric
classes.

It should be noted that different geometric classes can be isomorph, i.e.
they correspond to the same abstract group. Among the 32 geometric classes
for three-dimensional crystals there are only 18 non-isomorph abstract groups.
The isomorphism relation between geometric classes is illustrated in Table 8.1.
In dimension two among 10 geometric classes there is only one pair of isomorph
groups, namely Cy ~ Cs. In dimensions 4,5, and 6 the numbers of abstractly
non-isomorph geometric classes are respectively 118, 239, and 1594.

We have described all possible geometric classes by looking for all subgroups
of point groups characterizing crystal systems (symmetry of translation lattices).
We can also study conjugacy classes of finite subgroups of GL,(Z), i.e. all sub-
groups of Bravais groups. The conjugacy classes of finite subgroups of GL.,(Z)
are named arithmetic classes. Arithmetic classes form a partially ordered set
which includes, in particular, all Bravais groups.

It is known that the number of conjugacy classes of finite subgroups of
GL,(Z) is finite. For n =1,2,3,4,5,6 this number is 2, 13, 73, 710(+70), 6079,
and 85311 (+30) [89]. In parenthesis the number of enantiomorphic pairs is
indicated.

2For dimension 6 the number of geometric classes given in [89] is 7104.



New Version, January 2014 BZ LZbookFull_R.tex 23 février 2015

Table 8.1: The 32 crystallographic geometric classes and their 18 isomorphy
classes. The isomorphy classes are listed in column 1 and are defined as di-
rect products of cyclic groups Z,, dihedral groups ¢y, permutation group of
four objects S4, and its subgroup of even permutations A4. In column 2 the
corresponding geometric classes are listed in ITC and Schonflies notations.

Isomorphic Geometric

1 1=0C

ZQ I:Ci,m:Cs,2:Cg

ZQXZQ 2/m:Cgh,mm2:Cgv,222:D2
ZQ X Z2 X Z2 mmm = Dgh

Zs 3=0Cs

Z2><Z3 6206732031'5567620311

Zy 4= 04, 4= Sy

ZQ X Z4 4/m = C4h

C3p 3m = Cgv, 32 = D3

Z2><Z2><Z3 6/m206h

Cqy dmm = C4v, 422 = D4, Zlm2 = ng
Cay X Zo 4/mmm = Dy

C3y X ZQ 6mm = CGvu 622 = DG, i_’)m = D3d, 6m2 = Dgh
C3y X ZQ X Z2 6/mmm = D6h

Ay 23=T

A4 X ZQ mi_’y = Th

84 4_13771 = Td, 432 =0

Sy X Zs m3m = Op
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Figure 8.3: A surjective map {AC}y — {GC}s from the partially ordered set
of Arithmetic Classes, i.e. conjugacy classes of finite subgroups of GL2(Z) (the
right part of the diagram), to partially ordered set of Geometric Classes, i.e.
conjugacy classes of finite subgroups of O(2) (the left part of the diagram), for
two-dimensional lattices. Bravais classes form a subset of the arithmetic classes;
they are indicated by blue on the right part. Crystallographic Bravais systems
(crystal classes = holohedry) form a subset of the geometric classes; they are
indicated by blue on the left part.

The partially ordered set of arithmetic classes for each dimension can have
several maximal elements. These maximal arithmetic classes are always the
Bravais groups. All arithmetic classes can be described as a subgroups of max-
imal ones. The same is naturally valid for Bravais groups. Thus it is impor-
tant to know the complete list of maximal arithmetic classes (i.e. maximal
finite subgroups) of GL,(Z). The number of maximal arithmetic classes for
n=1,2,3,4,5is 1, 2,4, 9, and 17.

There exists a natural map between arithmetic and geometric classes in the
d-dimension. Figure 8.3 illustrates this map in dimension two.

For three-dimensional lattices the correspondence between arithmetic and
geometric classes is represented in table 8.2.
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Table 8.2: Correspondence between 3D geometric and arithmetic classes. Bra-
vais crystallographic systems (holohedry) are shown among geometric classes by
yellow hatching. Bravais classes are differentiated among arithmetic classes by
green hatching. Maximal geometric and arithmetic classes are underlined.

Group order Geometric classes

Arithmetic classes

48 Oy
24 O P432, F432, 1432
T Pm3, Fm3, Im3
Ty P43m, F43m, I143m
Dgp,
16 Dyp,
12 T P23, F23, 123
D34
061;
Cen 6 -
D3y, P62m, P6m2
Dg P622
8 Cyy Pdmm, I4mm
Cyp, P4/m, I/mm
Doy P42m, P4m2, I42m, I4m2
Dy PA22. 1422
Dap
6 Csy R3m, P3m1, P31m
Ds R32, P321, P312
Se R3, P3
Csn P6
Cs P6
4 Cs Pa, 14
Sy Pi, 14
Co, Pmm2, Cmm2, Amm2, Fmm?2, Imm?2
Dy P222, 0222, F222, 1222
Con
3 Cs
2 Cy
Cs
C;
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8.2 Crystallographic classes

Geometric and arithmetic classes characterize only partially the symmetry of a
multiregular system of points. The complete infinite discrete symmetry group
which includes all translations as well is named the crystallographic space group.
The crystallographic space groups are the subgroups of the Euclidean group Eug
which contain a d-dimensional lattice of translations.

The Euclidean group Fug is the semi-direct product of the orthogonal group
by the translations. Applying the construction of a semi-direct product to an
arithmetic class (P# finite subgroup of GLq(Z)) and translation lattice we can
define a space group. The so obtained space group does not depend on the choice
of the group from a given arithmetic class. Any conjugated group mP*m~1!,
with m € GL4(Z), results in the same space group. But such construction of
space groups gives only a part of all possible space groups.

The space groups obtained as semi-direct products are named symmorphic in
crystallography. Their number (and notation) coincides with the number (and
notation) of arithmetic classes. In dimension 2 and 3 there are respectively 13
and 73 symmorphic space groups. In general, each arithmetic class [P]gz,(z),
i.e. conjugacy class in GL,(Z) of a point symmetry group P allows us to
construct a set of crystallographic groups by including lattice translations. This
procedure is named group extension. Equivalence classes of extensions form
second cohomology group H2(P,L,). A formal mathematical description of
group extensions can be found in [69]. (Note that the first set of lectures on
applications of cohomology of groups in physics was given in a Physics summer
school by Louis Michel in 1964.) Explicit construction of group extensions for
two-dimensional and three-dimensional space groups via intermediate definition
of non-symmorphic elements is discussed in [75]. Note however, that if the
space group contains nonsymmorphic element, the group is non-symmorphic,
but the contrary is not right. In dimension three there are two non-symmorphic
groups, namely 7212;2; and I2;3 (given in ITC notation) which do not have
non-symmorphic elements.

We mention here that the total number of crystallographic space groups
in dimensions 2, 3, 4, 5, and 6 is respectively : 17, 219(+11), 4783(+111),
222018(+79), and 28927922(+7052) [89]. In parenthesis the number of enan-
tiomorphic pairs of space groups is given.

We can now summarize the relations between different symmetry classes
introduced in this section for multiregular system of points.

The diagram below uses the notations :
{CC} - crystallographic classes;
{AC?} - arithmetic classes;
{GC} - geometric classes;
{BC'} - Bravais classes;
{BCS?} - Bravais crystallographic systems.
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(ccy - {40y % (6o}
NB Ly
(BC} -2 {(BCS)

8.3 Enantiomorphism

We have noted on several occasions that numbers of different objects given in
mainly physical and mainly mathematical literature turn out to be different.
One of the sources of such difference is the different treatment of enantiomor-
phic objects [42, 89]. The best known example of that kind is the following
“mathematical “ and “physical“ statements.

i) There exist 219 abstractly non-isomorph three-dimensional crystallographic
(Fedorov or space) groups (typically mathematical statement).

ii) There exist 230 crystallographic (Fedorov or space) groups (typical state-
ment in crystallography or in physics).

The difference between these two statements is due to fact that two groups
written by the same set of matrices but in frames of different orientation can be
considered as equivalent or as different. Such two groups form an enantiomor-
phic pair. In particular, there are 11 enantiomorphic pairs of crystallographic
three-dimensional groups and this gives the explanation of reference to 219 or
to 230 3D-groups.

We have also mentioned that in the general n-dimensional case the enan-
tiomorphic pairs of Bravais lattices, of arithmetic and geometric classes, of Bra-
vais crystal systems exist.

Let us discuss this subject briefly by starting with the definition of enan-
tiomorphic or chiral objects which is not very precise but allows us to unify the
treatment of very different objects and constructions from the point of view of
enantiomorphism.

Two objects that are equivalent by an affine transformation but not by an
orientation preserving transformation are called an enantiomorphic pair, each
member of an enantiomorphic pair is said to be enantiomorphic or chiral.

Figure 8.4 shows two- and three-dimensional examples of a pair of objects
which can be easily transformed one into another by applying reflection which
is an improper symmetry transformation. At the same time there are no two-
dimensional or three-dimensional orientation preserving transformations be-
tween members of each pair. Note, however, that if two dimensional objects are
considered as situated (immersed) in three-dimensional space a two-dimensional
reflection can be realized as a pure three-dimensional rotation.

Now, before turning to a discussion of enantiomorphic symmetry classes we
need first to be precise about what we mean by equivalence under affine trans-
formations or under orientation preserving affine transformations. Equivalence
between symmetry groups or classes means that two objects belong to the same
conjugacy class of the group G used for the classification. In the case of arith-
metic classes the group G is taken to be GL,,(Z). For geometric classes we look
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Figure 8.4: Enantiomorphic pair or objects in two-dimensional space (left) and
in three-dimensional space (right).

for equivalence within the GL,,(Q) group. The most fine classification into space
group types (crystallographic classes) is done within the affine group A(n, R).

An equivalence class is given as the orbit of a member H of the class under
a chosen group G of transformations. If group G contains a transformation o
that does not preserve the orientation the group G can be split into a disjointed
union of the two cosets with respect to the subgroup G of orientation preserving
transformations:

G=GTUo-G". (8.9)

The group H and its orientation-reversed transform H' := ¢ 'Ho form an
enantiomorphic pair if and only if H’ is not contained in the orbit of H under
gt.

Equivalent more formal formulations are:

Proposition 38 A group H is enantiomorphic if and only if the normalizer
(stabilizer) N(H) in G is contained in GT.

A group H is not enantiomorphic (achiral) if and only if the normalizer N(H)
in G contains an orientation-reversed transformation.

Proof Assume that H and its transform H’ do not form an enantiometric
pair, then H’ is contained in the orbit of H under G and thus there exists
go € G* such that gy 'Hgo = H' = 0~ ' Ho. This shows that o-g; ' € N(H) and
since 0-gy ' € G, N(H) € G. On the other hand, if N(H) Z G*, there exists
g1 € N(H) with g1 ¢ G*. We then have g1 -0 € G" and (g1 - o) 'H (g1 - 0) =
oY gy 'Hg1)o = 0="Ho = H', thus H' is contained in the orbit of H under
g+. 0.

Let H be an arbitrary point group. If the normalizer N (H) of the group H in
the group of all symmetry transformations G includes an improper rotation (with
determinant —1), then the rotations of group H can be represented by the same
matrices in frames with different orientation and vice versa. In fact, suppose
that in some frame F the rotations of group H are described by the matrices
{E,A,B,...} and that C is the transformation C' € N(H) with det(C) =
—1. Such transformation C takes frame F into the frame F’' with opposite
orientation. In F’ the rotations of the group H are described by the matrices
{E,C7YAC,C~1BC,...}, and since C € N(H) the transformed set of matrices
coincides with the initial one. Consequently, the rotations of group H in frames
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of different orientation are described by the same matrices. The converse is also
true.

In an odd-dimensional space the normalizer of any point group contains an
improper rotation (for example, one can take as such a transformation the re-
flection in a point). Therefore, enantiomorphic pairs of point groups do not
exist in odd-dimensional spaces. One can easily verify that there are no enan-
tiomorphic point groups in two-dimensional space as well because the normalizer
of any two-dimensional symmetry group C,, always contains a reflection. The
conjugation by reflection simply leads to reversing the direction of rotation.

8.4 Time reversal invariance

Depending on physical properties we are interested in one or another classifi-
cation of lattices and crystals and it is important to find the most appropriate
classification for a concrete subject under study. Many experiments deals with
functions defined on the Brillouin zone and consequently it is important to know,
in particular the symmetry properties of functions defined on the Brillouin zone.
These properties are strongly related to the action of the space symmetry group
on the Brillouin zone.

Let us recall briefly the definition of the Brillouin zone and the space group
action on it.

We have defined L*, the dual lattice of the lattice L as the set of vectors
whose scalar products with all £ € L are integers. In physics one prefers to con-
sider the reciprocal lattice, which is 2w L*. This lattice is relevant to diffraction
experiments (with X-rays, neutrons, electrons) with crystals possessing transla-
tion lattice L. It corresponds to the Fourier transform; the momentum variable
is usually denoted by k and the vector space of k’s is called the momentum
or the reciprocal space. A unitary irreducible representation (unirrep) of the
translation group is given by k(z) = exp[i(k - x]. Here we are interested in the
subgroup of the translation group R? defined by the lattice of translations L.
By restriction to L, two unirreps k and k’ of R? such that k’ —k € 2rL*, yield
the same unirrep of L. So the set L of inequivalent unirreps is

L3l k() =e** L ={kmod2rL*}. (8.10)
Equivalently, with a choice of dual bases (see section 3.4)

0= pbj. k=Y bl ekt i€ Z kjmod2r. (8.11)
J J

The set L of the unirreps has the structure of a group, with the group law
k= (k(l) + k(2)> mod 27 L* & k; = (k](-l) + k](-2)> mod 27. (8.12)

This group is called the dual group of L by mathematicians and the Brillouin
zone (=BZ) by physicists. It is isomorphic to the group

[ =BZ~ UL (8.13)
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We denote by k the elements of BZ in order to distinguish clearly between k
and k =: k mod 2rL*. The Bravais group P7 of L acts on BZ through its
contragredient representation Pf =: (P#)~!. More generally, since by definition
of BZ the translation group acts trivially, a space group G acts through its
quotient

G*LaG/L= P> (8.14)

So the space groups belonging to the same arithmetic class P? have the same
action. As usual, we denote by Gy, the stabilizer in G of k € BZ and Pg the
stabilizer in P?*. The latter stabilizer depends only on the arithmetic class;
beware that for a given k the stabilizers G, = §~1(PZ) for® the different space
groups of the same arithmetic class P* are, in general, non-isomorphic. Notice
that the G’s are also space groups.

Detailed analysis of the group action on the BZ is done in [75], chapters 4,5.
Here we discuss only the effect of the time reversal operation, 7. In classical
Hamiltonian mechanics if, at a given instant one reverses the momenta, the
trajectories are unchanged but they are followed in the reverse direction. That
symmetry has been called time reversal, we denote it by 7. The fundamental
contribution to time reversal representation in quantum mechanics is done by
Wigner [98] who showed that 7 is represented by an anti-unitary operator.
To see the effect of the time reversal on the space group action on BZ it is
necessary to note that the change of sign of momenta transforms a unirrep of
the group L into its complex conjugate. Taking into account that BZ is the
set of inequivalent unitary irreducible representations of L we conclude that the
change of sign of momenta corresponds on BZ to the transformation ko —k.
For simplicity we study here 7 only when the spin coordinates do not intervene
explicitly. Time reversal invariance is a symmetry of many equilibrium states.
As a consequence of that the real functions on BZ describing their physical
properties, e.g. the energy function, must satisfy the relation E(k) = E(—k).
The effect of this symmetry can be obtained by enlarging PZ, the group acting
effectively on BZ with —I;, when P, does not already contain the symmetry
through the origin. We denote this enlarged group by PZ, this is simply PZ for
the 7, 24 arithmetic classes (for d = 2,3) which contain the symmetry through
the origin.

For two-dimensional systems adding time reversal decreases the number
of arithmetic classes to study from 13 till seven (see table 8.3). For three-
dimensional systems the number of different arithmetic classes decreases from
73 till 24 (see table 8.4).

3The map 6 is not invertible, so 6! alone has no meaning; but it is an accepted tradition
to denote 9*1(Pk) the counter image of P by 6, i.e. the unique subgroup of G such that
0(Gr) = PZ.
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Table 8.3: Correspondence between 2d-arithmetic classes before and after inclu-
sion of time reversal invariance. Five arithmetic classes of the Bravais groups
are indicated between ().

Class with inversion

Class without inversion

(»2) pl
(p2mm) pm
(c2mm) em

p4
(pdmm)

pb p3
(pbmm) p3ml, p3lm

Table 8.4: Arithmetic classes (in dimension 3) obtained by adding —I3, corre-
sponding to inclusion of time reversal invariance. The numbers at the left of
arithmetic class show the number of space groups belonging to each of the 24
arithmetic classes in the case of time reversal symmetry. The 14 arithmetic
classes of the Bravais groups are given between ().

(P1)
(P2/m

(P4/mmm)
I4/m
(14/mmm)
R3

P1
P2, Pm
C2,Cm
P222, Pmm?2
C222, Cmm?2, Amm?2
F222, Fmm?2
1222, Imm2
P4, P4
P422, P4mm, P42m, P4m2
14,14
1422, PAmm, 14m2, 142m
R3

© N~ o

— =
o “'

S~ 00 W

(R3m)
P3
P31m
P3ml
P6/m
(P6/mmm)
Pm3
(Pm3m)
Fm3
(Fm3m)
Im3
(Im3m)

R32, R3m
P3
P312, P31m
P321, P3m1
P6, P6
P622, P6mm, P6m2, P62m
P23
P432, P432
F23
F432, F43m
123
1432, I43m
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Table 8.5: Splitting of combinatorial types of 2D-lattices into Bravais classes.
The dimension of the region of the cone of positive quadratic forms is given
in the last column. For the ¢2mm Bravais group two connected components
are shown. * Lattices with four shortest vectors (half of the diagonal is shorter
than the sides of the rectangle).  Lattices with two shortest vectors (half of the
diagonal is longer than two sides of the rectangle).

Bravais group Hexagonal cell Rectangular cell Dimension
pbmm @ 1
pdmm 1
c2mm® o@. 2
c2mmb @ 2

p2mm 2

p2 @ 3

el
R

DY
B

8.5 Combining combinatorial and symmetry clas-
sification

We have seen in chapter 6 that translation lattices can be characterized by the
combinatorial type of their Voronoi parallelohedron. In its turn each combi-
natorial type of Voronoi cells can be additionally split into different symmetry
classes (Bravais classes). Voronoi cells of the same combinatorial type can have
different symmetry groups and moreover the same symmetry group can act
differently on the face lattice of a given Voronoi cell.

The classification of Voronoi cells into combinatorial types gives for d = 2
only two combinatorially different polygons, a hexagon (which is generic or
primitive) and a rectangle. For d = 3 there are five combinatorially different
polytopes (see chapter 6).

The splitting of a combinatorial type of 2D-lattice into Bravais classes is
shown in Table 8.5 (see also figures 8.1 and 6.13). It should be noted that table
8.5 counts only those regions of the cone of positive quadratic forms which belong
to a fundamental domain with respect to GL2(Z) action, or in other words to
reduced quadratic forms. The c2mm Bravais group appears twice in table 8.5
because the fundamental domain of the GL2(Z) action on the cone of positive
quadratic forms includes two connected components formed by hexagonal cells
with ¢2mm symmetry (see figure 8.1). In order to deform continuously the
c2mm cell from one connected component into the c2mm cell belonging to
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Table 8.6: Three dimensional Voronoi cells. Column 1 gives the Delone symbol
(see text). Column 2: the dimension of their domain in the cone of positive
quadratic ternary forms, C;(Q)s. Column 3 : the number of hexagonal and
quadrilateral faces. Columns 4, 5, 6 : |F| the total number of faces, |E| the
number of edges, |V| the total number of vertices. Column 7 : the number
of vertices of valence 3 and 4. Column 8 : |C| the number of corona vectors.
Column 9 : the number of shortest vectors in each of the 7 non trivial L/2L
cosets.

De

F—

one dim 6-4 |F| |E| |V|] 3-4 |C] L/2L

6 8-6 14 36 24 24-0 14 2222222
5 4-8 12 28 18 16-2 16 2222224
0-12 12 24 14 8-6 18 2222226

oSN

2-6 8 18 12 12-0 20 2222444

b D> > > >

3 0-6 6 12 8 8-0 26 2224448

another connected component, we need to construct a path which crosses at
least p6mm stratum, or goes through a p2 generic stratum. In dimension 2 the
correspondence between combinatorial and symmetry classifications is rather
simple. Each Bravais group is compatible with only one combinatorial type of
the Voronoi cell.

Five combinatorial types of three-dimensional Voronoi cells are described in
table 8.6 (see also figure 6.13). Note that to see the correspondence between
the Delone notation used in table 8.6 and the graphical representation used in
figure 6.13 it is sufficient to simply remove edges with black points from the
Delone representation.

The systematic procedure of simultaneous analysis of combinatorial type and
the Bravais symmetry type of the lattices in dimension 3 was realized by Delone
on the basis of initial Voronoi studies (see also [32, 35]).

To characterize the three-dimensional lattice given by three translation vec-
tors a,b,c, Delone uses instead of the six standard parameters a2, b2, c2,
g=(a-b), h=(a-c), k = (b-c), the ten parameters associated with vec-
tors a,b,c and d = —(a+ b + ¢). These parameters, are : the squares of the
lengths of vectors a, b, ¢, d, denoted by a2, b2, ¢, d2, and their scalar products
g, h,k,I,m,n introduced earlier by Selling and used to describe reduced forms.
These 10 parameters are naturally linearly dependent. The sum of numbers in

|a b ¢ d
a | a? k h l
one line of the following table b | & ®* g m iszero. The advantage of
c h g 2 n
d l m n d?
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using these ten parameters is the clear visualization of different combinatorial

and symmetry types of Voronoi cells.
b

A general Delone symbol ¢ 4 could be imagined as a projection
of a tetrahedron ABC'D with vertices corresponding to ends of the vectors
a,b,c,d. The edges are labeled by numbers g, h, k,1, m,n. If one thinks of this
symbol as a three-dimensional model of a tetrahedron its vertices and edges
turn out to be equivalent.

Delone has shown that 24 sorts of lattices exist. They are nowadays refer-
enced as 24 Delone sorts of lattices. Without going into details of mathematical
justifications (see [42, 73]) we summarize here just the main results explaining
the graphical representation of Delone symbols for lattices of different combina-
torial type and of different symmetry.

Different combinatorial types of Voronoi cells are described by Delone sym-
bols with 0, 1, 2, or 3 zeros on the edges of the Delone symbol. It is not possible
to put 4 zeros because any quadratic form in Q3 with only two A’s has a zero de-
terminant. For the same reason it is not possible to put 3 zeros on 3 edges with
a common vertex. To have only five different possibilities for the distribution
of zeros on the edges (as table 8.6 shows where zero on the edge is symbolized
by a black dot) it is sufficient to check that two possible distributions of three
zeros give the same combinatorial type, namely a rectangular parallelepiped.

In order to characterize Bravais symmetry it is sufficient to indicate the
Delone symbol edges equivalent by symmetry. This is typically done by putting
the same number of dashes on equivalent edges. Table 8.7 gives the complete
description of 24 sorts of Delone lattices through their Delone symbols and the
distribution of Delone sorts into combinatorial and symmetry (Bravais) types.

From table 8.7 it follows that nine Bravais classes are compatible each with
only one combinatorial type of Voronoi cell. On the other hand, for the C2/m
Bravais group there are two different Delone sorts of the combinatorial 14-24
type and two Delone sorts of the combinatorial 12-14 type. This illustrates the
existence of two alternative Cop, group actions on the same combinatorial type
of the Voronof cell.

With increasing dimension the number of combinatorial types of Voronoi
cells increases rapidly, as well as the number of Bravais classes. Thus the de-
tailed classification performed by Delone for three dimensional lattices and even
more simpler classifications into individual combinatorial types or into symme-
try types can become unrealizable or even unutilizable because of extremely
large number of members. The reasonable classification should be based on new
more crude invariants and types or on statistical distributions over different
types of lattices from one side and on the description of some extremal types of
lattices (for example with maximal symmetry).
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Table 8.7: A list of the Delone symbols describing the Voronoi cells of the lattices
belonging to a Bravais class. The combinatorial description of the Voronoi cell
is given by the symbol |F| — |V| indicating the number of facets |F'| and the
number of vertices |V|. The first column lists the Bravais classes. The last
column gives the dimensions up to dilation, of the different domains of cells in
the cone of positive quadratic forms C4(Q3).

Voronoi | 14-24 12-18 12-14 812 6-8 | dim.

Cubic P ﬁ 0
Cubic F & 0
Cubic I ﬁ 0
Hexa P ég 1
Trigo R ﬁ & 1,1
Tetra P & 1
Tetra I ﬁ & 1,1
Ortho P & 2
Ortho C ﬁ 2
Ortho F & 2
Ortho I & & & 2,2, 1
Mono P & 3
Mono C & & A 3,3,2
Mono C & & 3,2
Tricli P A A A 5,4, 3




Chapter 9

Applications

Lattices appear naturally in rather different domains of natural science and
formal mathematics. The goal of the present chapter is to discuss briefly several
examples of problems which are tightly related with the lattice constructions,
lattice classifications, and use lattices as an initial point for more elaborated
mathematical and physical models and processes.

9.1 Sphere packing, covering, and tiling

One of the most simply formulated practical problem leading to the study of
lattices is the classical problem of packing spheres (or balls). We can think
about canon balls or about oranges of the same dimension and try to find
the packing that maximizes the density assuming that the dimension of the
box to pack the balls is infinitely bigger than the ball dimension. To make
this “practical“ problem more mathematically sound we can generalize it to
an arbitrary dimension and to look for solutions for more restricted problem
by imposing the periodicity condition on packing (lattice packing) and more
general packing without periodicity.

The solution of this problem is trivial in dimension 1 (see figure 9.1). One-
dimensional spheres (~ intervals) fill completely one-dimensional space (line).

The solution for the dimension two is also simple (we need to pack disks on
the plane, see figure 9.2). Each disk can be surrounded by six neighboring discs.
Continuing this local packing we get the hexagonal lattice which is the densest
packing of the 2-D discs.

The density of hexagonal packing can be easily calculated by noting that for

Y Vi Y Y
A O — XK@ —x—0—x

Figure 9.1: Densest packing of 1-dimensional spheres on a line.
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Figure 9.2: The most dense packing of two-dimensional spheres (discs) on a
plane is a hexagonal lattice packing.

discs of radius R, each elementary cell is a rhomb with diagonals equal 2R and
2v/3R. The area occupied by the disk in each elementary cell is equal exactly
to the area of one disk, mR? (two sectors of 2/6 and two sectors of 2/3). The
area of the elementary cell is 2¢/3R2. Thus the density is 7/(2v/3) ~ 0.9069.

In dimension three the problem of sphere packing is less trivial. The origin
of the difficulty can be easily understood if we take one ball and try to put
around it the maximal number of identical balls touching it. It is easy to check
that it is possible to put 12 balls in contact with one ball but there is still some
free space between 12 balls and they can move rather freely being always in
contact with the central ball. It is not easy to prove that it is impossible to put
the thirteenth ball in contact with the central one. The contact number (i.e.
the maximal number of balls which can be put in contact with one ball) is not
known for the majority of dimensions d > 4. It is known that contact numbers
in dimensions 8 and 24 are respectively 240 and 196560. These solutions are
known because in dimensions 8 and 24 the arrangement of balls around one
central ball is unique. These arrangements correspond to the lattice Fg and to
one of the forms of the 24-dimensional Leech lattice.

At the same time it is easy to suggest the packing for 3-D balls (in fact
even infinity different versions) which can be thought to be the densest packing.
We can start with one layer of balls forming a hexagonal 2D-lattice. Then the
next layer can be posed in such a way as to put balls in cavities of the second
layer, and so on ... . As soon as the number of cavities is twice the number
of balls there are two ways to position the next layer. The periodic structure
with the shortest period corresponds to the sequence of layers ABAB.... This
packing is named the hexagonal close packing. The periodic packing of the
form ABCABC... corresponds to the structure named face-centered cubic lattice
(see figure 9.3). The density of all packings corresponding to any sequence
(periodic or not) of hexagonal layers is 7/4/18. Each ball in these packings
has 12 neighbors. Although there exist a number of different proofs that the
mentioned above packings are the densest ones among lattice packings, only
recently has a computer assisted proof appeared that this statement remains
valid for arbitrary non-lattice packings in three-dimensional space.
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Figure 9.4: Covering plane by discs. Center of discs form hexagonal (left) and
square (right) lattice. Hexagonal covering is less dense than the square lattice
covering.

Nowadays, the solution for the densest packing of spheres is known in many
dimensions. The density of the known densest packing varies with dimension
in rather irregular fashion. It is also not clear in advance what kind of lattice
corresponds to the densest packing for a given dimension.

A problem tightly related to packing is the covering by spheres. Now it is
necessary to find the arrangement of overlapping spheres covering the whole
space and having the lowest density. The answer is again trivial for the one-
dimensional problem. For the two-dimensional problem the hexagonal lattice
gives again the best solution (the lowest density) for the covering problem.
Figure 9.4 shows the comparison of the coverings obtained for the square lattice
and for the hexagonal lattice. For the hexagonal lattice the overlapping of
spheres is smaller and the density of covering is lower, namely 27/ (3\/5) ~
1.2092 whereas for the square lattice the density of covering is 7/2 a2 1.5708.

For three-dimensional lattices the lowest density covering is given by a body-
centered lattice, in spite of the fact that the densest sphere packing is associated
with another, face-centered cubic lattice.

The problem of ball packing can be formulated in a much wider sense than
simply as a problem of the densest sphere packing. From the point of view of
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Table 9.1: Classes of the symmetry groups H of mesomorphic phases of matter:
[E(3) : H] compact, Hy = largest connected subgroup of H, Ty = HNT, where
T is the translation subgroup of E(3).

Class T Hy
Ordinary nematics R3 R3xU(1)
Exceptional nematics R? R3
Cholesterics (chiral) R?x Z R3
Smectics A R®*xZ R?>xU(1)
Smectics C R®x Z R?
Chiral smectics C R? R?
Rod lattices (e.g., lyotropics) R x Z2 R
Crystals z3 {1}

the description of packing of atoms or molecules in crystals it is natural to ask
about regular or lattice packing of balls which are stable in a certain sense (see
11, 5)).

9.2 Regular phases of matter

We want to discuss here briefly the relation of lattices to the classification of
different phases of matter, which is more general than just the classification of
crystals. In fact, a simultaneous discussion of different mesomorphic phases of
matter was suggested by G. Friedel in 1922 [55]. He suggested to treat both
crystals and liquid crystals on the basis of symmetry arguments. We follow here
the description of the mesomorphic phases of matter done by Louis Michel in
[71] on the basis of the symmetry breaking scheme applied to F(3), the three-
dimensional Euclidean group. The idea of this classification is to describe the
possible stabilizers (little groups in physical terminology) of transitive states.
The equilibrium states of matter are associated with the symmetry group which
is a subgroup H of E(3). The classes of the symmetry groups H of mesomorphic
states of matter are listed in table 9.1.

Symmetry groups H are defined up to conjugation. When H is discrete,
the phase is a crystal. The characteristic lengths of the crystal is not of im-
portance for physical applications, but the difference between left-handed and
right-handed crystals can be eventually important for certain physical proper-
ties. This is the reason to classify crystals up to a conjugation in the connected
affine group (see section 8.3). This yields 230 crystal symmetries. The same
classification principle leads to an infinity of other H subgroups. They can be
put in families according to the topology of their largest connected subgroup
Hj and their intersection H N'T = Ty with the translation subgroup of E(3).
These broad classes are listed in table 9.1.

Short description of the most important other mesomorphic phases is as
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follows.

In nematics, the molecules are aspherical; their positions are distributed
at random as in a liquid, but they are aligned. In ordinary nematics H is
the semi-direct product B3 A Duop. This means that the orientation of the
molecules causes them to yield only axially symmetric quadrupole effects even
when the molecules have no axial symmetry. Near the solidification tempera-
ture, molecules with strong deviation from axial symmetry may rotate less easily
and exceptional nematics can be observed (e.g. birefringent quadrupoles with
three unequal axes).

Cholesterics are constructed of polar molecules; their symmetry group H
contains all the translations in a plane and, with a perpendicular axis, a con-
tinuous helicoidal group. They appear frequently in biological tissues.

In smectics the molecules are distributed in parallel monomolecular or bi-
molecular layers, and they are aligned either perpendicularly (smectics A) or
obliquely (smectics C') to the layers. In chiral smectics C inside each layer the
polar molecules are oriented with a constant oblique angle, but the azimuth of
this orientation turns by a constant angle 6 from one layer to the next and two
different subclasses are possible depending on whether 6/7 is rational or not.

The classification of mesomorphic phases of matter described above is based
on the spatial distribution of atomic positions with each atom being represented
as a point in real physical space. Naturally, the points representing the localized
atoms in space are associated with heavy atomic nuclei (eventually together with
some internal electrons), whereas (outer) electrons are distributed in space in
the presence of the lattice formed by localized atomic cores.

From the physical point of view it is quite interesting and important to find
if there are some more general restrictions which allows us to introduce some
universality classes of matter which persist even if periodicity is broken. It is
possible to look for such criteria which are due to global topological effects (in-
variants) which cannot be removed under small deformation breaking symmetry.
Classification of universal classes of topological states of matter takes into ac-
count the global symmetries like time reversal, charge conjugation, and their
combination. The origin of particles themselves (fermions or bosons) is equally
important. This subject has become very popular now due to the discovery of
such new topological phases of matter as topological insulators or topological
superconductors [27].

9.3 Quasicrystals

We cannot avoid to mention the application of lattice geometry to study qua-
sicrystals, or aperiodic regular structures. This is mainly due to the fact that
aperiodic crystals can be naturally described as projections of a higher dimen-
sional periodic structure to a subspace of lower dimension. In order to obtain an
aperiodic structure the subspace on which such a projection is realized should
be irrational with respect to the lattice vectors of the initial periodic structure.
Such a construction justifies the interest in the study of higher dimensional
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Figure 9.5: Lattice with a vacation (left). Construction of a linear dislocation
(center). Lattice with a linear dislocation (right).

periodic structures but creates at the same time a lot of questions about the
relevance of the choice of the dimension and of the orientation of the subspace
to project the structure. We do not enter in this very popular domain which
has a lot of applications not only in the analysis of quasicrystals (fully recog-
nized as an important class of physical systems by awarding the Nobel prize for
their discovery in 2011) but in various different branches of physics and math-
ematics, including chaotic dynamical systems, singularity theory, etc. For an
introduction to quasicrystals and related mathematical domains see [17, 24].

9.4 Lattice defects

The classification of the mesomorphic states of matter uses an idealization that
the ordered phase of matter is extended indefinitely in space in order to be
globally invariant under an allowed subgroup H of E(3). This idealization is
not bad if the real sample under study is large enough (as compared to the size
of the unit cell) so that its symmetry can be recognized. But, in nature, samples
are not only limited in size, but they also can be non-perfect, i.e. they can have
defects.

Application to physically real objects of lattice theory is related to the de-
scription and classification of typical defects and boundaries. The first step in
defect description should include the description of so called topologically stable
defects, which persist in the medium even under small (local) deformation.

A very intuitive and visual description of possible defects in regular (peri-
odic) physical materials (crystals, liquid crystals) is based on the “cut and glue®
construction of defects for regular lattices.

We give below several examples of such defect constructions. The simplest
defect is a vacancy which corresponds to removing one vertex of the lattice with-
out qualitatively disturbing the surrounding (see figure 9.5, left). This means
that testing the lattice locally in any region outside of a small neighborhood of
a vacancy we cannot notice the presence of the defect.

A more complicated defect, linear dislocation, is shown in figure 9.5, center
and right. To construct such a defect we remove (we can also insert) one ray of
points (eventually several parallel rays) and glue the two boundaries of the cut
by a parallel translation along the transversal direction. For the two-dimensional
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Figure 9.6: Construction of the rotational disclination by removing the solid
angle /2 shown on the left picture.

Figure 9.7: Construction of the rotational disclination by removing the solid
angle 7 (Left) and 37/2 (Right). The reconstructed lattice after removing the
7 solid angle (center).

lattice the linear dislocation results in a point (codimention-2) defect. But the
evolution of the elementary cell along a closed path surrounding the defect does
not modify the elementary cell. In order to characterize the linear dislocation
we can introduce the Burgers vector which characterizes what happens with
the closed contour chosen on the initially perfect lattice after constructing the
dislocation.

The next important defect of the regular lattice is the rotational disclination.
We can get it by removing (or adding) an angular wedge from the regular lattice
and then joining the two boundaries by rotating them. Examples of such a
construction of 7/2 and 7 rotational disclinations are shown in figures 9.6 and
9.7. The effect of the evolution of the elementary cell along a closed path
surrounding the rotational disclination consists in rotation of the elementary
cell by an angle associated with rotational disclination.

We need to distinguish rotational disclination from the angular dislocation
shown in figure 9.8. Angular dislocation is less typical as a defect of real crystals
but it turns out to be of primary importance in integrable dynamical systems
as a defect of regular lattices associated with focus-focus singularities (see next
subsection).
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Figure 9.8: Construction of the angular dislocation by removing or adding one
of the solid angles shown on the left picture. Reconstructed lattices after re-
moving or adding small or large sectors are shown together with transport of
the elementary cell along a closed path around the defect on the reconstructed
lattice. The identification of boundaries after removing or adding a solid angle
is done by the parallel shift of lattice points in the vertical direction.

9.5 Lattices in phase space. Dynamical models.
Defects.

Lattices appear naturally not only in the configuration space, as localized po-
sitions of atoms or more complicated particles. We turn now to dynamical
systems, in particular to Hamiltonian systems. The basic object of our study is
the phase space formed by conjugated position and momentum variables. The
notion of integrable classical system leads to the appearance of toric fibrations.

The most evident appearance of lattices is associated with quantization of
classical Hamiltonian integrable systems. Integer values of actions correspond
to quantum states forming local lattices of quantum states.

Integrable problem in classical mechanics and corresponding quantum prob-
lems are very special to be associated directly with concrete physical systems.
Certain qualitative features of integrable classical problems inherited also by
quantum systems remain valid after small deformation because of their topo-
logical origin. This justifies the study of integrable systems from the point of
view of further analysis of generic (non-integrable) systems.

To see the relation of regular lattices and their defects to dynamical systems
we can start with one-degree of freedom problem. The Hamiltonian system de-
scribing the motion of a particle in a one dimensional potential can be imagined
for simplicity as harmonic or slightly anharmonic oscillator.

Near the minimum of the potential the classical phase portrait shown in
figure 9.9, e can be topologically described as a system of circles (figure 9.9,
a), fibered over an interval and a singular fiber, a point, associated with the
boundary point, the minimum. The corresponding system of quantum levels is
a sequence of points which can be deformed to a regular one-dimensional lattice
(with a boundary) associated to the harmonic oscillator (9.9, b). Small de-
formations of the one-dimensional problem cannot change qualitatively neither
classical fibration, nor the lattice of quantum states. Qualitative modification
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Figure 9.9: Classical and quantum bifurcations for the one degree of freedom
system. Situations before (a,b,e) and after (c,d,f) the bifurcation are shown.
(a) - Energy map for a harmonic oscillator type system. Inverse images of
each point are indicated. (b) - Quantum state lattice for a harmonic oscillator
type system. (c) - Energy map after the bifurcation. Inverse images of each
point are indicated. (d) Quantum state lattice after bifurcation represented
as composed of three regular parts glued together. (e) Phase portrait for a
harmonic oscillator type system. Inverse images are S* (generic inverse image)
and SY - inverse image for a minimal energy value. (f) - Phase portrait after
bifurcation.
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Figure 9.10: Joint spectrum of two commuting operators (9.1, 9.2) together
with the image of a classical EM map for a two-dimensional isotropic harmonic
oscillator.

of classical fibration is related with bifurcation of the phase portrait associated
with the appearance of new stationary points on the energy surface. Subfigure
9.9, f shows qualitatively new phase portrait after the bifurcation associated
with the formation of two new stationary points and the separatrix. Classical
fibration 9.9, ¢ now has a singular fiber (associated with a separatrix) and three
regular regions, associated with locally defined lattices.

Completely integrable classical Hamiltonian for a two-degree of freedom sys-
tem can be represented by its two-dimensional energy momentum (EM) map
each regular point of which is associated with a regular T2 fiber. The corre-
sponding quantum system is characterized by the joint spectrum of two mutually
commuting integrals of motion. In the case of the two-dimensional isotropic har-
monic oscillator (see figure 9.10) two integrals of motion can be chosen as the
energy F, which is the eigenvalue of the Hamiltonian H and the projection of
angular momentum m which is the eigenvalue of L.

1 1
H = S@i+4a)+505+6), (9.1)
L., = pig—pq. (9.2)

Their joint eigenvalues form a regular two-dimensional lattice bounded by
two rays.

Along with special fibers associated to boundary lines of the energy-momentum
map, it is possible that integrable fibrations have also singular fibers inside the
energy momentum map. Typical images of energy momentum maps possessing
singular fibers for the two-degree-of-freedom Hamiltonian systems are shown in
figure 9.11. Visualization of singular fibers is given in figure 9.12. The presence
of singular fibers can be considered for classical fibration as a singularity which
naturally influences the regular character of the fibration. For corresponding
quantum systems regular regions of classical fibration correspond to locally reg-
ular lattices of common eigenvalues of mutually commuting operators. Singular
fibers result in formation of defects of lattices of common eigenvalues.
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Figure 9.11: Typical images of the energy momentum map for completely in-
tegrable Hamiltonian systems with two degrees of freedom in the case of: (a)
- integer monodromy, (b) - fractional monodromy, (c¢) - nonlocal monodromy,
and (d) - bidromy. Values in the lightly shaded area lift to single 2-tori; values
in darkly shaded area lift to two 2-tori.

For integrable systems with two-degrees of freedom the simplest codimension
two singularity of the energy momentum map is the so called focus-focus point
associated with a pinched torus. Its manifestation on the joint spectrum lattice
for the corresponding quantum problem is shown in figure 9.13 on the example
of the resonant 1 : (—1) oscillator. The two mutually commuting integrals of
motion for this example are given by

1 1

ho= S0t +a) - 50 +a), (9.3)
1

fo = p1Q2+p2¢h+Z(Z’%"’Q%"‘I’%"’QS)Q- (9.4)

It is clear that outside a small neighborhood of a codimension-2 defect the
lattice of common eigenvalues remains regular, i.e. it can be transformed (within
a local simply connected region of the image of the energy momentum map) to
a simple square lattice by an appropriate choice of variables (local actions). At
the same time the existence of a singularity imposes that along a closed path
surrounding the singularity the unique choice of action variables does not exist.
The evolution of the elementary cell of the local lattice along a path surrounding
the singularity leads to a new choice of local action variables. Transformation
between initial and final choices of local action variables is named a quantum
monodromy. The type of quantum monodromy depends on the type of sin-
gularity of integrable classical fibration. The simplest singularity of classical
integrable fibration, i.e. singly pinched torus, corresponds to transformation of
the basis of the elementary cell of the quantum lattice by the matrix M

M:(} (1’) 9.5)

which is defined up to the SL(2,Z) transformation.
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Figure 9.12: Two dimensional singular fibers in the case of integrable Hamilto-
nian systems with two degrees of freedom (left to right): singular torus, bitorus,
pinched and curled tori. Singular torus corresponds to critical values in figure
9.11 (c¢,d), (ends of the bitorus line). Bitorus corresponds to critical values in
9.11 (c,d), which belong to the singular line (fusion of two components). Pinched
torus correspond to the isolated focus focus singularity in figure 9.11 (a). Curled
torus is associated with the critical values at the singular line in figure 9.11 (b),

(fractional monodromy).

Figure 9.13: Joint spectrum

of two commuting operators together with the

image of the classical EM map for the resonant 1 : (—1) oscillator [80]. Quantum
monodromy is seen as a result of transportation of the elementary cell of the
quantum lattice along a closed path through a non simply connected region of

the regular part of the image of the EM map.
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chart II chart I

Figure 9.14: Two chart atlas which cover the quantum lattice of the 1 : (—1)
resonant oscillator system represented in figure 9.13. Top plots show the choice
of basis cells and the gluing map between the charts. Bottom plots show the
transport of the elementary cell (dark grey quadrangles) in each chart. Central
bottom panel shows the closed path I' and its quantum realization (black dots)
leading to nontrivial monodromy (compare with figure 9.13).

A possible choice of two overlapping simply connected charts with associated
evolution of elementary cells for each chart is used in figure 9.14 to explain
the appearance of quantum monodromy for a lattice with a defect. Among
the different possible visualizations of such simple-monodromy defect the most
natural is that represented in figure 9.15. Its construction is similar to that
used for the “angular dislocation defect“ shown in figure 9.8. The idea of the
construction of the defect is as follows. We cut from the regular lattice a wedge
shown in figure 9.14, left, and identify points on the two boundary rays of the
cut. The wedge is chosen in such a way that the number of removed points from
the lattice is a linear function of the integral of motion. After identification of
the boundaries of the cut the reconstructed lattice remains regular except in the
neighborhood of a singular point and is characterized by a quantum monodromy
matrix (9.5).

Along with codimension-2 singularities classical fibrations for integrable dy-
namical systems have codimension-1 singularity lines. Such singularity is asso-
ciated, for example, with a curled torus (see figure 9.12) and can be studied on a
concrete example of the two-dimensional nonlinear 1 : (—2) resonant oscillator.
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Figure 9.15: Construction of the 1:(—1) lattice defect starting from the regular
Z? lattice. The solid angle is removed from the regular Z2 lattice and points on
the so obtained boundary are identified by vertical shifting. Dark grey quadran-

gles show the evolution of an elementary lattice cell along a closed path around
the defect point.
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Two integrals of motion for this problem are given by

fi = %(pf +q) - %w(pﬁ +a3) + Ri(q, p), (9.6)
fo = Im[(q1 +ip1)*(q2 + ip2)] + Ra(q, p). (9.7)

Here R; are higher order terms which ensure the compactness of the subspaces
with fixed energy. The corresponding image of the energy momentum map
together with the lattice of the joint quantum spectrum are shown in figure
9.16.

The new qualitative feature which appears with this example is the possibil-
ity to define a generalization of quantum monodromy in case when the closed
path on the image of the energy-momentum map crosses the line of singularities.
The construction of the defect by the cutting and gluing procedure of a regular
lattice is shown in figure 9.17. The key point now is the possibility to go to
sublattice (of index two in this concrete case) and to show that it is possible
to define what happens with the elementary cell when crossing the line of sin-
gularities. At the same time being in regular region, it is possible to return to
the original elementary cell. The monodromy matrix written in this case for an
elementary initial cell includes fractional entries. That is why the corresponding
qualitative feature was named fractional monodromy.

9.6 Modular group

In order to see the relation between lattices and functions of complex variables
let us remember that an elliptic function is a function f meromorphic on C for
which there exist two non-zero complex numbers wy and wo with wy/we ¢ R,
such that f(z) = f(z4w1) and f(z) = f(2+ws2) for all z. Denoting the "lattice of
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Figure 9.16: Joint quantum spectrum for two-dimensional nonlinear 1 : (—2)
resonant oscillator [80]. The singular line is formed by critical values whose
inverse images are curled tori shown in figure 9.12. In order to get the un-
ambiguous result of the propagation of the cell of the quantum lattice along a
closed path crossing the singular line, the elementary cell is doubled.

Figure 9.17: Representation of a lattice with a 1 : 2 rational defect by cutting
and gluing. Left: The elementary cell goes through cut in an ambiguous way.
The result depends on the place where the cell crosses the cut. Right: Double
cell crosses the cut in an unambiguous way.
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periods” by A = {mwy + nwa | m,n € Z} , it follows that f(z) = f(z+w) for all
w € A. The complex numbers (w1, ws) generating the period lattice are defined
up to SL(2, Z) transformation, like quadratic forms or bases of two-dimensional
lattices. Note, that for two-dimensional real lattices the group describing the
transformation of bases is often extended by including reflections. In such case
the group is GLy(Z), which includes integer 2 by 2 matrices with determinant
+1. In complex analysis the holomorphic transformations includes only those
with positive determinant, whereas transformations with negative determinant
are anti-holomorphic. This means that under holomorphic transformations a
pair of complex numbers (vectors) aq, e will generate exactly the same lattice
as the lattice generated by wi,ws if and only if

o\ _(a b w1
(o )= a)(2) 03
for some matrix in SLs(Z).

To compare with more general GL(2, R) group, let us consider the action of
the GL(2, R) group on the complex plane z € C

a b az+b
z€C, g—(c d)EGL(2,R), g-z-cz+d€C. (9.9)
We verify easily that
det g

These transformations show that the upper half part, H, of the complex plane
is invariant under transformations by SLs(R) matrices with a positive determi-
nant. If we apply transformation with a negative determinant, the imaginary
part of the complex number changes the sign.

In order to study the rational transformations of the upper half complex
plane H, which leave the period lattice invariant we need to be restricted to
the SLy(Z) group rather than for a larger GL2(Z) one. Moreover, the element

—I, = < _01 _01 > from SLy(Z) acts trivially on H. Thus, we can conclude

that in fact it is the group PSL2(Z) = SLo(Z)/({£1} that acts. The subgroup
{#1} is the center of the image of SLo(Z) in PSLo(Z).
The name modular group is reserved for the group

G = SLy(Z)/{+£1},

which is the image of the group SL2(Z) in PSLy(R). But sometimes the discrete
subgroup SL2(Z) of the group SLy(R) is also named a modular group.

The interest in the study of the lattices and modular group action on the
upper half of the complex plane is related to the use of it as a model of hyperbolic
space.
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It is quite instructive to describe the fundamental domain of the modular
group action on the upper half part of the complex plane and to compare the
action of the modular group on the complex plane with the action of the SL2(Z)
group on the cone of quadratic forms studied in chapter 6 in relation to the two-
dimensional lattice classifications.

The choice of the fundamental domain of the modular group action is shown
in figure 9.18, where several images of the chosen fundamental domain under
the modular group action are also shown. Special care should be taken for the
indicated boundary of the fundamental domain in order to ensure that only
one point from each orbit of the modular group action on the upper half of the
complex plane is included in the fundamental region.

To describe the fundamental domain F' let us represent it as a union of two
subdomains F = F) U F®) | where

FO :={>2eC:0<Rz < % 2] > 1}, (9.11)
FO = {zeC: —% <Rz<0, |2|> 1) 9.12)

Here C is the extended complex plane, note that oo is included in F) but not
in F®). The fundamental domain shown on figure 9.18 by blue hatching has
boundaries marked by solid lines and boundaries marked by dashed lines. Only
solid lines are included in the definition of the fundamental domain. To see the
topology of the fundamental domain we need to identify two vertical boundaries
and two halves of the circular boundary. The result is the topological sphere.

To see in more details the action of the modular group on the upper half
complex plane let us introduce two generator of the SLy(Z) group.

Let
1 1 0 -1
oo(1 ) ve (0 ), o013

The corresponding mapping associated with the introduced action of SLs(Z)
on the complex plane are given by

Uz=2+41, Vz=-1/z. (9.14)
Let us note further that
k 1k 2 3
U" = 0 1 ) Vi=-I;, (VU)>=-1. (9.15)

This means that from the point of view of the SLy(Z) group, V is a generator
of a subgroup of order four, VU is a generator of a subgroup of order six.

But returning to the group of mappings on the upper half complex plane, i.e.
to the PSLy(Z) group and taking into account the mentioned earlier fact that
—1I acts trivially on the upper half complex plane (i.e. belongs to the center),
we can say that the mapping V has order two and the mapping U has order
three.
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-1 0 1

Figure 9.18: The fundamental domain of the modular group action on the upper
half complex plane.
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To characterize the fundamental domain we need to describe the stabilizers of
different points belonging to the fundamental domain, i.e. find different strata of
the group action. It can be checked [85] that all points have the trivial stabilizer
except for point i denoted s on figure 9.18, points z = e™/3, and z = s27/3
denoted respectively as h and h’ on figure 9.18 and the oo point of the extended
complex plane. Point ¢ has a stabilizer generated by the element V, i.e. the
stabilizer of point i is a group of order two. Two points z = e™/3, and z = s27#/3
belong to the same orbit. Their stabilizers are conjugate and generated by VU
or by UV. The order of stabilizer is three. The oo point is invariant under
the so called parabolic subgroup generated by element U. The corresponding
discrete subgroup has infinite order. So finally we can say that the space of the
orbits of the modular group action on the extended upper half complex plane
‘H* is a topological sphere with one point belonging to the stratum with the
stabilizer being the group of order two and one point belonging to the stabilizer
of order three and one point with stabilizer of infinite order.

9.7 Lattices and Morse theory

Many important physical characteristics of periodic crystals depend on the num-
ber and positions of stationary points of continuous functions defined on the
Brillouin zone (see section 8.4). For three-dimensional crystals the Brillouin
zone is a three-dimensional torus stratified by the action of the point symmetry
group of the crystal. Morse theory is an appropriate mathematical tool which
allows us to relate the number of stationary points of a smooth function with the
topology of the space on which this function is defined. In the presence of sym-
metry additional restrictions on the number and position of stationary points
follow from group action, in particular, from the existence of zero-dimensional
strata formed by critical orbits which are stationary points for any invariant
smooth function. In this section we illustrate the application of Morse theory to
the description of the minimal possible system of stationary points for functions
invariant with respect to point groups of 14 three-dimensional Bravais classes.

9.7.1 Morse theory

We start with short reminder of Morse theory. Let us consider a smooth real
valued function f on a real compact manifold M of dimension d. If in a local
coordinate system {z;}, 1 < i < d = dim M, defined in a neighborhood of a
point m € M the function f satisfies equations

of
8171' o

0% f
8$i8£€j

0; det

£0, (9.16)

of vanishing gradient and non-vanishing determinant of the Hessian, we say that
f has a non degenerate extremum at m. By a change of coordinates {z;} — {y;}
in a neighborhood of m the function can be transformed into f = >, eiy?
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with e; = 1. The number of “minus” signs is independent of the coordinate
transformation. It is called the Morse index p of this non degenerate extremum:
for instance p = 0 for a minimum, p = d for a maximum, and the intermediate
values correspond to the different types of saddle points. By a small generic
deformation all stationary points can be made non degenerate. A function on
M with all its extrema non degenerate is called a Morse function. The essence
of Morse theory is the relations between the numbers c¢; of extrema of Morse
index k and the topological invariants of the manifold M, its Betti numbers.
The Betti number by is defined as the rank of the k-th homology group of
M. Intuitively by is the maximal number of k-dimensional submanifolds of M
which cannot be transformed into one another or into a submanifold of smaller
dimension. For instance for the sphere Sy of dimension d, by = by = 1 and all
the other by vanish. More generally one has the Poincaré duality: by = bg_g.
The information about Betti numbers can be written in a form of a Poincaré
polynomial Py (t) of a manifold M

d
Par(t) = bt*;  d=dim(M); eg. Ps,(t) =1+t (9.17)
i=0

The Poincaré polynomial of a topological product of manifolds is the product
of the Poincaré polynomials of the factors. For instance, a d-dimensional torus
is the topological product of d circles. This gives the Betti numbers for the
d-dimensional torus Ty:

d
To= 5= Pr,(t) = (1+t)! = bp(Ty) = (k) (9.18)
For a compact manifold M the system of Morse relations consists of one equality
d d
S -t =0 & S (1) Ee = ST (-1)? R Ey (M),(9.19)
k=0 k=0 k=0

where x(M) is the Euler Poincaré characteristic, and the system of inequalities

¢

S (1) F(er —bp) 20, 0<L<d, (9.20)

k=0
which can be simplified to a more crude form cg > by. These simplified inequal-
ities are not equivalent to Morse inequalities (9.20) but give lower bounds to
the number of extrema of a Morse function.

For functions defined on the Brillouin zone (i.e. for a torus) for d = 2 and

d = 3 the relations (9.19), (9.20) become

d=2, cg—c1+co=0, cg>1<cy, co+1<¢c1 >co+1, (921)
d=3, co—c1+eca—c3=0, cg>1<c3, c1>co+2, c2>c3+2.

Thus for the two-dimensional torus the minimal number of stationary points for
a Morse function cannot be smaller than four, whereas for the three-dimensional
torus the minimal number is eight.
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9.7.2 Symmetry restrictions on the number of extrema

In the presence of symmetry acting on a manifold all stationary points belong-
ing to the same orbit of the group action naturally have the same Morse index.
Moreover for invariant functions all orbits isolated in their strata should be
formed by stationary points. Such orbits are named critical orbits. These sta-
tionary points are fixed (their position does not vary under small deformation
of the Morse function). Thus in the presence of symmetry it is quite useful to
find first all critical orbits and then verify if some other stationary points should
exist in order to satisfy Morse inequalities.

Before passing to the application of the Morse analysis for functions de-
fined on the Brillouin zone for different point symmetry groups we consider two
simpler examples for a function defined on the two-dimensional sphere in the
presence of symmetry. In the case of the Oy, group action on the sphere (see
section 4.5.1, figure 4.20) there are three critical orbits: one consists of 6 points
(stabilizer Cy, ), another of 8 points (stabilizer Cs, ), and the third one is formed
by 12 points (stabilizer Cs,). We have 26 fixed stationary points among which
points with Cy, and Cs,, stabilizers should be stable, i.e. to be maxima or min-
ima and cannot be saddles. One can easily verify that six maxima/minima, eight
minima/maxima and 12 saddles satisfy Morse inequalities and consequently the
minimal number of stationary points for a Morse function on the sphere in the
presence of O, symmetry is 26.

As another example let us study the Morse function of the sphere in case of
the Cyp, point group action. There is only one critical orbit of the Co, group
action consisting of two points (see section 4.5.1, figure 4.17). These two points
should have the same Morse index. In order to construct a Morse function with
the minimal number of stationary points it is necessary to add two orbits of two
points located on C}, stratum. Positions of stationary points on one-dimensional
stratum are not fixed and the distribution of stationary points among these three
orbits is arbitrary. The only condition imposed by the Morse relation for the
function invariant under Csj, action and possessing the minimal possible number
of stationary points is the existence of two equivalent minima, two equivalent
maxima and two equivalent saddles.

As a crystallographic application we give here the list of critical orbits and
the minimal number of stationary points for functions defined on the Brillouin
zone (three-dimensional torus) in the presence of point symmetry group action
for 14 Bravais classes. The results of the analysis are represented in the form
of table 9.2 taken from [72]. For each of the 14 Bravais classes given in the
first column we list in columns 2-6 all critical orbits classified by their k-values.
Eight points corresponding to k = 0 (one point) and to 2k = 0 (seven points)
are critical for all Bravais classes. Under the presence of symmetry seven points
associated with the 2k = 0 form orbits consisting of one or several equivalent
points. The numbers of critical points in each individual orbit of the symmetry
group action are shown in column 3. For points with higher local symmetry
(i.e. for nk = 0 with n = 3,4,6) columns labeled by nk = 0 indicate the
number of critical points within the corresponding orbit of the group action.
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Table 9.2: List of the critical orbits on the Brillouin zone for the action of point
symmetry group G of the 14 Bravais classes and the numbers and Morse indices
of extrema of G-invariant functions with the minimum number of stationary
points. Columns “nk” give the number of critical points satisfying the nk = 0
condition. See text for further details.

Bravais class 0 2k 4k 3k 6k nb 0,3 1,2 2,1 3,0
P1 1 1,1,1,1,1,1,1 8 1 1+14+1  1+1+1 1
P2/m 1 1,1,1,1,1,1,1 8 1 14141 14141 1
Cc2/m 1 1,1,1,2,2 8 1 142 142 1
Pmmm 1 1,1,1,1,1,1,1 8 1 14141 14141 1
Cmmm 1 1,1,1,2,2 8 1 142 142 1
Fmmm 1 1,1,1,4 8+2 1 4 14142 1
1+1 4 142 1
Immm 1 1,2,2,2 2 10 1 242 242 1
2 2+2 1+2 1
P4/mmm 1 1,1,1,2,2 8 1 142 142 1
I4/mmm 1 1,2,4 2 10 1 4 2+2 1
2 4 142 1
R3m 1 1,3,3 8 1 3 3 1
P6/mmm 1 1,3,3 2 2 12 1 243 2+3 1
2 2+3 1+3 1
2 1+3 143 2
3 2+3 1+2 1
Pm3m [1] 1,3,3 8 1 3 3 1
Fm3m [1] 3,4 6 14 1 3 6 4
1 4 6 3
Im3m [1] 1,6 2] 1046 1 6 146 2

2 6 6 1+1

The points between [| have to be maxima or minima. The column labeled “nd”
gives the minimal possible number of stationary points for each Bravais class.
This number for two Bravais classes, namely for Fmmm and Im3m, is larger
than the number of stationary points associated with critical orbits. These
additional stationary points which are obliged to exist for the Morse functions
are indicated explicitly as ncrit + Mnon—crit-

Finally, the last four columns give the possible distribution of stationary
points into subsets of stationary points with a given Morse index. Several lines
give alternative distributions for the simplest Morse type functions, i.e. for
Morse type functions with the minimal number of extrema.



Appendix A

Basic notions of group
theory with illustrative
examples

We give in this appendix basic group-theoretical definitions used in the main
body of the book.

Group

A group G is a set with a composition law: o € M(G x G,G), which is
associative:

Vg,h,k € G, (goh)ok=go(hok),

which has a neutral element e:
Vge G, eog=g=goe

and every element has an inverse one:

Vge G, 3dg7' glog=e=gog™t
There are two usual notations for the group law and the neutral element.

For the group operation the sign + is used and for the neutral element 0 is
used. Examples: the additive group of integers Z, of real or complex numbers,
R or C, the additive group M,,, of m x n matrices with real (respectively,
complex) elements. This notation is generally restricted to Abelian groups, i.e.
the groups with a commutative law: a + b = b + a. The inverse element of a is
denoted in this convention by —a and is called the opposite.

For the group operation the sign multiplication, x, is used (often this sign
is simply omitted). The neutral element is noted 1 or I. Examples: the multi-
plicative groups R*, C*; the n-dimensional linear groups GL,(R), GL,(C), i.e.
the multiplicative groups of the n x n matrices on R or C with non-vanishing

determinant. The inverse element of g is denoted by g~!.

219
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In all examples we have just given, the groups have an infinite or continuous
number of elements. An example of a finite group is S,, the group of permutation
of n objects, formed of n! elements. The number of elements of a finite group
G is named the order of the group and is denoted by |G|.

Subgroup

When a subset H C G of elements of G forms a group (with the composition
law of G restricted to H), we say that H is a subgroup of G and we shall denote
it by H < G (this is not a general convention) or by H < G when we want to
emphasize that H is a strict G-subgroup, i.e. H is a subgroup of G and H # G.
Note that from A < B and B < G it follows that A < G.

Examples’: The subset U(n) of matrices of GL,,(C) which satisfy m* = m ™1
is a subgroup of GL,,(C); it is called the n-dimensional unitary group.

In particular U(1) < C*. Note also that GL,(Z) < GL,(R) < GL,(C).

Since the determinant of the product of two matrices is the product of their
determinants, in a group of matrices the matrices of determinant one form the
subgroup which is often referenced as “special*: for GL,(Z), GL,(R), GL,(C),
U(n) we denote them respectively by SL,(Z), SL,(R), SL,(C), SU(n).

Another general example of a subgroup is the one generated by one element.
Let ¢ € G and consider its successive powers: g, g2, ¢>,.... The order of g is
the smallest integer such that ¢ = I. If no such n exists, we say that g is of
infinite order. When g is of finite order n the subgroup generated by ¢ is formed
of distinct powers of g; it is called a cyclic group of order n and it is usually
denoted by Z, or C,. For example e>7*/" ¢ C* generates the cyclic group

Zn=Cp = {eQ”ik/n,og kgn—l} <U(1) < C*.

Note that the intersection of subgroups of G is a G-subgroup. Generally, the
union of subgroups is not a subgroup.
The important example of the orthogonal group O(n) can be introduced as

O(n) = U(n) N GLn(R) < GL,(C), SO(n) = SU(n) N SLu(R) < SL,(C).

Note that the matrix elements of O(n) are real and those of U(n) are complex.

It is useful to have a complete list of the finite subgroups of O(2). The ma-
trices of O(2) of determinant +1 are rotations () and reflections s(¢) through
the axis of azimuth ¢:

w0 = (G am? ). btmod 2n) (A1)
B cos(2¢)  sin(29)
S(¢) - < Sln(?(b) _ COS(2¢) > ’ ¢(m0d 7T)' (A2)
They satisfy the following relations:
r(@)r(0') =r(0+0);  s(¢)s(¢") = r(2(¢ — ¢)); (A-3)
r(0)s(¢) = 5(6/2 + ¢) = s(d)r(=0). (A4)
IWe denote by mT the transpose of the matrix m, i.e. (mT)ij = mj; and by m* the

Hermitian conjugate of m, i.e. (m*);; = mj;, the complex conjugate of m ;.
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1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0

0 1 0 1 0 0 0 0 1 1.0 0 0 1 0 0 0

0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1
Ss I (123) (132) (12) (13) (23)
T T (123) (132) (12) (13) (23)
(123) (123) (132) I (13) (23) (12)
(132) (132) I (123) (23) (12) (13)
(12) (12) (23) (13) T (132) (123)
(13) (13) (12) (23) (123) I (132)

(23) (23) (13) (12) (132) (123) I

Table A.1: Multiplication table of the group S3. The elements are given as
permutation matrices and also by their cycle decomposition. One sees from this
table that the alternate group Az = {I,(123), (132)} formed by odd permuta-
tions is a subgroup.

In particular:

r@)r(—0) =1, (s(¢))* =T, (A.5)

s(@)r(0)s(¢) =r(=0); r(0)s(¢)r(0)~" = s(¢ +0). (A.6)

We denote by C), the n-element group formed by rotations r(27k/n), 0 < k <
n — 1. When n > 2 the n reflections s(¢ + 7k/n), 0 < k < n — 1 form

with C,, a non commutative group of 2n elements that we denote by C,,(¢)?,
¢(mod 27/n).

S Ot

Cy, ={r@rk/n), 0<k<n-1} (A7)
Cno(¢) = Cr,U{s(d+7k/n), 0<k<n-—1}. (A.8)

The Cy,, n € N4 form the complete (countable) list of finite subgroups of SO(2).
The C,,,(¢) are a continuous infinity of finite subgroups of O(2). They are the
symmetry groups of the regular n-vertex polygons.

Every finite group can be considered as a subgroup of permutation group
S, when n is large enough. The permutation group itself S,, is a subgroup of
O(n) < U(n) when its permutation 1,2,3,...,n — iy,is,...,4, is represented
by the matrix p;; with elements pi;, = p2;, = ... = pp;s,, = 1 and all the other
elements are zero.

An example of S3 group is detailed in Table A.1 where the multiplication
table of six elements of S3 is given using the representation of elements by
permutation matrices and by their cycle decomposition.

The group Cs,(¢) has the same multiplication table as S5 when the following
correspondence (bijection) between the elements of the two groups is made:

I—1I, r@27/3)<(123), r(4n/3)« (132),

s(p) « (12), s(p+27w/3) « (23), s(¢+47w/3) < (31).

The subgroup Cs,, of the O(2) is the symmetry group of an equilateral triangle.
The representation of the group Ss by permutation matrices corresponds to

2 Alternative widely used notation is Dy,.
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orthogonal transformation of the three dimensional space leaving invariant the
line carrying the vector of coordinates (1,1, 1), so it leaves invariant the plane
orthogonal to it. In that plane, S5 permutes the vertices (1,—1,0), (0,1, —1),
(—1,0,1) of an equilateral triangle. This construction can be extended to the
symmetry group of the n — 1 dimensional simplex (regular tetrahedron in 3-
dimensions). This symmetry group of orthogonal transformations is also the
permutation group of its n vertices.

GL,(Z) is another important example of groups. For the multiplication in
Z an integer n # 1 has no inverse; an n X n matrix with integer elements has
an inverse with integer elements if and only if its determinant is +1. Since
the product of two integer matrices (i.e. matrices with integer elements) is an
integer matrix, the integer matrices with determinant +1 form a group GL,,(Z);
(GL1(Z) = Z, = {+1}).

Lattice - notion from the theory of partially ordered sets.

The set of subgroups of a group is an example of a lattice. A lattice is a
partially ordered set such that for any two given elements, x,y there exists a
unique minimal element among all elements z such that z > x and z > y, and
similarly for any two given elements x, y, there exists a unique maximal element
among all elements 2z’ such that 2’ < x and 2z’ < y. For any two subgroups x, y
belonging to the lattice of subgroups the unique minimal subgroup z among all
z such that z > = and z > y is the subgroup generated by the union of z and
y. The intersection of two given subgroups z and y is the maximal subgroup
among all subgroups 2’ such that 2z’ < x and 2z’ < y. In particular, a lattice of
subgroups of a group G has unique minimal and maximal elements. The group
G is the maximal element and the trivial subgroup {I} is the minimal one.

Cosets

Let H < G. The relation among the elements of G : « € yH is an equivalence
relation; it is reflexive: x € xH; symmetric: € yH < y € xH; transitive:
x € yH, ye zH = x € zH. The equivalence classes are called cosets. We
denote by G : H the quotient set, i.e. the set of cosets.

Note that each coset has the same order (number of elements) as H. For gH,
the left multiplication by g of the elements of H defines one-to-one (bijective)
correspondence between the two cosets H and gH. This gives the relation

G| = |G : H||H]. (A.9)

The order of the quotient |G : H| is also called the index of the subgroup H
in G. This proves the Lagrange theorem (the oldest theorem in group theory
proven even before Galois had introduced the notion “group”):

Theorem. For the finite group G, the order of a subgroup divides the order
of group, |G]|.

Invariant subgroup

When defining cosets, we could have pointed out that we were using left
cosets; similarly we can introduce right cosets Hz. In general xtH # Hx. When
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left and right cosets are identical, H is named an invariant subgroup®. We will
also write this property H < G.

HaG¥H<G vgeG, ¢H=Hqg. (A.10)

Evidently, every subgroup of an Abelian group is invariant.
Every non-trivial group has two invariant subgroups: {1} and G itself. If
there are no other invariant subgroups, the group G is named simple. The set of

invariant subgroups forms a lattice (sublattice of the subgroup lattice). Beware
that K << H, H < G does not imply K < G.

Quotient group

When K <G is an invariant subgroup there is a natural group structure on
G : K; indeed gK o hK = (gK)(hK) = gKhK = (gh)K, i.e. the multiplication
of cosets is well defined. We call this group the quotient group* of G by K
and we denote it by G/K. Since the determinant of a matrix is invariant by
conjugacy by an invertible matrix, the “special” subgroups are invariant. The
corresponding quotient groups are

GL,(C)/SL,(C)=C*; GL,(R)/SL,(R)=R*; U(n)/SUMn)=U(1); O(n)/SO(n)= Z,.

Note that an index 2 subgroup is always an invariant subgroup because left and
right cosets coincide automatically.

Double cosets

A generalization of the cosets is the notion of the double cosets which defines
the following equivalence relation between elements of G.

When H < G, K < G, x € HyK is an equivalence relation between z,y € G.
Indeed let = h(z)yk(x) with h(z) € H, k(z) € K, then y = h(z) 'zk(z)~1; if
moreover y = h(y)zk(y), then = h(x)h(y)zk(y)k(x) € HzK. We will denote
by H : G : K the set of H-K-double cosets of G. Note that H : G : K # K :
G:H.

When either H or K is an invariant subgroup of G, then the HK is a
subgroup of G and the double cosets are either left or right coset of H K. Indeed
assume H < G, then HaoK = aHK.

Conjugacy classes

Two elements z,y € G are conjugate if there exists a ¢ € G such that
y = grg~'. Conjugacy is an equivalence relation among the elements of a
group. A group is therefore a disjoint union of its conjugacy classes. Note that
gh is conjugate to hg. The elements of a conjugacy class have the same order.
In physical language the conjugate elements correspond to symmetry operations
equivalent with respect to the symmetry group.

Examples.

3An often used synonym is normal subgroup.
4Sometimes this is called the “factor” group.
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1) U(n) or SU(n). Any unitary matrix can be diagonalized by conjugacy
with unitary matrices which can be chosen of determinant 1. So in U(n), the
unitary matrices with the same spectrum, i.e. with the same set of eigenvalues,
or same characteristic polynomial, form a conjugacy class of U(n); indeed, by
conjugacy in U(n) a unitary matrix can be brought to diagonal form and by
conjugacy with a permutation matrix (which are also unitary) the eigenvalues
can be put in a chosen order, e.g. in increasing values.

2) GL,(C) or SL,(C). The situation is different: by conjugacy in SL,(C)
one can put the eigenvalues of a matrix of the group in a given order along
the diagonal; however if there are degenerate eigenvalues, the matrix might not
be diagonalizable, but one can put it in Jordan form (some 1’s on the first
diagonal above the main diagonal). For example, for SLy(C), the conjugacy
classes can be labeled by the trace ¢ of the matrix ¢ = z + 27! (where z and
271 are the eigenvalues) when t # 42 because for t = +2 the eigenvalues are
degenerate. Among the matrices with trace ¢t = £2, the matrices =1 form each

a conjugacy class; the other matrices of trace 2 form one conjugacy class since
11

01 ) The other matrices of trace —2 form another

they are equivalent to (

-1 1
0 -1
the characteristic polynomials of the matrices of GL,(C) or SL,(C) are not
sufficient to label the conjugacy classes.

3) O(2). The equations (A.6) shows that all reflections s(¢) form a unique
conjugacy class of O(2) while each pair of rotations and its inverse, (f) and
r(—0), form one conjugacy class.

conjugacy class which contains This example also shows that

4) SO(n). The matrices of SO(n) have in general non real eigenvalues (which
form pairs of complex conjugate phases); so they cannot be diagonalized by con-
jugacy with real matrices. However they can be put in the form of diagonal 2 x 2
blocks when n is even, and each block is a matrix 7(#) defined in equation (A.1);
when n is odd there is also a single 1 (which can be placed at the end of the diag-
onal). So conjugate matrices of SO(n) have same set of the £6’s (the rotation
angles). For instance, conjugate classes of the 3-dimensional rotation group
SO(3) contain all rotations with the same single rotation angle ( in absolute
value modulo 7).

5) S,,. To describe the conjugacy classes of S, one needs the notion of
partition. A set of integers whose sum is n form a partition of n; the partition
is defined by these integers independently of their order. The conjugacy classes
of S, are labeled by the partitions of n, corresponding to the decomposition of
a permutation into k cycles {c;, 1 <1 < k} of length I(¢;) with >, l(¢;) = n.

Partially ordered set of conjugacy classes of subgroups

Two G-subgroups H, H' are said to be conjugate if there exists g € G such
that H' = gHg~'. This is an equivalence relation among subgroups of a group.
We denote by [H]g the conjugacy class of H. When a subgroup is alone in its
conjugacy class, this is an invariant subgroup.
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Figure A.1: Partially ordered set of conjugacy classes of subgroups of the Cg,
group.

We have seen that the subgroups of a group form a lattice. Beware that
this is not generally true for the set of subgroup conjugacy classes. We can say
that partial order [H]g < [K]g between conjugacy classes of subgroups exists
when 3z € G, vHx~! < K but there is no element of G which conjugates
K into a strict subgroup of H. Equivalently, if a G-subgroup H cannot be
conjugate to one of it strict subgroup, then the conjugacy relation among G-
subgroups is compatible with the partial order of the subgroup lattice. It is
clear that there exists a natural partial order on the set of conjugacy classes of
finite (respectively, finite index) subgroups of a group G. Figure A.1 gives an
example.

Center

An element which commutes with every element of a group G forms a con-
jugacy class by itself (this is always the case of the identity). These elements
form a subgroup called the center of G and often denoted by C(G). The center
is an invariant subgroup of G. If the group A is Abelian, C(A) = A. Examples:

C(GLn(C)) =C*I, C(GL,(R))=R*I, C(U(n))=UMNI, C(O(n))=2Z,I.

Similarly :

cnm={ G i cwom={ o™ 7

Centralizers, Normalizers.

The centralizer of X C G is the set of elements of G which commute with
every element of X; this set is a G-subgroup. We denote it by Cg(X). If X
coincides with G, the centralizer becomes the center of G: C(G) = Cq(G).

The normalizer of X C G is a G-subgroup

Ne(X)={ge G, gXg' =X} (A.11)



226APPENDIX A. BASIC NOTIONS OF GROUP THEORY WITH ILLUSTRATIVE EXAMPLES

Note that Cg(X) < Ng(X), i.e. the centralizer of X is an invariant subgroup
of the normalizer of X.

From the definition of the normalizer, when H < G, the normalizer Ng(H)
is the largest G-subgroup such that H < Ng(H). For instance if Ng(H) = G,
then H <1 G is the invariant subgroup of G.

Homomorphism
A group homomorphism or, shorter, a group morphism between the groups
G, H is a map G % H compatible with both groups laws

G5 H, plzy)=p@)p(y), p(1)=1¢€ H. (A.12)
This implies

p(z™) = p(z)~". (A.13)

A morphism of a group G into the groups GL,(C), GL,(R), U(n), O(n) re-
spectively is called a n-dimensional (complex, real) linear, unitary, orthogonal
representation of G,

The image of the morphism G % H is denoted by Im p. It is a subgroup of
H, Im p < H, which includes images of all elements of G.

The kernel Ker p of the morphism G 2 H is the set K € G which is mapped
on I € H. Ker p is an invariant subgroup of G. There is an important relation
between image and kernel: Im p = G/Ker p.

Sequence of homomorphisms
Let us consider the following sequence of homomorphisms of Abelian groups:

R e N = e M e NPT (A.14)

Such a construction, named complex, is quite useful to relate topological and
group-theoretical properties. If for all n we have Im p,,—1 = Ker p,,, the sequence
in (A.14) is an exact sequence of homomorphisms.

Examples: If H <G and G % G/H we can write
1-HLGLG/H—1, (A.15)

where H - G is the injection map, i.e. Vo € H, i(z) = x € G. An exact
sequence of this type is named short exact. The part of the diagram 1 — H - G
means that 1 — H is the injection of the unit into H and Ker ¢ = 1, i.e. 7 is
injective. The fact that p is surjective is expressed by G 2 G /H — 1, For any
homomorphism p there is always a short exact sequence

1—>Ker,o—i>G£>Irnp—>17 (A.16)
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n—1 n n+l

Figure A.2: Schematic representation of an exact sequence of homomorphisms
of groups.

Isomorphism

A bijective morphism p is called an isomorphism. In other words if Ker p =
Ig, and Im p = H than p is an isomorphism and G ~ H. When we want
to classify groups, this will be done up to isomorphism, except if we precise
explicitly a more refined classification. Often when we write about “abstract
groups” we mean an isomorphism class of groups.

Examples:

For every prime number p there is (up to isomorphism) only one group of
order p: this is Z,,.

There are exactly two non-isomorphic groups of order 4.

Automorphism

An isomorphism from G to G is called an automorphism of G. The com-
position of two automorphisms is an automorphism. Moreover there exists
the identity automorphism I such that Vg € G, I(g) = g, and every au-
tomorphism has an inverse. Thus the automorphisms of G form a group,
Aut G. The conjugation by a fixed element g € G induces a G-automorphism:
(929 Y (gy~tg™!) = g(zy~1)g~* which is an “inner” automorphism. The set of
inner automorphisms forms a subgroup of Aut G that we denote by In Aut G.
Note that the elements ¢ € C(G) of the center of G induce the trivial automor-
phism I, so we have the exact sequence:

1— C(G)—G L In Aut G — 1,

An automorphism which is not inner, is called outer automorphism. We note
that In Aut G in an invariant subgroup of Aut G.

Making groups from groups
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Given two groups GG1, Go, one can form a new group, G; X Ga, the direct
product of G and Ga: the set of elements of G; X G5 is the product of the set
of elements of G and of G, i.e. the set of ordered pairs: {(g1,92),91 € G1,92 €
G2}, the group law is

(91,92)(h1, h2) = (g1h1, g2ha).

When G; # Ga, G1 X G3 # G4 X G1, but they are isomorphic, i.e. G; X Gy ~
G2 X Gl.
Given a morphism @ P, K one defines the semi-direct product as the group

whose elements are the pairs (k,q),k € K,q € @, and the group law is [using
q - k as a short for (6(q))(k)]:

(k1,q1)(k2,q2) = (k1q1 - k2, q1G2)- (A17)

Here we denote this semi-direct product by K >Q.
Examples:
The semi-direct product of R™ and GL,,(R) is called the affine group

Affa(R) = R" > GL,(R). (A.18)

Similarly one can define the complex affine group: Aff,(C) = C" ><GL,(C).
The Euclidean group E,, is the semi-direct product of R™ and orthogonal

group
E, =R">10(n) < Affa(R).

Group extensions

Given two groups K, @), a very natural problem is to find all groups E such
that K < F and Q = E/K. FE is called an extension of @ by K. The extension
can be represented by a diagram

1-K—-F—E/K—1,

which is not an exact sequence. The main problem is to classify different exten-
sions up to equivalence.

The semi-direct product (and its particular case, the direct product) are
particular examples of an extensions. But in the general case of an extension E
of @ by K there is no subgroup of F isomorphic to the quotient Q.

Such an example is given by SU(2) as an extension of SO(3) by Zs:

1— Zy — SU(2) — SO(3) — 1.

SU(2) is the group of two-by-two unitary matrices of determinant 1. Its center
Z5 has two elements, the matrices 1 and —1. These matrices are the only square
roots of the unit. The three-dimensional rotation group SO(3) is isomorphic to
SU(2)/Z,. This group has an infinity of square roots of 1: the rotations by =
around the arbitrary axis. So SO(3) is not a subgroup of SU(2).



Appendix B

Graphs, posets, and
topological invariants

The purpose of this appendix is to give a minimal required system of definitions
and mathematical constructions needed to understand and to follow the discus-
sion of the visualization of lattices by graphs and calculation of corresponding
topological invariants introduced in chapter 6, section 6.7.

We start by several intuitively evident but important definitions.

A graph G = (V, E) consists of a finite set V of vertices (nodes) and a finite
set E of edges. Every edge e € E consists of a pair of vertices, u and v, called
its endnodes. We will denote the edge e by uv. Two vertices are said to be
adjacent if they are joined by an edge. We will mainly consider here simple
graphs, i.e. graphs in which every edge has distinct endnodes (no loops) and no
two edges have the same two endnodes (no parallel or multiple edges). When
every two nodes in G are adjacent, the graph G is said to be a complete graph.
The complete graph on n nodes is usually denoted by K.

Let G = (V, E) be a graph. A graph H = (W, F) is said to be a subgraph of
Gif W CVand F CE. Given an edge e € E in G, G\e := (V, E\e) is called
the graph obtained from G by deleting e.

Contracting an edge e := uv in G means identifying the endpoints u and
v of e and deleting the parallel edges that may be created while identifying u
and v. G/e denotes the graph obtained from G by contracting the edge e. For
an edge set ' C E, G/F denotes the graph obtained from G by contracting all
edges of F' (in any order).

Two graphs G = (V, E) and G’ = (V', E’) are said to be isomorphic, G ~ G’,
if there exists a bijection f: V — V' such that wv € E < f(u)f(v) € E'.

A graph is said to be connected if, for every two nodes u,v € G, there exists
a path in G joining u and v. The rank of the graph is the number of nodes
minus the number of connected components.

For a given simple connected graph we can construct all graphs which can
be obtained from the initial graph by one or several contractions of edges. The

229
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3

Rank 2@4

1 5
4
3
2 (123) (124 3 (23)45) 10

N |

1 (1234) (1245)  (1345)  (2345)  (123)(45) (145)(23) (345)(12)
0 (12345)

Figure B.1: Ranked partially ordered set of contractions for a graph representing
the 14.28-0 4-d lattice. Only fused vertices are shown for contracted subgraphs.
Lines symbolize the partial order imposed by contractions.

set of so obtained graphs form a partially ordered set (see definition of partially
ordered set or poset in appendix A). An example of such a partially ordered
set (Poset) is shown in figure B.1. In figure B.1 only the initial graph is shown.
Graphs obtained by contractions of the initial graph are represented just by
labels of nodes which were fused during the contraction. The rank is well defined
for all contracted graphs. Contracting one edge decreases rank by one. Thus we
obtain the so called ranked partially ordered set of contractions, P. There are
some number of topological invariants which can be introduced for the ranked
partially ordered set P.

The simplest invariant is the number of elements of rank k of the poset P.
This invariant is named a simply indexed Whitney number of second kind, Wy.
More complicated invariants are the doubly indexed Whitney numbers, W;; of
the second kind. In order to introduce them we need to study subsets of P with
rank r = ¢ and with rank r = j. Whitney number W;; of the second kind gives
the number of pairs {(x%, 27) : ° < 27} of elements of P which satisfy the order
relation. If ¢ and j are neighboring integers, the corresponding Whitney number
is just equal to the number of contraction lines between neighboring rows of a
poset. It is clear that simply indexed Whitney numbers are a special case of
doubly indexed ones, namely Wy ; = W;.

From figure B.1 we immediately find the doubly indexed Whitney numbers
which can be represented in the form of a triangular table
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Graph WOO WZ WZ Wl WZ
1 7 10 5 1

& 724 2 7
10 20 10

14.28-0 5 )
1

which shows some equivalence between W;; values which remains valid for a
wide class of graphs.

The formal definition of the doubly indexed Whitney numbers of the second
kind can be written as follows

W;;(P) = ’{(xz,xj) cxt < CCj}

: (B.1)

where |S| means the cardinality of the set S, i.e. the number of elements in the
set.

The construction of the Whitney numbers of the first kind is based on the
preliminary introduction of the Md&bius function for a ranked partially ordered
set. To be maximally concrete we restrict ourselves always to posets of contrac-
tions for a simple connected graph, which is one of the subgraphs of a complete
graph K,. We start by calculating values of the Mdébius p-function for all el-
ements of the poset P. To find these values we use u(g,g) = 1 for the initial
graph g. Next, for b # g we calculate u(b,0) as a sum

(b, 0) = — Z u(c, ), (B.2)

g>c>b

over all ¢ which are partially ordered with respect to b and are strictly greater
than b. The result of this calculation is illustrated in figure B.2, upper right
subfigure; it gives a system of simply indexed Whitney numbers of the first kind,
w; = wg,;. Generalization to doubly indexed Whitney numbers of the first kind
is similar to what we have done for Whitney numbers of the second kind.

To calculate doubly indexed Whitney numbers of the first kind wy; we need
to analyze only the sub-poset of the initial poset taking into account the elements
with the rank not exceeding r — k where r is the rank of the initial graph, and
calculate p-values for this sub-poset. The lower left sub-figure of B.2 visualizes
the “neglected” part of the initial poset by using dashed lines. For this sub-
poset we calculate p(b) values with respect to the rank 2 level. This explains
why for all b = (i5) elements now u(b) = 1 and wy; = 4. Going to the lower rank
r = 1 we see that the value of 11(123), for example, should be calculated with
respect to the level with the rank equal 2 and we have only three contributions
from (12),(13), (23) elements which all equal —1. Completing calculations for
all elements of rank 1 we get w12 = —9 and in a similar way we get w3 = 5.

Finally, to calculate Whitney number ws; we need to study only the sub-
poset of the initial poset taking into account the elements with the rank not
exceeding 1 and calculate p-values for this sub-poset. Lower right sub-figure of
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Rank 1 4
N
3 /23\ |
2 12 (13) (23) (34) —4
1 123) (134 (234 (12)34) 5
0 (1234) o
Wi
4
-4

Figure B.2: A ranked partially ordered set of contractions for a graph repre-
senting the 8.12 3-d lattice. The upper left subfigure shows initial graph and
for each contraction step indicates fused vertices for contracted graphs. Lines
symbolize the partial order imposed by contractions. The upper right subfigure
reproduces the same poset and for each element a shows the value of the Mdbius
function u(a,0). On the right of the poset the values wy; = w; of the Whitney
numbers of the first kind are given which are the sum of p-values for all elements
of the same rank. In a similar way the lower left and right subfigures illustrate
calculation of the Whitney numbers of the first kind for wy; and for wy;.
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B.2 visualizes the “neglected” part and indicates corresponding p(b) values and
w2 .

Table B.1 gives Whitney numbers of the first and of the second kind for
several four-dimensional zonotopes. Face numbers for corresponding zonotopes
are given along with Whitney numbers of the first kind because of the simple
relation between face numbers and Whitney numbers of the first kind. Namely,
for subgraphs of K, ;1 representing zonotopes we have [56]

> wh = N, (B.3)
j=k

where w,jj = |wg;| and Ny are the number of k-faces of the zonotope associated
with the graph.

Only W;1, W;sW;3 are shown in table B.1 for the Whitney numbers of the
second kind. The rest of the table can be easily reconstructed taking into
account the symmetry of the table, namely W;; = W4 and Wyy = Wy = 1.

We note also that the singly indexed Whitney numbers of the first kind are
the coefficients of the chromatic polynomial. The chromatic polynomial

Pa(t) =Y wopt" 7" (B.4)
k=0

shows how many different coloring of graph nodes are possible with ¢ colors with
the restriction on adjacent nodes to be of different color.
For more details on relevant material see [1, 20, 9].
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Table B.1: Doubly indexed Whitney numbers of the first and second kind for
several graphs corresponding to some of four-dimensional zonotopes.

Graph | woo  win  wip  wizg  wig | Yowh | Wor Woe Wi
1 —4 6 —4 1 | 16=N, | 1 6 1
W 4 —12 12 —4 | 32=N, | 4 12 12
6 —12 6 | 24—=N, 6 12
8.16-0 4 —4 | 8=N; 4
1
1 -5 10 —10 4 | 30=N, | 10 10 5
O 5 —20 30 —15| 70=N, | 10 30 30
10 =30 20 | 60=N, 10 20
20.30-0 10 —10| 20= Ny 5
1
1T —6 13 —12 1 | 36=N, 1 6
Ay, 6 —24 30 —12| 72=N; 24 24
11 —24 13 | 48 =N, 11 24
12.36-12 6 -6 | 12=N; 6
1
1 —6 15 —17 7 | 46=N, | 11 _ 15 6
< 6 —30 48 —24|108=N, | 11 42 36
15 —42 27 | 84=N, 15 30
22.46-0 11 —11] 22= Ny 6
1
1 —7 19 —23 10 | 60=N, | 12 17 7
& 7 —36 60 —31|134=N,| 12 49 44
17 —49 32 | 98 =N, 17 36
24.60-12 12 —12 | 24= N, 7
1
1 —10 35 —50 24 |120=No | 15 25 10
@ 10 —60 110 —60|240=N, | 15 75 7
25  —75 50 | 150 = N, 2% 60
30.120-60 15 —15| 30 = N, 10




Appendix C

Notations for point and
crystallographic groups

The notation used for symmetry groups varies depending on the science domain
and on the class of groups used in applications.

Point symmetry groups of three-dimensional space are the most widely used
in different concrete applications. In fact, they are not the abstract groups but
their representations in three-dimensional Euclidean space.

There are seven infinite families of groups and seven exceptional groups. The
different notations for these groups are given in Table C.1.

We characterize shortly these groups here using Schoenflies notation.

The seven infinite series of point groups are:

Cy, - group of order n generated by rotation over 27 /n around a given axis;
n=1,23,.... Cyis a trivial, “no symmetry“ group. In the limit n — oo we
get the Coo = SO(2) group.

Sap, - group of order 2n generated by rotation-reflection over m/n around a
given axis; n = 1,2,.... For n-odd, the group Sai2 is often noted as Copy1,;.
i.e. as an extension of the Cy,4+1 group by inversion. In particular So = C;. In
the limit n — oo we get the Coop group.

Chn - Group of order 2n obtained by extension of C), by including reflection
in plane orthogonal to the symmetry axis. n = 1,2,.... For n = 1, the notation
Cs = Cqp, is used. In the limit n — oo we get the Coop, group.

Chv - Group of order 2n obtained by extension of C,, by adding reflection
in plane including the symmetry axis. n = 2,3,.... In the limit n — co we get
the Coopy = O(2) group.

D,, - Group of order 2n obtained by extension of C,, by including symmetry
axes of order two orthogonal to the C), axis. n = 2,3,.... In the limit n — oo
we get the Do, group.

D,,q - Group of order 4n obtained by extension of D,, by including reflection
in the symmetry plane containing the C,, axis, but not containing orthogonal
Cs axes. n = 2,3.... In the limit n — oo we get the Dy group.

235
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Table C.1: Different notations for point groups.

Schoenflies Cn  Son  Cun Cho D, D.,q4 D,y
ITC (evenn) | n (2n) n/m nmm n22 (2n)2m  n/mmm
ITC (odd n) n n (2n) nm n2 nm (2n)2m
Conway nn  nx n* *NN n22 2%n, *n22
Schoenflies T Ty Th O Oy, I I,
ITC 23 43m  m3 432  m3m 235 m35
Conway 332 %332  3x2 432 %432 532 *532

Dy, - Group of order 4n obtained by extension of D,, by including reflection
in the symmetry plane orthogonal to the (), axis and containing all orthogonal
Cs axes. n = 2,3.... In the limit n — oo we get the Dy, group.

The seven exceptional groups:

T - A group of order 12 contains all rotational symmetry operations of a
regular tetrahedron.

T4 - Group of order 24. The symmetry group of a regular tetrahedron.

T}, - Group of order 24 obtained by extension of group T by adding an
inversion symmetry operation.

O - A group of order 24 contains all rotational symmetry operations of a
regular octahedron (or cube).

O}, - Group of order 48. The symmetry group of a regular octahedron (or
cube).

I - A group of order 60 contains all rotational symmetry operations of a
regular icosahedron (or dodecahedron).

Ij, - Group of order 120. The symmetry group of a regular icosahedron (or
dodecahedron).

C.1 Two-dimensional point groups

There are two families of finite two-dimensional point groups.
A C,,, group of order n, is generated by rotation over 27/n. n=1,2,3,....

Another family of groups is the extension of C',, by reflection in line passing
through the rotation axis. There is no universal notation for groups in this
family. D, or Cj, notation is used because of obvious correspondence with
notation for three-dimensional point groups.

Two continuous two-dimensional point groups SO(2) and O(2) can be de-
scribed equally as Cs and Do (Cooy) groups respectively.
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C.2 Crystallographic plane and space groups

For the notation for two- and three-dimensional crystallographic groups we sim-
ply refer to the International Tables of Crystallography [14] or to any basic book
on crystallography.

C.3 Notation for four-dimensional parallelohe-
dra

We give here correspondence between different notations used for four-dimensional
lattices. Delone was the first to give in 1929 a list of 51 combinatorial types of
four-dimensional lattices. In [41] he gave figures of three-dimensional projections
for all 51 found types, numerated consecutively by numbers from 1 to 51. For
each of these 51 types he gave also numbers of facets of each type and in cases
when several polytopes have the same numbers, he added information which
allows us to make a distinction between different polytopes. In 1973 Shtogrin
[87] found one combinatorial type missed by Delone. We give in tables C.2 and
C.3 characterization of all 52 types. Column “Delone* gives numbering used
by Delone in [41] together with his description of the set of facets in the form
used by Delone, namely: (n1)r, + (n2)k, + ... where (n;)g, gives the number
n; of facets with k; 2-faces. The combinatorial type discovered by Shtogrin is
denoted as St.

In the tables we refer also to two types of notations used by Engel [11,
49, 53]. A short notation indicates the number of facets and uses consecutive
numbers 1,2, ... to label polytopes within the subset of polytopes with the same
number of facets. The more detailed notation uses symbol N¢. N -ng where N¢
is the number of facets, Ny is the number of vertices, and ng is the number of
hexagonal 2-faces. When such labeling is insufficient, a full description uses 2-
subordinate and 3-subordinate symbols K, ... giving numbers K, of 2-faces
with n, edges in case of the 2-subordinate symbol and numbers K, of 3-faces
with n, 2-faces in the case of 3-subordinate symbol.

For zonohedral polytopes we give also the notation used by Conway [32] and
slightly different but essentially the same notation used by Deza and Grishukhin
[44] (see column DG). For non-zonohedral polytopes we do not use Conway
notation which is based on a rather different principle and give notation used
by Deza and Grishukhin for a zonotope contribution Z(U) which allows us to
write a non-zonohedral polytope as a Minkowski sum of Psy = 24.24-0 and a
zonotope Z(U).



238APPENDIX C. NOTATIONS FOR POINT AND CRYSTALLOGRAPHIC GROUPS

Table C.2: Combinatorial types of four-dimensional zonohedral lattices. Corre-
spondence between notations.

m  Engel Engel (full) Delone Conway DG
10  30-2 30.120-60 1 Ks K5
490660; 8201410 1014 + 20g
9 301 30.102-36 19 Kss K3,
4108636; 6121218 1812 + 126
28-4 28.96-40 4 Ks—1 Ks—1
490640; 66812126144 414 + 612 + 125 + 66
8 24-16 24.72-26 6 Ks—2 Ks—2
476626; 68810124142 214 + 412 + 105 + 8¢
26-8 26.78-24 5 Ks—1-1 Ks—2x1
492624; 63831219 1012 + 83 + 8¢
7 16-1 16.48-16 8 Ki+1 Ki+1
448616; 6688142 214 + 83 + 66
20-3 20.54-16 10 Ks -3 Ks -3
464616; 6388124 412 + 8g + 86
22-2 22.54-12 11 Co901 Co901
479612; 616126 612 + 166
24-12 24.60-12 7 Ks—2-1 Ks—1-2
436612; 61083126 612 + 8g + 10g
6 12-1 12.36-12 16 Cs+C3 Cs3+ Cs
436612; 812 12g
14-2 14.36-8 13 Ky Ky
44465; 6884129 212 + 48 + 8¢
20-2 20.42-6 12 Cso1 Cs391
46666; 61286122 219 + 68 + 126
22-1 22.46-0 9 Ca9o Co99
4g4; 616126 612 + 166
5 10-1 10.24-4 17 C3+1+1 C3+2x1
43064; 6684 4g + 6¢
14-1 14.28-0 15 Cy+1 Cy+1
448; 612122 219 + 12
20-1 20.30-0 14 Cs Cs
460; 620 20¢
4 8-1 8.16.0 18 1+1+1+1 4x1
424; Og 86
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Table C.3: Combinatorial types of four-dimensional lattices obtained as a sum

Py + Z(U) of 24-cell Poy = 24.24-0 and a zonotope Z(U).

Correspondence

between notations for polytopes and for zonotope contribution to the sum.

m  Engel Engel (full) Delone Z(U), [DG]
10  30-3 30.120-42 2 Ks—1
472536642; 66821012126144 414 + 612 + 1210 + 28 + 66
30-4 30.120-36 3 K3,
36454554636; 66361218 1812 + 63 + 8¢
9 28-6 28.104-24 21 Ks—2x1
36452554624; 64861981219 1012 + 819 + 65 + 46
28-5 28.104-30 20 Ks—2
4705366305 6484101412414 214 + 412 + 1410 + 48 + 45
8 26-9 26.88-12 24 Ks—1-2
3124385600612; 62810108126 612 + 1210 + 65 + 46
26-10 26.88-18 22 Ks -3
36456542618; 62881012124 412 + 1210 + 88 + 26
26-11 26.88-24 25 Ki+1
4745246245 62831014142 214 + 1410 + 83 + 26
28-3 28.94-12 24 Ks—1-2
364605546125 64861012126 612 + 1210 + 65 + 46
28-2 28.94-18 23 Ca991
478536618; 64861012124 612 + 1210 + 68 + 46
7 24-17 24.72-0 31 Cs92
324412572; 818126 612 + 185
24-18 24.72-12b 30 Co1 +1
312448536612; 814108122 212 + 810 + 145
24-19 24.72-12a 32 Cs+ (s
312448536612; 8121012 12109 + 125
24-20 24.72-24 33 Ky
434624; 816106142 214 + 610 + 166
26-6 26.78-6 28 Co1 +1
31245254866; 62810101212 212 + 1219 + 108 + 26
26-7 26.78-12 27 C391
364705300612; 628101012125 219+ 1210 + 105 + 26
28-1 28.88-0 29 Co9o

36472554; 64861012126

612 + 1219 + 65 + 46
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m  Engel Engel (full) Delone Z(U), [DG]
6 24-15 24.62-0 37 Cyi+1
324432548; 818104125 212 + 410 + 183

24-13 24.62-6 38 C3+2x1
31845053066; 816108 810 + 163
24-14 24.62-12 39 Co21
312468512612; 818104122 212 + 410 + 183
26-3 26.68-0 35 Cs
318454942; 628121012 1210 + 125 + 26
26-4 26.68-6 34 C3+2x1
31247252466; 628121012 1210 + 125 + 26
26-5 26.72-0 36 Cyi+1
3124705365 628101012129 219 + 1219 + 105 + 26
5 24-8 24.52-0 41 4x1
330440530; 820104 419 + 203
24-9 24.52-6 42 Cs3+1
32445851266; 820104 410 + 20g
24-10 24.56-0c 43 4x1
324456524; 816108 810 + 163
24-11 24.56-0d 44 Cy
324456524; 818104125 212 + 410 + 183
26-2 26.62-0 40 4x1
3184789518; 628121012 1210 + 125 + 26
4 24-6 24.42-0 47 3 x1
342436518; 824 245
24-5 24.42-6 St Cs
33645466; 824
24-7 24.46-0 48 Ix1
336452912; 820104 419 + 20g
26-1 26.56-0 45 3 x1
324490; 628121012 1219 + 125 + 2
3 24-3 24.36-0 49 2x1
35443656; 824 245
24-4 24.40-0 48 2x1
3484525 820104 419 + 20g
2 24-2 24.30-0 50 1
3724045 824 244
1 24-1 24.24-0 51 24-cell
396; 824 245 itself




Appendix D

Orbit spaces for plane
crystallographic groups

A standard ITC [14] representation of 2D-plane crystallographic groups is given
below along with corresponding description of orbit spaces (orbifolds) and with
notation suggested by Conway which describes the topology and the singularity
structure of orbifolds.

Orbifolds for five Bravais symmetry groups for two-dimensional lattices are
discussed in section 4.5. Here we complete the discussion of orbifolds by treating
all the rest of the 2D-symmetry groups.

Comments to figures are given here in parallel with explication of Conway
notation [31, 33, 34].

The simplest group pl (see figure D.1) contains only translations and pos-
sesses only one type of orbit. By taking the elementary cell of the lattice formed
by two independent translations we get a representation of a space of orbits as
a parallelogram with respective points on the boundary being identified. After
such identification we get that topologically the space of orbits for the pl group
is a torus. The presence of two nontrivial closed paths on the space of orbits
(two generating circles for a torus) is manifested in the Conway notation as .
An interpretation of this notation () is related to the fact that the torus can be
obtained from a sphere by joining one handle.

Group p2 is discussed in 4.5.

The next example is the pm group (see figure D.2). Along with translations
the group pm contains reflection axes. There are two different axes which are not
related by translation symmetry operation. Due to the presence of reflection
axes the space of orbits has a boundary. For the pm group there are two
inequivalent (by translation) boundaries formed by points belonging to orbits
with stabilizer m. Each generic (principal) orbit with stabilizer 1 = C4 has two
points in the elementary cell. Restricting to one point for each generic 1-orbit
leads to the yellow region with the left and right boundary being identified.
This identification leads to a cylinder as an orbifold. Two circular boundaries

241
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=

pl O - torus

Figure D.1: Orbifold for the pl crystallographic 2D-group.

pm  ** cylindre

Figure D.2: Orbifold for the pm crystallographic 2D-group.

of this cylinder are formed by orbits with stabilizer m. All other points represent
generic orbits with stabilizer 1 = C7. The presence of a circular boundary is
indicated in Conway notation by *. Consequently, the Conway notation for pm
orbifold is .

Group pg has only glide reflections in addition to two independent transla-
tions. All orbits are principal with the stabilizer 1. Due to glide reflection each
elementary cell has two points from each orbit of the symmetry group action.
The choice of one representative point from each orbit leads to the yellow region
(see figure D.3). Points on lower and upper boundaries should be identified be-
cause they are related by a translation. Points on left and right red boundaries
should be also identified but respecting the direction of the arrows. This identi-
fication is a result of transformation of the left red boundary into the right red
boundary by the glide reflection (half-translation followed by a reflection). The
resulting orbifold from the topological point of view is a Klein bottle. Conway
notation for the Klein bottle is x x. Two signs x are used to indicate that the
Klein bottle can be obtained from a sphere by adding two crosscaps.

The group cm contains reflection axes and glide reflection axes. Principal
orbits (with stabilizer 1) have four points in the elementary cell. We can choose
one point from each orbit by taking the yellow region of the elementary cell
shown in figure D.4. The boundary of this yellow region is formed by points
belonging to orbits with stabilizer m. Two red lines forming the boundary of the
triangle should be identified respecting the orientation of arrows because they
are transformed one into another by a glide reflection. From the topological
point of view the orbifold for the cm group is a Mobius band. The boundary
of the band which is a topological circle is formed by orbits with stabilizer m.
Conway notation for the orbifold is *x. This notation indicates that there exists
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pg XX Klein bottle

Figure D.3: Orbifold for the pg crystallographic 2D-group.

______________ 2

cm * X  Moebius band

Figure D.4: Orbifold for the e¢m crystallographic 2D-group.

one boundary and one crosscap is glued to the demi-sphere to get the Mobius
band.

The group p2mm is discussed in 4.5.

The group p2mg contains two independent rotation centers of order two
and reflections in only one direction. It has also glide reflections whose axes
are perpendicular to the reflection axes. The centers of rotation lie on glide
reflection axes. There are two orbits with stabilizer 2 = C5 and each 2-orbit has
two points in the elementary cell. Points with stabilizer m belong to reflection
axes. HKach m-orbit has two points in one elementary cell. Each principal
orbit has four points in the elementary cell. To form the space of orbits we
choose the yellow rectangular region shown in figure D.5. Points situated on
the glide reflection axes symmetrically with respect to the 2 = Cy axes should
be identified. This gives the orbifold which from the topological point of view
is a disk with a boundary formed by orbits with stabilizer m. Inside the disk

p2mg  22*  disc with
2 C2 points

Figure D.5: Orbifold for the p2mg crystallographic 2D-group.



244APPENDIX D. ORBIT SPACES FOR PLANE CRYSTALLOGRAPHIC GROUPS

p2gg 22X real projective plane
with two Gy points

Figure D.6: Orbifold for the p2gg crystallographic 2D-group.

there are two isolated orbits with stabilizer 2. Conway notation for an orbifold
of p2mg group is 22%. According to convention the orders of isolated rotation
centers which do not belong to the boundary should be indicated before the
boundary symbol, .

The group p2gg contains two rotation centers of order two and glide reflec-
tions in two orthogonal directions. There are no reflections. The centers of
rotation are not located on the glide reflection axes (see figure D.6). The el-
ementary cell contains two different orbits with stabilizer 2. Each orbit with
stabilizer 2 has two representative points in the elementary cell. Each generic
orbit with stabilizer 1 has four points in the elementary cell. The triangular yel-
low region shown in figure D.6 contains one representative point from all orbits.
Generic points on the boundary of a triangle should be identified under the ac-
tion of 2-symmetry operations. Two half-sides of the base of the triangle can be
first glued together. This leads to a subfugure D.6, right, which shows that the
diametrically opposite points on the boundary of the circle should be identified.
This is a standard construction of the real projective plane. Thus, the orbifold
for the p2gg group is a real projective plane with two singular 2 points. The
Conway notation for this orbifold is 22x. Initial 22 shows that there are two
isolated 2 points. Symbol x indicates gluing of one crosscap. Remember that
to get the real projective plane it is necessary to glue to a sphere one crosscup,
whereas gluing two crosscaps leads to the Klein bottle.

The group ¢2mm is discussed in 4.5.

The group p4 has two rotation centers of order four and one rotation center
of order two. It has no reflection or glide reflections. Every principal orbit has
four points in each elementary cell. The 2-orbit has two points in the elementary
cell. Each of two Cy orbits belonging to its own stratum (Wyckoff positions) has
one point in the elementary cell. The yellow square shown in figure D.7 includes
one point from each orbit taking into account that points equivalent under Cy
rotation should be identified. The result of such identification is a sphere with
three marked points, two C4 (not conjugate) orbits and one Cy orbit. The
notation for the orbifold is 442 indicating the absence of the boundary and
spherical topology.

The group pdmm is discussed in 4.5.

The group p4gm has rotation centers of order four which form one orbit
with stabilizer C4. These rotation centers do not lie on reflection axes. The C4
orbit has two representative points in each elementary cell. The group p4dgm has
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p4 442 sphere with two C4 points
and one C 2 point

Figure D.7: Orbifold for the p4 crystallographic 2D-group.

<« ©

pdgm 42 disc with C, point inside
and C, point on the boundary

Figure D.8: Orbifold for the p4dgm crystallographic 2D-group.

reflection axes in two orthogonal directions. There are rotation centers of order
two which lie at the intersection of reflection axes. These order two rotation
centers form one orbit with stabilizer 2m. Each elementary cell contains two
points belonging to the orbit with stabilizer 2m. The group p4gm has also two
families of glide reflection axes - one in horizontal and vertical directions, the
other at the angle of w/4 with these. Principal orbits (stabilizer C) has eight
representative points in the elementary cell. Collecting one point from each
orbit we get the space of orbits represented by a yellow triangle in figure D.8.
Points on horizontal and vertical sides of this triangle should be identified due
to action of Cy rotation. Points belonging to the reflection axis (blue line in
figure D.8) form the boundary of the space of orbits together with one Ca-orbit
on this boundary. Topologically the orbifold for the pdgm group is a disc with
one Cy point on the boundary and one C4 point inside. The Conway notation
for this orbifold is 4%2.

The group p3 has three different rotation centers of order three but no reflec-
tions or glide reflections. Each principal orbit with stabilizer 1 = C; has three
representative points in the elementary cell. Each of three orbits with stabilizer
3 = (5 forms its own stratum and has one representative point in the elemen-
tary cell. We can choose the domain of the elementary cell with one point from
each orbit as shown in figure D.9 by the yellow rhombus. The points on the
sides of this rhombus equivalent with respect to order three rotation should be
identified. This gives for the space of orbits from the topological point of view
the sphere with three marked points being each representative of different strata
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‘ I p3 333 sphere with three C

Figure D.9: Orbifold for the p3 crystallographic 2D-group.

- i *#333 disc with three (‘3 points

p3ml

3 points

on the boundary

Figure D.10: Orbifold for the p3ml crystallographic 2D-group.

with stabilizer 3 = (5. Conway notation for this orbifold is 333 indicating the
absence of the boundary and existence of three singular points.

The group p3m1 has three different rotation centers of order three and re-
flection axes forming sides of an equilateral triangle. Each rotation center lies
at the intersection of the reflection axes. There are additional glide reflections
in three distinct directions whose axes are located halfway between adjacent
parallel reflection axes. Each principal orbit has six representative points in the
elementary cell. Orbits with stabilizer m (formed by points lying on reflection
axes) have three representative points in the elementary cell. All these orbits
belong to the same stratum. Finally, each of three orbits with stabilizer 3m has
one representative point in the elementary cell and belongs to its own stratum.
Collecting one point from each orbit we get the space of orbits represented in
figure D.10 as a yellow triangle with its boundary. From the topological point
of view the orbifold is a disc with three singular points at its boundary. The
Conway notation for the orbifold of the group p3ml is *333.

The group p31lm has two different types of rotation centers of order three.
One rotation center of order three lies at the intersection of reflection axes
forming an equilateral triangle. The stabilizer of the corresponding orbit is
3m. This orbit has one representative point in the elementary cell. Another

p3lm  3*3 disc with two % points
one inside and one on the boundary

Figure D.11: Orbifold for p31m crystallographic 2D-group.
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632 sphere with one ¢ point

po
one C 3 point and one CZ point

Figure D.12: Orbifold for the p6 crystallographic 2D-group.

order three rotation center does not lie on the reflection axes and form an orbit
with stabilizer C's. The corresponding orbit has two representative points in the
elementary cell. Points belonging to reflection axes form orbits with stabilizer
m. Each such orbit has three representative points in the elementary cell. The
group p31m has also glide reflections in three distinct directions, whose axes are
located halfway between adjacent parallel reflection axes. Principal orbits (with
stabilizer C1) have six points in the elementary cell. Taking one point from each
orbit we form the yellow triangle (see figure D.11) corresponding to the space
of orbits after identification of points on the sides equivalent with respect to
C5 rotation. After such identification the orbifold becomes a topological disc
with one singular point on the boundary and one C'3 point inside. The Conway
notation of the orbifold is 3%3.

The group p6 has one rotation center of order six, two rotation centers of
order three and three rotation centers of order two. It has no reflection axes
or glide reflection axes. Orbits with stabilizer Cg = 6, C3 = 3, Cy = 2, and
C1 = 1 have respectively one, two, three, and six points in the elementary cell.
The domain including one point from each orbit is shown by the yellow color
in figure D.12. To get the space of orbits we need to identify the points on the
boundary of the yellow domain equivalent with respect to Co = 2 and C3 = 3
rotations. After such identification the space of orbits becomes a sphere with
three singular points corresponding to orbits with stabilizers Cg = 6, C3 = 3,
and Cy = 2 respectively. The notation for this orbifold is 632.

The group p6mm is discussed in 4.5.

This completes the discussion of orbifolds for all plane crystallographic groups.
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Appendix E

Orbit spaces for
3D-irreducible Bravais
groups

There are three cubic Bravais groups Pm3m, Im3m, Fm3m, corresponding to
the same point symmetry group, Op. We construct orbifolds for these three-
dimensional irreducible Bravais groups to see the difference of group actions.

We start with the Pm3m group. Its elementary cell includes one point of the
simple cubic lattice and is supposed to be of volume one. We use this primitive
cell to represent different strata of the symmetry group action. Different strata
(or systems of different Wyckoff positions according to ITC) are shown in figure
E.1.

There are two zero dimensional strata with stabilizer Oy, characterized as
Wyckoff position a and b. The stabilizers of these two strata are not conjugate
in the symmetry group of the lattice. Points a correspond to points forming the
simple cubic lattice. Points b are situated in the center of the cubic cell formed
by points a. Eight points of type a are shown in figure E.1 but as soon as each
point equally belongs to eight cells there is only one point a per cell.

There are also two zero-dimensional strata with stabilizer D,; which are
not conjugate in the symmetry group of the lattice. They are labeled as ¢ and
d (according to ITC). There are three positions of type ¢ per cell and three
positions of type d per cell. Each point of type ¢ belongs to two cells whereas
each point of type d belongs to 4 cells. That is why there are 6 points of type ¢
and 12 points of type d drawn in figure E.1.

There are six different one-dimensional strata of the Pm3m group action on
the space. Two one-dimensional strata have as stabilizers two Cy, subgroups
which are not conjugate in the lattice symmetry group. These two strata are
shown on the same subfigure in figure E.1. Each orbit of e (blue) symmetry type
has six points per primitive cell. Two points of each orbit are situated on each
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On =m3m; b

& T

O

Dyp, = 4/mmm; ¢ D4y, = 4/mmm;

Cay = dmm; e, f

i

Capw = mm2; j

Cs =

Csy =3m; g

=m; k Cs=m;l

Cs =m;m

Figure E.1: Different strata for Pm3m Bravais group.

h

d

k : ehi
1: fhj
b ml : fgi
4 m?2 : egj
S/
1 ¢

Figure E.2: Primitive cell and orbifold for the Pm3m three-dimensional Bravais

group.
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of three disconnected intervals shown by solid blue line. As soon as these solid
lines are edges of the primitive cell and belong, in fact, to four cells, all other
edges are equivalent and consequently belong to the same stratum. Orbits of f
type are situated inside the primitive cell on six intervals marked by the cyan
color. One point of each orbit belongs to one of six equivalent intervals forming
one stratum.

The Cj, stratum (type g of Wyckoff positions) consists of orbits having eight
points per cell situated on the diagonals of primitive cell.

There are three non-conjugated Cs, strata (types h, i, j of Wyckoff posi-
tions). These strata are shown in three subfigures of figure E.1. Each orbits has
12 points per cell for each of these three strata.

There are also three two-dimensional strata k, [, m. Each of them has C, =
m group as the stabilizer, but all of these three stabilizers are non-conjugate
subgroups of the lattice symmetry group. The last three subfigures of E.1 show
these strata. (Better visualization of m stratum can be done by using three
rather than one subfigures. This is done for the Fm3m group in figure E.7.)
Each orbit belonging to these strata has 24 points per cell.

At last, all points which do not belong to the mentioned above strata form
generic stratum with trivial stabilizer 1 = C;. It consists of orbits having 48
points per cell.

In order to construct the orbifold of the Pm3m group action we can choose
a closed region (simplex) shown in figure E.2. TIts vertices are points from
different zero-dimensional strata a,b,c,d. Six of its edges are also formed by
points belonging to different one-dimensional strata: e: a—d; f:b—c; g:a—b;
h:c—d;i:a—c;j:b—d. (Each edge is indicated by its two boundary vertices.)
Among four faces, two belong to the same stratum of type m, namely, m1 : fgi
and m2 : egj (the face is indicated by its three boundary edges). Each of two
other faces belongs to its proper stratum: k : ehi, [ : fhj. Internal points belong
to generic stratum, n.

Topologically, the orbifold of the Pm3m group is a three-dimensional disk
with all internal points belonging to the generic stratum and the boundary
formed by 13 different strata.

Now we turn to the Im3m Bravais group. In order to have a cell whose
symmetry coincides with the symmetry of the lattice, we are obliged to take a
double cell which has volume 2 and includes two lattice points per cell. Different
strata of the Im3m action are shown in figure E.3. It is instructive to briefly
compare the system of strata of Im3m with that of Pm3m by ignoring the
difference in volumes of cells. The notation of strata by Latin letters follows
again the notation of Wyckoff positions in ITC. Zero dimensional stratum a
(stabilizer Op,) of Im3m includes points of strata a and b of Pm3m. Zero
dimensional stratum b of Im3m (stabilizer Dyj,) includes points of strata ¢ and
d of Pm3m. Zero dimensional strata c (stabilizer D34) and d (stabilizer Dag)
of Im3m are the new ones as compared to stratification imposed by Pm3m.

One-dimensional stratum e of Im3m includes points belonging to e and f
strata of Pm3m. Stratum f (stabilizer C3,) of Im3m action coincides with the
stratum g of Pm3m. The group Im3m has three one-dimensional strata g, h, i
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with stabilizer Cs,. The one-dimensional stratum g of Im3m action coincides
with stratum h of Pm3m. The one-dimensional stratum h of Im3m includes
points of two strata i and j of Pm3m. The one-dimensional stratum 4 of Im3m
is a new one as compared to the stratification imposed by Pm3m.

The two-dimensional stratum j (stabilizer C) of Im3m includes points be-
longing to two strata k and [ of Pm3m. The two-dimensional stratum k (sta-
bilizer Cs) of Im3m reproduces stratum m of Pm3m.

In order to construct the orbifold and to take only one point from each orbit
we can take the region shown in figure E.4. The choice of this region coincides
with the choice of the asymmetric unit suggested by ITC for the Im3m group.
One should only additionally take into account the following important facts.

i) The two points marked by b in E.4 belong to the same stratum b and
moreover to the same orbit with stabilizer Dy4;. This can be easily seen because
all points on the line cd have stabilizer Co and this Cy rotation is obviously
rotation around the cd line. This C5 symmetry transformation unifies not only
two points marked b into one orbit but also it acts on any point of the bcb
triangular face of the chosen region. This indicates that pairs of respective
points in two cbd triangles should be identified in order to construct the orbifold
including only one point from each orbit. From the topological point of view
the result of gluing two cbd triangles is the orbifold shown in figure E.5. It can
be represented as a three-dimensional body having the geometrical form of a
double cone with two special points (c,d) at its apexes and two special points
(a,b) on the equator. Moreover, all other points of the equator belong to two
different (h and e) one-dimensional strata. Two other one-dimensional strata
connect on the surface of double cone points a and ¢ (stratum f) and points
b and d (stratum g). Inside a double cone there is one more one-dimensional
stratum ¢ connecting points ¢ and d. All other internal points belong to generic
stratum [. Boundary points of the double cone which do not belong to the
mentioned above zero-dimensional and one-dimensional strata form two two-
dimensional strata. Stratum k consists of points of the upper part of the double
cone boundary. This two-dimensional stratum has one-dimensional strata f,
h, and e as its boundary. Stratum j consists of points of the lower part of
the double cone boundary. This two-dimensional stratum has one-dimensional
strata g, e, and h as its boundary.

In the case of the F'm3m Bravais group the choice of the cell respecting the
Op, holohedry of the lattice leads to the quadruple cell of volume 4 as compared
to the primitive cell. All zero-, one- and two-dimensional strata of the lattice
symmetry group action on this quadruple cell are shown in figures E.6, E.7.

The notation of strata by Latin letters follows again the notation of Wyckoff
positions adapted in ITC. A zero dimensional stratum with stabilizer Doy is
shown in two subfigures in order to see better the location of all points. In
this case one orbit includes 24 points per quadruple cell. In a similar way a
one-dimensional stratum of type f (stabilizer C3,) is represented in four sub-
figures. Two of three non-conjugated in the lattice symmetry group strata
with stabilizer Cs,, namely strata of type h and i, are also shown in two sub-
figures. A two-dimensional stratum of type j (stabilizer Cy) is represented in two
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Figure E.3: Different strata for the Im3m Bravais group. In order to simplify vi-

sualization of the stratum d with stabilizer Dy4 only translationally inequivalent
points are represented.
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k : efth

j:egh

Figure E.4: Double cell and orbifold for the Im3m three-dimensional Bravais
group.

] : geh
d

Figure E.5: Schematic representation of the orbifold for the Im3m three-
dimensional Bravais group.
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Figure E.6: Different zero- and one-dimensional strata for the Fm3m Bravais
group.
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Cs=m; k

Figure E.7: Different two-dimensional strata for the F'm3m Bravais group.
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Figure E.8: Schematic representation of orbifold for the Fm3m three-
dimensional Bravais group.
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subfigures which coincide with figures of stratum j of Bravais group Im3m. A
two-dimensional stratum of type k (stabilizer Cs) is represented in six subfigures.
Three of these subfigures reproduce figures of stratum k for the Im3m group or
stratum m for the Pm3m group.

In order to construct the orbifold we need to take one representative point
from each orbit. This can be done by restricting the quadruple cell to the region
having tetrahedral geometry (see figure E.8) with coordinates of vertices
a:{0,0,0}; b:{1/2,0,0}; c:{1/4,1/4,1/4}; d:{1/4,1/4,0}.

This choice coincides with the choice of the asymmetric unit for the Fim3dm
group made in ITC. The Fm3m orbifold is a topological three-dimensional disk.
All its internal points belong to the generic C stratum. The stratification of
boundary is similar to the Pm3m orbifold. For F'm3m all four vertices belong to
different zero-dimensional strata, but among six edges there are two belonging
to the same stratum, and among four faces, three belong to the same stratum.
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