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Abstract

A family of n× n Hermitian matrix Hamiltonians defined on the sphere S2 and
depending on extra control parameters in the presence of a finite subgroup of SO(3)
as a symmetry group are studied with eigen-line bundles which are constructed
by piecing together locally-defined eigenvectors. The condition for degeneracy in
eigenvalues splits in general the space of control parameters into distinct iso-Chern
domains on each of which the Chern numbers of the associated eigen-line bundles
are constant. A Chern number modification or a delta-Chern occurs when crossing
the boundary from one iso-Chern domain to another. The present article provides a
formula for the delta-Chern on the model of two-parameter family of 3×3 Hermitian
matrix Hamiltonians with cubic symmetry together with the whole sets of Chern
numbers on respective iso-Chern domains.

Keywords: Energy bands, Chern numbers, delta-Chern or Chern number modification,
cubic symmetry.

Mathematics subject classification 2010: 15B57, 53C80, 81V55

1 Introduction

Topology in condensed matter physics, especially in topological insulators has drawn great
interest in recent years [1, 2]. In contrast to this, topology in molecular physics [3] has
gained less attention. From the viewpoint of mathematical physics, both theories have
share the same conceptual grounds, one of which is energy band rearrangement. The
present article with its root in the molecular physics studies intensively Chern number
modification, which is closely associated with energy band rearrangement, and shares
topological techniques with the topological insulator theory. This article is directly a
successor to authors’ papers [4, 5, 6]. As physical ideas for Chern number modification
are described in detail in [6], this paper concentrates on a mathematical analysis of Chern
number modification.

From a historical viewpoint, the study of a parameter family of Hamiltonians started
with [7] for the redistribution of energy levels against a change in the parameter. In
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the same line of study, a relation between monodromy and band rearrangement was
discussed in [8] and its quantum manifestation was treated in [9]. Analysis of physical
systems in terms of vector bundles and associated Chern numbers, as it is done in the
present article, has been widely used in other branches of physics. For example, in the
study of the quantum Hall effect [10], a complex line bundle over the two-torus as a
Brillouin zone is naturally introduced together with a Berry connection in terms of Bloch
wave functions, and the technique for evaluating the Chern number of the line bundle is
similar to that to be used in the present article. Interesting topological phenomena in
electronic energy bands are the quantum spin Hall effect and topological insulators with
time-reversal symmetry (see [11, 12, 13] for example, a few of a huge number of references).
Though the interest of this article originates from rearrangements of molecular energy
bands, the bundle picture used in this article shares the same mathematical grounds as
these studies. The results obtained in this article allows natural physical interpretation
as well. For example, the fact that Chern numbers are constant on an iso-Chern domain
means that the topological property of the physical system in question is robust against
a small change in control parameters, and the fact that a Chern number modification or
a delta-Chern occurring only when crossing a degeneracy curve in the control parameter
space is interpreted as a drastic change in physical property accompanying an energy gap
closing. The delta-Chern formula to be studied in this article describes this qualitative
change, and would be called a kind of “wall-crossing” formula [14] in the sense of basic
idea. The mathematical foundations of studies concerning a family of Hermitian matrices
are described in [15]. In addition, though the delta-Chern is authors’ nomenclature, a
similar idea was given in [16] and in [17], in the latter of which the curvature is treated
in the sense of distribution when degeneracy in eigenvalues takes place.

In this article, eigen-lines bundles are dealt with for a family of n×n Hermitian matrix
Hamiltonians defined on the sphere S2 as the space of classical dynamical variables and
depending on extra control parameters in the presence of a finite subgroup of SO(3) as
a symmetry group, where each of the eigen-line bundles is formed by piecing together
locally-defined eigenvectors associated with each of the eigenvalues of the matrix Hamil-
tonian, if eigenvalues are not degenerate. Let Rm denote the space of control parameters
and G a symmetry group. The product space Rm×S2 is considered as the total parameter
space for the family of the Hamiltonians with symmetry. The distinction between dynam-
ical variables and control parameters is made by the action of the symmetry group; the
symmetry group G acts on S2 but not on Rm. The condition for degeneracy in eigenvalues
splits in general the space of control parameters Rm into disjoint “iso-Chern” domains.
This is because the codimension of degeneracy in eigenvalues of Hermitian matrices is
three [18] whereas dimS2 = 2 and dimRm = m. In correspondence to each point of
respective boundaries (or degeneracy surfaces) of the iso-Chern domains in Rm, there ap-
pear on S2 isolated degeneracy points at which eigenvalues are degenerate. At each point
of a domain bounded by degeneracy surfaces, there are assigned eigen-line bundles asso-
ciated with respective non-degenerate eigenvalues. Since the Chern numbers of respective
eigen-line bundles are constant on each domain in Rm, the domains are called iso-Chern
domains. For each iso-Chern domain, the trivial bundle Cn × S2 over S2 is decomposed
into the direct sum of eigen-line bundles, each of which is characterized by a constant
Chern number.
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The interest of the present article centers on a Chern number modification or a delta-
Chern which accompanies the crossing of the boundary from one iso-Chern domain to
another along a path transverse to the boundary. The delta-Chern can be understood
as describing a rearrangement of band structures. Though the eigen-line bundles cannot
be defined for degeneracy points, a close look at the neighborhood of a degeneracy point
together with eigenvectors can reveal how transition goes on in eigen-line bundle structures
against a change in control parameters along a path crossing the boundary in the control
parameter space. It is to be noted here that the degeneracy point is referred to in two
ways; one is a degeneracy point in the control parameter space and the other in S2.
However, in order to observe the transition in question, the degeneracy point is to be
considered as a pair of the degeneracy points mentioned above or as a point of Rm × S2.
Then, the full Hamiltonian should be projected, after being linearized at the degeneracy
point, onto a matrix acting on the eigenspace associated with the doubly degenerate
eigenvalues in general. If linearization fails, the first non-vanishing higher-order terms of
the local expansion of the full Hamiltonian should be adopted. The resultant Hamiltonian
is called a local Hamiltonian, which is 2× 2 Hermitian matrix with entries being linear in
suitably-defined local coordinates or with entries consisting of first non-vanishing higher-
order terms. Since the full Hamiltonian has the G symmetry, the local Hamiltonian has a
local symmetry as well, for which the symmetry group, called a local symmetry group, is
the isotropy subgroup G0 of G at the degeneracy point in S2. The isotropy subgroup G0

is represented in the two-dimensional eigenspace associated with the doubly degenerate
eigenvalues. Since G0 is a subgroup of SO(2), it is an Abelian group, so that it is reducible.
Then, there exists a basis in the eigenspace in question such that the G0 is represented
in the diagonal form. The local Hamiltonian expressed with respect to such a basis is
called being in normal form. From the eigenvectors of the local Hamiltonian in normal
form, one can extract a necessary quantity for the delta-Chern. To be precise, such a
quantity is a contribution from a single degeneracy point for the delta-Chern, which is
referred to as a local delta-Chern. The local delta-Chern is exact in spite of the fact that
only first non-vanishing terms of the local expansion of the full Hamiltonian are used.
This is because the local delta-Chern can be put in the form of integer-valued contour
integral and because the integrand and the contour can be deformed without changing
the resultant integer value. Because of the full symmetry group G, the local Hamiltonian
on the neighborhood of a degeneracy point is equivalent to those at the other degeneracy
points if the degeneracy point in S2 is in the same orbit of G. This means that the
local delta-Chern is the same throughout the orbit, so that the global delta-Chern is the
product of the local delta-Chern by the order of the orbit in question. The local delta-
Chern depends on the direction in which the boundary is crossed, and hence it should be
calculated with special carefulness in its sign.

The strategy for finding a local delta-Chern has several steps. The first step is to find
both the degeneracy surfaces (or the boundaries of iso-Chern domains) in the space of
control parameters and the degeneracy points in S2. According to the G action, the sphere
S2 is stratified into strata, where at every point of each stratum, the isotropy subgroup
is the same up to conjugation. Since the degeneracy points in S2 form an orbit of the
symmetry group G, one can start in principle by picking up a degeneracy point from
different 0-dimensional strata, then proceed to a degeneracy point from 1-dimensional
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stratum, and finally from 2-dimensional (generic) stratum. In a case, one is allowed to
show the absence of degeneracy points at strata other than 0-dimensional one. Evaluating
the full Hamiltonian at respective degeneracy points in S2, and calculating its eigenvalues
or using the relevant discriminant, one can determine degeneracy curves in the control
parameter space. If G is the octahedral group, the stratification of the sphere S2 is well
known, and this step is rather easy to perform.

The next step is to form a local Hamiltonian in normal form in the neighborhood of
a degeneracy point. Tasks to do are (i) to draw a short curve in the control parameter
space, which crosses transversely a degeneracy surface at a regular point of a degeneracy
surface, i.e., at a point other than intersections of two or more degeneracy surfaces, (ii)
to take a tangent line to the curve in the control parameter space, (iii) to take a frame
on the tangent plane to S2 at the degeneracy point concerned, with respect to which
a local coordinates are defined, (iv) to choose a basis of the eigenspace associated with
the doubly degenerate eigenvalues, with respect to which the isotropy subgroup at the
degeneracy point is represented in the diagonal form, (iv) to find a local Hamiltonian by
linearization or by taking the first non-vanishing higher-order terms, which is defined on
the product of the tangent line and the tangent plane in question and described in terms
of local coordinates defined there. The resultant local Hamiltonian has local symmetry
and is in normal form.

The final step is to determine a local delta-Chern by using the local Hamiltonian in
normal form, a formula for which will be shown in the subsequent sections. The local
delta-Chern is shown to be independent of the choice of bases and the choice of frames.
The total (or global) delta-Chern is now easy to obtain, which is #G/#G0 times the
local delta-Chern, where #G and #G0 denote the numbers of elements of G and of G0,
respectively.

To perform the above-mentioned procedure, model Hamiltonians are adopted from [19,
20], which are 2×2 and 3×3 matrix Hamiltonians, respectively, admitting symmetry by the
octahedral group. The Hamiltonians adopted are not so simple but can be manipulated in
search of delta-Cherns. In [19, 20], energy band rearrangements were qualitatively studied
on the level of classical limit for slow subsystem, but topological invariants associated
with the semi-quantum description of coupled “slow” and “fast” subsystems were not
introduced at that time. In [4], Chern number modification is treated for the 2 × 2
Hermitian matrix Hamiltonians with SO(2) and with D3 symmetries. In the study of
these Hamiltonians, delta-Chern was not used, since it was possible to obtain Chern
numbers on respective iso-Chern domains in a straightforward manner. It is to be noted
in addition that as far as rotation-vibration states near an equilibrium are concerned,
the entries of a model Hamiltonian may be restricted to polynomials on R3. Further, if
the Hamiltonian is required to be invariant under a discrete or a continuous subgroup,
polynomials are chosen according to some of representations of the subgroup.

The organization of this article is as follows: Section 2 is a brief review of symmetry of
the Hamiltonian with interest in the degeneracy in eigenvalues. Symmetry of the linearized
Hamiltonian is also treated. In Sec. 3, the octahedral group is briefly reviewed in relation
to the symmetry of two- and three-level model Hamiltonians (i.e., n = 2, 3). More details
will be given in Appendix. Section 4 is concerned with eigen-line bundles associated with
eigenvalues of a generic 2×2 matrix Hamiltonian. Chern numbers are not touched, which
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will be treated in the succeeding sections with concrete examples. In Sec. 5, a family
of two-level model Hamiltonian with O symmetry is studied by calculating the Chern
numbers assigned to respective iso-Chern domains, during which different approaches are
explicitly used for calculating the Chern numbers. In Sec. 6, the linearization of the full
Hamiltonian and its retraction to a two-level model Hamiltonian are discussed explicitly
in the case of the three-level models. The local Hamiltonian in normal form is discussed
as well. Section 7 is concerned with 2×2 local Hamiltonians in normal form with interest
in relevant invariants. In Sec. 8, after studying eigen-line bundles for the 2 × 2 local
Hamiltonians in normal form, a formula for the local delta-Chern is proved. In Sec. 9,
a formula for the global delta-Chern is obtained by means of homotopic deformation of
integer-valued contour integrals. In Sec. 10, a family of three-level model with O symmetry
is worked out by applying the global delta-Chern formula to obtain an iso-Chern diagram,
in which a column of Chern numbers are assigned to each iso-Chern domain. The results
obtained after an intricate and long calculation are summarized in Figs. 6 and 7, which
have been announced in [6]. In Sec. 11, the two-level model treated in Sec. 5 is revisited
from the viewpoint of the delta-Chern shown in Sec. 8. Section 12 contains a case study
to observe a change in Chern numbers in the case of triple degenerate eigenvalues on
an explicit model Hamiltonian. In Section 13, linear approximation method is discussed
in a generic situation together with a relation of the local-Chern analysis to the Berry
phase. Section 14 offers remarks on possible extensions of the delta-Chern analysis to
the cases where the linear approximation fails but quadratic approximation works and
where a triple degeneracy occurs in eigenvalues. Section 15 contains concluding remarks
on interesting relations between possible values of Chern numbers and the decomposition
rules for tensor products of group representations. In addition, a progress achieved after
the present work is touched upon. Appendix contains a review of the octahedral group
together with the symmetry conditions for the Hamiltonians.

2 Symmetry of the Hamiltonian

As is anticipated in Introduction, we have to discuss the symmetry of the Hamiltonian
from two points of view, local and global. For the sake of contrast, we refer to the
symmetry by the full group as the global symmetry and that by the isotropy subgroup at
a point of S2 as the local symmetry.

Let G be an discrete subgroup of SO(3) acting on S2 ⊂ R3. A Hamiltonian H(x),x ∈
S2, an n× n Hermitian matrix defined on S2, admits the symmetry group G if and only
if

H(gx) = D(g)H(x)D(g)−1, g ∈ G, (1)

where D(g) is a representation matrix acting on Cn, and where H(x) may depend on
extra control parameters.

Since the codimension for degeneracy in eigenvalues of Hermitian matrices is three and
since the dimension of S2 is two, degeneracy points may appear on a zero-dimensional
subset of S2, in general. If λ0 is an eigenvalue of H(x) doubly degenerate at x0, one has

det(H(x0)− λI)|λ=λ0 =
d

dλ
det(H(x0)− λI)

∣∣∣∣
λ=λ0

= 0. (2)
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Equations (1) and (2) are put together to give

det(H(gx0)− λI)|λ=λ0 =
d

dλ
det(H(gx0)− λI)

∣∣∣∣
λ=λ0

= 0. (3)

This implies that if x0 ∈ S2 is a degeneracy point, the orbit of x0 by G is a set of
degeneracy points.

The symmetry for H can be extended to that for the derivative of H. For the time
being, we consider H(x) as defined on R3. Let us introduce the variables x′ by x′ = gx.
In components, we put it in the form x′j =

∑
gjkxk. We now compute the gradient,

∇H(x′) =
(

∂hij(x
′)

∂x′
k

)
, of H, where the symbol ∇H takes values in the tensor product

space R3 ⊗ Cn×n. Then, the symmetry condition H(gx) = AdD(g)H(x) is differentiated
to give

∂hij(x
′)

∂x′k
=
∑
ℓ

gkℓ
∑
p,q

D(g)ip
∂hpq(x)

∂xℓ
D(g)jq, (4)

which is compactly written as

∇H(gx) = (g ⊗ AdD(g))∇H(x), (5)

where ∇H(x) = (
∂hij

∂xk
) takes values in R3 ⊗Cn×n and where the action of g ⊗AdD(g) are

defined on R3 ⊗ Cn×n by

a⊗ A 7→ (g ⊗ AdD(g))(a⊗ A) = ga⊗ AdD(g)A, a ∈ R3, A ∈ Cn×n. (6)

We return to the initial Hamiltonian defined on S2. We are to show that the invariance
condition (1) is naturally extended to that for the derivative of the Hamiltonian. Let Πx

denote the tangent plane to S2 at a point x ∈ S2, and ξk, k = 1, 2, be an orthonormal
system of tangent vectors with positive orientation on Πx. The Cartesian coordinates qk
are defined on Πx through

∑
qkξk. The homogeneous linear Hamiltonian is defined to be

H1(q;x) =
∑

qkξk · ∇H(x), (7)

where ξk · ∇H(x) denotes the inner product R3 × (R3 ⊗ Cn×n) → Cn×n, or the n × n
complex matrix with (ℓ,m) entries ξk · ∇hℓm.

From (5) and (7), it follows that if the frame gξk is chosen at gx, the H1(q;x) is
subject to the transformation

H1(q; gx) = AdD(g)H1(q;x), (8)

where use has been made of the fact that g is an orthogonal transformation.
If g1x = gx, we set h = g1g

−1, which is an element of the isotropy subgroup at gx.
Two frames gξk and g1ξk on the tangent plane at g1x = gx are related by

g1ξk = hgξk =
∑

h
(2)
jk gξj, (9)
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where h(2) denotes the representation matrix of h with respect to the frame gξk. On
account of this, the H1(q;x) transforms according to

AdD(g1)H1(q;x) = H1(h
(2)q; g1x). (10)

In particular, if g1x = gx = x, this equation becomes

AdD(h)H1(q;x) = H1(h
(2)q;x), h ∈ Gx, (11)

which describe the local symmetry of the linearized Hamiltonian H1(q;x) with respect to
the isotropy subgroup Gx at x.

3 Symmetry by the octahedral group O

The octahedral group O is the orientation-preserving symmetry group for the regular
octahedron, which is known to be isomorphic to the symmetric group S4 and further to
be generated by

CZ
4 7→

 −1
1

1

 , C
[−1−1−1]
3 7→

 1
1

1

 (12)

to form a discrete subgroup of SO(3). See Appendix for symbols CZ
4 and C

[−1−1−1]
3 and

for further details. The two-dimensional representation E of the O group is known to be
generated by

CZ
4 7→

(
1
−1

)
, C

[−1−1−1]
3 7→

(
−1

2
−

√
3
2√

3
2
−1

2

)
. (13)

Let H0(2) and H0(3) denote the sets of traceless 2× 2 and 3× 3 Hermitian matrices,
respectively. The model Hamiltonian we treat in this article takes values in H0(2) or
H0(3), according to whether the semi-quantum system in question is associated with two-
or three-level model. From the view point of symmetry we are interested in at present,
H0(2) and H0(3) are decomposed into

H0(2) =

{(
a b
b −a

)}
⊕
{(

0 ic
−ic 0

)}
(14)

and

H0(3) =


 0 c1 b1
c1 0 a1
b1 a1 0

⊕

 0 −ic2 ib2
ic2 0 −ia2
−ib2 ia2 0

⊕

d1 0 0

0 d2 0
0 0 d3

 , (15)

respectively, where a, b, c, ak, bk, ck, and dj are real parameters with d1+d2+d3 = 0. Each
subspace of H0(2) and of H0(3) carries an irreducible representation of the O group.

On the other hand, the sets of functions

{2z2 − x2 − y2,
√

3(x2 − y2)} and xyz (16)
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are known as the basis of the E-representation and of the A2-representation of the O
group, respectively. Further, the sets of functions

{x, y z}, {yz, zx, xy}, and {x(x2 − 3

5
r2), y(y2 − 3

5
r2), z(z2 − 3

5
r2)} (17)

are known to be bases of the T1, T2 and T1 representations, respectively.
In view of these facts, we mainly treat the Hamiltonians

H(x) =

(
a(2z2 − x2 − y2)

√
3a(x2 − y2)− ibxyz√

3a(x2 − y2) + ibxyz −a(2z2 − x2 − y2)

)
(18)

and

H(x) =

 0 iz −iy
−iz 0 ix
iy −ix 0


+a

y2 + z2 − 2x2 0 0
0 z2 + x2 − 2y2 0
0 0 x2 + y2 − 2z2


+b

 0 xy zx
xy 0 yz
zx yz 0

 , (19)

which satisfy the invariance condition (1) with due representation matrix D(g), where a, b
are real parameters and where g acting on S2 is viewed as subject to the T1 representation.
For (18), we pose the condition (a, b) ̸= (0, 0). Three-level model Hamiltonians depending
on polynomials of degree three will be discussed on the occasion of necessity.

It is to be noted that the decompositions (14) and (15) are not the only possible
decompositions but there are also other decompositions with respect to irreducible repre-
sentations of the O group. For example, the first component subspace in the right-hand
side of (14) is further decomposed into the direct sum of one-dimensional subspaces which
carry A1 or A2 representation of the O group. Such cases have been already treated in
[5].

4 Setting up eigen-line bundles

We consider the 2× 2 Hermitian matrix

H(2) =

(
a11 c12
c12 a22

)
, (20)

where a11 and a22 are real-valued, and c12 is complex-valued. The domain on which these
elements are defined is either the unit sphere S2 or the tangent plane to the sphere at an
assigned point of S2. We will treat both cases in succeeding sections.

The eigenvalues of this matrix are given by

λ± =
1

2

(
a11 + a22 ±

√
(a11 − a22)2 + 4|c12|2

)
. (21)
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For each of the distinct eigenvalues λ±, we have two expressions of the normalized eigen-
vectors associated with λ±;

|u±up⟩ =
1√

(λ± − a11)2 + |c12|2

(
c12

λ± − a11

)
, (22a)

|u±down⟩ =
1√

(λ± − a22)2 + |c12|2

(
λ± − a22
c12

)
, (22b)

where the “up” and “down” eigenvectors are formed from the first and the last lines of the
eigenvalue equation, respectively. Here, points at which the quantities inside the square
root symbols vanish are called exceptional points and hence the domain U±

up/down of each
eigenvector is the sphere with the assigned exceptional points removed. A straightforward
calculation shows that the exceptional points for the “up” eigenvector associated with the
larger eigenvalue λ+ are determined by

a11 − a22 > 0, c12 = 0, (23)

and those for the “down” eigenvector by

a11 − a22 < 0, c12 = 0. (24)

For the smaller eigenvalue λ−, the exceptional points for the “up” and “down” eigenvectors
are determined by (24) and by (23), respectively. Putting together these conditions, we
have the table for the assignment of exceptional points,

“up” “down”

λ+ a11 − a22 > 0, c12 = 0 a11 − a22 < 0, c12 = 0

λ− a11 − a22 < 0, c12 = 0 a11 − a22 > 0, c12 = 0

(25)

The “up” and “down” eigenvectors are related by

|u±up⟩ = Φ±|u±down⟩ on U±
up ∩ U±

down, (26)

where Φ± are called transition functions, and are found to be expressed as

Φ± = ε±
c12
|c12|

, ε± = sgn(λ± − a22). (27)

If we consider the matrix H(2) as defined on the unit sphere, Eq. (26) determines the
complex line bundles associated with respective eigenvalues λ±, which we call the eigen-
line bundles. If the Hamiltonian H(2) is taken as defined on the tangent plane at a point
x ∈ S2, we have eigen-line bundles over the tangent plane.

We don’t give here the definition of the connection and the curvature for the eigen-
line bundle, which will be given later in treating concrete models together with some
techniques to evaluate the Chern number (see Sec. 5.1).
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If we start with a 3×3 Hermitian matrix for a three-level model, we will have eigen-line
bundles associated with each of non-degenerate eigenvalues in a similar manner. Here,
the “up” eigenvector is formed by using the first and the second lines of the eigenvalue
equation, and the “down” eigenvector by using the second and the last lines, for example.
The transition function is defined in the same manner as in (26) and thereby an eigen-line
bundle is determined. In Sec. 10.2, we will give a simple example for which the Chern
number of the eigen-line bundles are easy to find. However, the eigenvalues are not easy
to find in general, so that the domains Wup/down of “up” and “down” eigenvectors for each
eigenvalue are not easy to identify either, and the explicit construction of the eigen-line
bundle is difficult in practice. We then need to devise a method for resolving this difficulty,
which will be shown in Secs. 6-9.

5 A two-level model with O symmetry

In this section, we treat the Hamiltonian (18) corresponding to the physical molecular
model studied in [19] on the classical limit level. For notational simplicity, we express
(18) as

H(x) =

(
aϕ1 aϕ2 − ibϕ3

aϕ2 + ibϕ3 −aϕ1

)
, (28)

where
ϕ1 = 2z2 − x2 − y2, ϕ2 =

√
3(x2 − y2), ϕ3 = xyz. (29)

With this model, we show how to evaluate the Chern numbers of the eigen-line bundles.

5.1 Chern diagram

Proposition 5.1 The parameter space R2−{0} for the O-invariant Hamiltonian (28) re-
tracts to a unit circle, and the degeneracy points on this circle are (a, b) = (±1, 0), (0,±1).
The Chern numbers c+ (see (41)) of the eigen-line bundle associated with the positive
eigenvalue are shown in Fig. 1, being assigned to respective iso-Chern domains (or arcs).
The Chern number c− of the eigen-line bundle associated with the negative eigenvalue is
obtained by reversing the sign of the Chern number for the positive eigenvalue; c+ = −c−.

Proof. From (21) with a22 = −a11, the condition of degeneracy in eigenvalues is described
as

detH(x) = 0 ⇔ a2(ϕ2
1 + ϕ2

2) = 0, b2ϕ2
3 = 0. (30)

Since the above condition is scale invariant, we may retract the control parameter space
R2−{0} to the unit circle a2+b2 = 1. There are four degeneracy points (±1, 0), (0,±1) on
this circle, for which the eigenvalues of H(x) are degenerate at certain points of S2. For
degeneracy points (a, b) = (±1, 0) of the unit circle, the corresponding eight degeneracy
points on the sphere S2 are ±

1√
3

± 1√
3

± 1√
3

 , (31)
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6

a

b

c+ = −4

c+ = 4c+ = 4

c+ = −4

Figure 1: Chern numbers assigned to arcs of the unit circle

which form an orbit of the O group. The isotropy subgroup at each point of the orbit
is isomorphic with C3. For degeneracy points (a, b) = (0,±1), the set of corresponding
degeneracy points on S2 are given by

x2 + y2 = 1, y2 + z2 = 1, z2 + x2 = 1. (32)

In these circles, there are six embedded degeneracy points±1
0
0

 ,

 0
±1
0

 ,

 0
0
±1

 , (33)

at which the isotropy subgroup is isomorphic to C4, and further twelve embedded degen-
eracy points ± 1√

2

± 1√
2

0

 ,

± 1√
2

0
± 1√

2

 ,

 0
± 1√

2

± 1√
2

 , (34)

at which the isotropy subgroup is isomorphic to C2. The set of the above three circles
without the orbits (33) and (34), which consists of 24 identical connected arcs, forms a
set of degeneracy points at which the isotropy subgroup is isomorphic to C1.

For regular values of the parameter, eigen-line bundles are associated with respective
eigenvalues. From (23) and (24) with a11 = aϕ1 = −a22 and c12 = aϕ2 − ibϕ3, the
exceptional points for the normalized eigenvector associated with the positive eigenvalue
λ+ are shown to be given by

n± =

 0
0
±1

 , a± =

 1√
2

± 1√
2

0

 , b± =

− 1√
2

± 1√
2

0

 . (35)

In the case of a > 0, the domains of normalized eigenvectors |u+up/down(x)⟩ associated

with the positive eigenvalue λ+ are

U+
up = S2 − {n±}, U+

down = S2 − {a±, b±}, (36)
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respectively. The |u+up/down(x)⟩ are related by

|u+up(x)⟩ = Φ+(x)|u+down(x)⟩, Φ+(x) =
aϕ2 − ibϕ3√
a2ϕ2 + b2ϕ2

3

on U+
up ∩ U+

down. (37)

The local connection forms are defined on respective domains to be

ω+
up = ⟨u+up(x)|d|u+up(x)⟩, ω+

down = ⟨u+down(x)|d|u+down(x)⟩, (38)

and related by
ω+
up = (Φ+)−1dΦ+ + ω+

down on U+
up ∩ U+

down. (39)

Since the exterior derivative of (39) provides dω+
up = dω+

down on U+
up ∩ U+

down, the
curvature form is globally defined by

Ω+ =

{
dω+

up on U+
up,

dω+
down on U+

down.
(40)

Γ1 (z = h)

Γ2 (z = −h)

�

-

a− a+

n+

n−

S2
up

S2
down

S2
down

?Γ1
6Γ2

a− a+

b+b−

n+

S2
down

S2
up

S2
down

Figure 2: Division of the sphere into the disjoint union of S2
up and S2

down with ω+
up and

ω+
down being smoothly defined on S2

up and S2
down, respectively

In order to evaluate the Chern number c+ of the eigen-line bundle associated with the
positive eigenvalue λ+,

c+ =
i

2π

∫
S2

Ω+, (41)

we draw two circles Γ1 and Γ2 determined, respectively, by z = h and z = −h with
0 < h < 1 on the sphere S2, and divide S2 into three regions whose boundaries are these
circles. Two of three regions containing the north and the south poles form a subset
called S2

down and the other one containing the equator is called S2
up, where we choose the

orientation of each of the circles Γ1 and Γ2 so as to be in agreement with that of the S2
up.

Since
S2
up ⊂ U+

up, S2
down ⊂ U+

down, (42)

12



and since the integral over S2 is broken up into the sum of integrals over S2
up and S2

down,
the Stokes theorem is applied to evaluate the first Chern number as

c+ =
i

2π

∫
S2

Ω+ =
i

2π

(∫
S2
up

dω+
up +

∫
S2
down

dω+
down

)
= − 1

2πi

∫
Γ1+Γ2

(Φ+)−1dΦ+, (43)

where use has been made of (39).
The right-hand side of (43) is minus the sum of the winding numbers of the maps

Γk → U(1) by Φ+ with k = 1, 2, which can be evaluated by using contour integrals along
the circles Γ1 and Γ2. The curve Γ1 is expressed as

x(t) =
√

1− h2 cos t, y(t) =
√

1− h2 sin t, z(t) = h. (44)

We here denote the transition function by Φ+ =
X + iY√
X2 + Y 2

. In the case of (a, b) = (1,−1),

the functions X and Y along the curve Γ1 are put in the form

X(t) =
√

3(1− h2) cos 2t,
Y (t) = 1

2
h(1− h2) sin 2t,

(45)

where (a, b) = (1,−1) has been taken instead of (a, b) = (1,−1)/
√

2 on account of the
scale invariance. Since the orientation of Γ1 is clockwise, the above equations show that
the winding number is −2 for Γ1. We can do the same reasoning to obtain the winding
number −2 for Γ2, where the expression of Γ2 is given by (44) with z = −h in place of
z = h and the orientation of Γ2 is anti-clockwise. The sum of the winding numbers is −4.
Hence, we have the Chern number c+ = 4 for the parameters with a > 0, b < 0.

In the cases of other parameter values, the same method can be used to evaluate the
Chern number. In the case of a < 0, b < 0, the definition of U+

up and U+
down becomes, apart

from (36),
U+
down = S2 − {n±}, U+

up = S2 − {a±, b±}. (46)

We take two circles Γ1 and Γ2 in a similar manner to the case of a > 0 to divide the
sphere into three regions. In the present case, S2

up is defined to be the union of the region
in which either of n± is contained, and S2

down is the region containing the equator. The
orientation of each of Γ1 and Γ2 is determined so as to be consistent with the orientation
of S2

up. As a result, the orientations of Γ1 and Γ2 are opposite to those in the case of
a > 0, b < 0. The formula (43) remains to hold true. Though the orientation of each
curve is opposite, the functions (X,Y ) receives the transformation (X,Y )→ (−X,Y ), so
that the winding numbers are the same as those in the case of a > 0, b < 0. Further, the
transformation (a, b)→ (a,−b) of the parameters results in the change of Chern number
in sign, as is easily verified. Thus, we have the Chern diagram given in Fig. 2.

Since the sum of Chern numbers of all the eigen-line bundles is zero, the Chern number
c− of the eigen-line bundle associated with the negative eigenvalue λ− is minus the Chern
number of the eigen-line bundle for the positive eigenvalue λ+. This ends the proof.

5.2 Linearization at exceptional points

In what follows, we give another method to evaluate the Chern number. Instead of
working with the contour integrals along Γ1,Γ2, we can deform the two curves into other
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four curves γk, k = 1, . . . , 4, without changing the value of the initial contour integrals,
where each of γk is a small circle centered at one of the exceptional points a±, b±. Hence,
the Chern number is equal to minus the sum of winding numbers of γk;

c+ = − 1

2πi

∫
Γ1+Γ2

(Φ+)−1dΦ+ = −
∑
k

W (γk), W (γk) =
1

2πi

∫
γk

(Φ+)−1dΦ+. (47)

We here have to note that the orientation of γk is counter-clockwise, which results from
the fact that the exceptional points a±, b± are assigned to the “down” eigenvector in the
case of a > 0. If we take up the exceptional points n± assigned to the “up” eigenvector,
the orientation of the small circles centered at respective exceptional points are clockwise.
However, we don’t take those exceptional points in the present case for the reason to be
explained later.

?Γ1 6Γ2

a− a+

b− b+

S2
down

S2
up

S2
down

S2
down

?
6

?
6

?
6

?
6

γ1 γ2

γ4 γ3

Figure 3: Deformation of contours Γi, i = 1, 2, into small circles γj, j = 1, 2, 3, 4, centered
at exceptional points.

We do not need to explicitly calculate the contour integral along γk. The linearization
of X and Y at each of the exceptional points is sufficient for us to know the winding
number. For a− and b− with y-components negative, the local coordinates (x, z) are
positively oriented, but for a+ and b+ with y-components positive, the local coordinates
(z, x) are positively oriented. Since in the case of a > 0, b < 0, one has

det

(
∂X
∂x

∂X
∂z

∂Y
∂x

∂Y
∂z

)
a−,b−

< 0, (48)

det

(
∂X
∂z

∂X
∂x

∂Y
∂z

∂Y
∂x

)
a+,b+

< 0, (49)

the winding number assigned to each of a±, b± is −1, so that the sum of them is −4.
Hence the right-hand side of (47) or the Chern number is 4 in the case of a > 0, b < 0.
This method was frequently used in [4] (see Eq.(71) in [4]).
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In concluding this section, we have to note that the linearization method adopted
above can not be applied to small circles centered at n±. This is because the correspond-
ing determinant evaluated at each of n± vanishes. However, if we take another basis
for expressing the Hamiltonian, the exceptional points appear in another form and this
discrepancy disappears (see Sec. 11.3).

6 Linearization and retraction to a two-level system

In order to work with Chern numbers of eigen-line bundles, we need to know eigenvalues
and eigenvectors by solving the eigenvalue equation, if we follow the standard method.
However, characteristic equations of degree greater than two are not easy to solve. If we
can break up the problem into parts which are tractable, we can reach a solution.

The condition for degeneracy in eigenvalues for Hermitian matrices defined on the to-
tal parameter space Rm×S2 splits the control parameter space Rm into disjoint domains
in general. Since degeneracy in eigenvalues occurs for any point of the boundaries of
such domains, we refer to the boundaries of domains as degeneracy surfaces (or curves,
if one-dimensional) in the control parameter space. We are then interested in transition
states which emerges when the parameter value varies from a domain into another across
a degeneracy surface in the control parameter space. We hope that though the Chern
number itself is not easy to evaluate for regular values of the parameter a change or mod-
ification in Chern number may be evaluated, which accompanies a change in parameter
values in crossing a boundary surface in the control parameter space.

With this in mind, we look into what happens in eigen-line bundles at a degeneracy
point. For simplicity, we treat a three-level model, i.e., a traceless 3 × 3 Hermitian
matrix as a full Hamiltonian. For a regular value of the parameter, the eigenvalues of the
Hamiltonian H(x) are distinct, which we denote by λ1(x) > λ2(x) > λ3(x). Let |ek(x)⟩
be the normalized eigenvector associated with the λk(x). Then, the whole space C3 is
decomposed, for any point x ∈ S2, into

C3 = span{|e1(x)⟩} ⊕ span{|e2(x)⟩} ⊕ span{|e3(x)⟩}. (50)

Assigning each eigenspace span{|ek(x)⟩} to x ∈ S2, one can form an eigen-line bundle
Lk → S2, so that the trivial bundle C3×S2 breaks up into the direct sum L1⊕L2⊕L3. If
the parameter takes a singular value sitting on a degeneracy surface, a degeneracy occurs
in the eigenvalues, which take the form, for example, λ1(x0) > λ2(x0) = λ3(x0) at a
certain point x0 ∈ S2. Then the corresponding decomposition of C3 becomes, at x0,

C3 = span{|e1(x0)⟩} ⊕ span{|e2(x0)⟩, |e3(x0)⟩}. (51)

At this moment, the direct sum L1⊕L2⊕L3 breaks down. However, if the parameter value
changes into a regular value, then we have the decomposition of the form (50) throughout
S2, but the corresponding eigen-line bundles do not remain to be the same, as is easily
seen from examples of Chern diagrams (see Fig. 1). By L′

k → S2, k = 1, 2, 3, we denote
the reconstructed eigen-line bundles. The transition from Lk to L′

k corresponds to the
reorganization of band structure.
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A question arises as to whether one can use the subspace span{|e2(x0)⟩, |e3(x0)⟩} with
x0 being isolated, in order to evaluate a change in Chern numbers against the variation
in control parameters by means of the linear approximation of the Hamiltonian on this
subspace or not. If the answer is affirmative, a further question arises as to whether this
method can be extended to apply to n-level system with n ≥ 3. However, if only a pair of
eigenvalues are degenerate at once for a set of critical parameter values, three-level systems
are enough for us to observe how the bundle structure changes against parameters. This is
because, the doubly degenerate eigenvalues are responsible for the topological change but
the other non-degenerate eigenvalues are robust and do not contribute to the topological
change. In what follows, we restrict ourselves to 3 × 3 Hermitian matrices (or 3-level
model Hamiltonians).

6.1 Local Hamiltonians

Let c(t) be a curve transverse to a degeneracy surface in the control parameter space.
We assume that the Hamiltonian has doubly degenerate eigenvalues at an isolated point
x0 ∈ S2 for t = 0 only in the vicinity of t = 0. For Hamiltonians with symmetry by a finite
subgroup G of SO(3), the set of degeneracy points forms an orbit of G in general. We put
the Hamiltonian in the form H(c(t),x) to explicitly indicate the parameter dependence.
Let ξk, k = 1, 2, be a frame or a positively-oriented orthonormal system of tangent vectors
to S2 at x0. The tangent plane Π0 to S2 at x0 is endowed with the Cartesian coordinates
through

∑
qkξk. Now, the local Hamiltonian is defined to be

Hloc(t, q;x0) = H(c(0),x0) + tḢ(c(0),x0) +
∑

qk∇H(c(0),x0) · ξk, (52)

where the Ḣ denotes the derivative of H with respect to t and ∇ the gradient operator
with respect to x, and where ∇H · ξk is the matrix whose (j, ℓ)-components are ∇Hjℓ · ξk
with the dot · denoting the inner product already defined (see Eq. (7)). We note that
Hloc(t, q;x0) is a traceless Hermitian matrix as well as H(c(t),x).

Since H(c(t),x) admits the G symmetry, the local Hamiltonian Hloc(t, q;x0) also ad-
mits the symmetry by the isotropy subgroup G0 at x0: For h ∈ G0, the Hloc(t, q;x0) is
subject to the transformation

AdD(h)Hloc(t, q;x0) = Hloc(t, h
(2)q;x0), h ∈ G0, (53)

as is easily seen from (11), where D(h) is a representation matrix for G0 and where h(2)

denotes the matrix acting on Π0, which is defined through hξk =
∑

j h
(2)
jk ξj with respect

to the frame ξk at x0.
As is easily observed from (8), for g ∈ G, the local Hamiltonian transforms according

to
AdD(g)Hloc(t, q;x0) = Hloc(t, q; gx0), (54)

if the frame gξk is adopted at gx0,
If g1x0 = gx0, we have the transformation

AdD(g1)Hloc(t, q;x0) = Hloc(t, h
(2)q, g1x0), (55)

which results from (10) with h(2) being defined in (9), where g1 = hg with h being an
element of the isotropy subgroup at gx0.
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6.2 Local Hamiltonians in normal form

We assume that λ1(x0) > λ2(x0) = λ3(x0) for t = 0. Let |e1(x0)⟩ be a normalized eigen-
vector associated with λ1(x0) and |e2(x0)⟩, |e3(x0)⟩ orthonormal eigenvectors associated
with λ2(x0) = λ3(x0), where |e1(x0)⟩ and {|e2(x0)⟩, |e3(x0)⟩} are determined up to U(1)
and U(2), respectively.

Instead of using the standard basis of C3, we may choose |ek(x0)⟩ as a basis with respect
to which the local Hamiltonian Hloc(t, q;x0) is expressed. Owing to the symmetry, the
isotropy subgroup G0 leaves each eigenspace invariant. Since the G0 is isomorphic to a
cyclic group and since it is Abelian, the representation of G0 on span{|e2(x0)⟩, |e3(x0)⟩}
is reducible to a direct sum of two one-dimensional vector subspaces. Each of these
subspaces carries an irreducible representation of G0. We then may take a basis |e′k(x0)⟩
of C3 with respect to which G0 is represented in the form of a diagonal matrix. We
denote by Kloc(t, q;x0) the local Hamiltonian which is expressed with respect to the
basis thus chosen, and refer to Kloc(t, q;x0) as the local Hamiltonian in normal form.
Let U3 = (|e′1(x0)⟩, |e′2(x0)⟩, |e′3(x0)⟩) be the unitary matrix formed by the new basis.
Since Kloc(t, q;x0) = U−1

3 Hloc(t, q;x0)U3, all elements of Kloc(t, q;x0) as well as those of
Hloc(t, q;x0) are linear in t, q1, q2. In particular, since Kloc(0, 0;x0) is of diagonal form, the
off-diagonal elements κjk(t, q) of Kloc(t, q;x0) with j ̸= k must be homogeneously linear
in t, q1, q2.

Like (53), the local Hamiltonian Kloc(t, q;x0) transforms according to

AdD̃(h)Kloc(t, q;x0) = Kloc(t, h
(2)q;x0), h ∈ G0, (56)

where D̃(h) denotes the representation matrix expressed with respect to the basis |e′k(x0)⟩
mentioned above, taking a diagonal form. It is of great help to give here an example in
order to understand what the symmetry condition (56) implies. We assume that G0

∼= C3

and D̃(h) takes the form

D̃(h) =

e2πi/3 e−2πi/3

1

 (57)

and further that h(2) is expressed with respect to a suitably chosen frame ξk as

h(2) =

(
−1

2
−

√
3
2√

3
2
−1

2

)
. (58)

With this setting, Eq. (56) is written out as κ11(t, q) e−2πi/3κ12(t, q) e2πi/3κ13(t, q)
e2πi/3κ21(t, q) κ22(t, q) e−2πi/3κ23(t, q)
e−2πi/3κ31(t, q) e2πi/3κ32(t, q) κ33(t, q)


=

κ11(t, h(2)q) κ12(t, h
(2)q) κ13(t, h

(2)q)
κ21(t, h

(2)q) κ22(t, h
(2)q) κ23(t, h

(2)q)
κ31(t, h

(2)q) κ32(t, h
(2)q) κ33(t, h

(2)q)

 , (59)
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which implies that the diagonal elements κkk(t, q) are independent of q and the off-diagonal
elements κjk(t, q) with k ̸= j are independent of t and further that κ12(t, q) and κ23(t, q)
are proportional to q1−iq2 and κ13(t, q) is proportional to q1+iq2 (see (182) as a realization
of (59)).

For g, g1 ∈ G, we have the same transformation rules as in (54) and (55),

AdD̃(g)Kloc(t, q;x0) = Kloc(t, q; gx0), (60)

AdD̃(g1)
Kloc(t, q;x0) = Kloc(t, h

(2)q, g1x0), (61)

respectively.

6.3 Approximation of eigenvalues for sufficiently small t, q

Let Kloc(t, q;x0) be a local Hamiltonian in normal form. In view of the decomposition
(51), we put Kloc(t, q;x0) in the form

Kloc(t, q;x0) =

a00 c01 c02
c01 a11 c12
c02 c12 a22

 , (62)

and pick up the lower right 2× 2 block matrix by setting

K
(2)
loc (t, q;x0) =

(
a11 c12
c12 a22

)
, (63)

where all off-diagonal elements are homogeneously linear in t, q1, q2.
The eigenvalues λ± of K

(2)
loc (t, q;x0) are given by (21) with a11, a22, c12 being defined

on the tangent plane Π0 at x0. For each of the eigenvalues λ±, we have two expressions
of the normalized associated eigenvectors;

|u±up(t, q)⟩ =
1√

(λ± − a11)2 + |c12|2

(
c12

λ± − a11

)
, q ∈ U±

up, (64)

|u±down(t, q)⟩ =
1√

(λ± − a22)2 + |c12|2

(
λ± − a22
c12

)
, q ∈ U±

down. (65)

Here, points at which the quantities under the square root symbols vanish are called
exceptional points and the domains U±

up/down of respective eigenvectors are the tangent
plane with the assigned exceptional points removed.

We wish to show that two of the eigenvalues of Kloc(t, q;x0) can be approximated

by the eigenvalues of K
(2)
loc (t, q;x0) if t, q1, q2 are sufficiently small. Let F (µ) denote the

characteristic polynomial for Kloc(t, q;x0). Let λ± be the eigenvalues of K
(2)
loc (t, q;x0).

Then, for µ = λ±, F (µ) takes the values

F (λ±) = −c01(c01(a22 − λ±)− c12c02) + c02(c01c12 − c02(a11 − λ±)). (66)

18



We here note that a11 = a22 for (t, q) = (0, 0), which are equal to the degenerate eigenval-
ues λ2(x0) = λ3(x0), so that a11−a22 is homogeneously linear in t, q1, q2. On this account
together with the fact that c12 is homogeneous linear in t, q1, q2, both

λ± − a11 =
1

2

(
a22 − a11 ±

√
(a11 − a22)2 + 4|c12|2

)
, (67a)

λ± − a22 =
1

2

(
a11 − a22 ±

√
(a11 − a22)2 + 4|c12|2

)
(67b)

are of the first order in t, q1, q2. Further, c01, c02 are homogeneously linear in t, q1, q2 as
well. Hence, the right-hand side of (66) is of the third order in t, q1, q2, which implies that
λ± well approximate to eigenvalues of Kloc(t, q;x0) if t, q1, q2 are sufficiently small.

We turn to the eigenvectors associated with the eigenvalues approximate to λ±. Let µ
be an eigenvalue of Kloc(t, q;x0). From the first and the second equations of the eigenvalue
equations composed of three, we obtain an “up” eigenvector −c01c12 + (a11 − µ)c02

(a00 − µ)c12 − c01c02
|c01|2 − (a00 − µ)(a11 − µ)


up

. (68)

If we replace µ in (68) by the eigenvalues λ± of K
(2)
loc (t, q;x0) and if we pick up the terms

of order less than two in t, q1, q2 from the above vector with λ± for µ, we obtain the vector

[a00 − λ±]0

 0
c12

λ± − a11


up

, (69)

where [a00 − λ±]0 denotes the constant term from a00 − λ±. The obtained vector is
reminiscent of |u±up(q)⟩ given in (64), if normalized. Put another way, for sufficiently small
t, q1, q2, the normalized “up” eigenvectors associated with the eigenvalues approximate to
λ± project to |u±up(q)⟩.

From the first and the third equations of the eigenvalue equations for Kloc(t, q;x0), we
obtain a “down” eigenvector c01(a22 − µ)− c02c12

|c02|2 − (a00 − µ)(a22 − µ)
c12(a00 − µ)− c01c02


down

. (70)

In a similar manner to the above, we obtain the vector

[a00 − λ±]0

 0
λ± − a22
c12


down

, (71)

where [a00 − λ±]0 denotes the constant term from a00 − λ±. The resultant vector is
reminiscent of |u±down(q)⟩ given by (65), if normalized. Thus, if t, q1, q2 are sufficiently
small, the normalized “down” eigenvectors associated with the eigenvalues approximate
to λ± project to |u±down(q)⟩.
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6.4 Retraction to a two-level system

So far we have shown that two of the eigenvalues and the associated eigenvectors for
Kloc(t, q;x0) are approximated by those for K

(2)
loc (t, q;x0). We now consider the relation

between eigen-line bundles for Kloc(t, q;x0) and those for K
(2)
loc (t, q;x0).

We denote the normalized eigenvectors of Kloc(t, q;x0) by |v±up(t, q)⟩ and |v±down(t, q)⟩,
where the superscripts ± are attached to the eigenvectors in association with eigenval-
ues close to λ±, respectively. The corresponding transition function Φ±

(3)(t, q) is defined
through

|v±up(t, q)⟩ = Φ±
(3)(t, q)|v

±
down(t, q)⟩, q ∈ V ±

up ∩ V ±
down, (72)

where V ±
up and V ±

down denote the domains of |v±up(t, q)⟩ and |v±down(t, q)⟩, respectively.
In comparison with this, the transition function Φ±

(2)(t, q) between eigenvectors |u±up(t, q)⟩
and |u±down(t, q)⟩ is defined through

|u±up(t, q)⟩ = Φ±
(2)(t, q)|u

±
down(t, q)⟩, q ∈ U±

up ∩ U±
down. (73)

Since for sufficiently small t, q1, q2, |v±up(t, q)⟩ and |v±down(t, q)⟩, if projected, can be ap-
proximated by |u±up(t, q)⟩ and |u±down(t, q)⟩, respectively, the transition functions Φ±

(3)(t, q)

can also be approximated by Φ±
(2)(t, q), respectively, if t, q1, q2 are small enough. It then

turns out that the eigen-line bundles for the Hamiltonian K
(2)
loc (t, q;x0) approximate to

the corresponding two of those for the Hamiltonian Kloc(t, q;x0) in the sense that the
transition functions Φ±

(2)(t, q) approximate to Φ±
(3)(t, q).

7 The two-level system at a degeneracy point

So far we have observed that as long as transition functions of eigen-line bundles are
concerned, the local Hamiltonian Kloc(t, q;x0) may be replaced by K

(2)
loc (t, q;x0). We

now concentrate on the Hamiltonian K
(2)
loc (t, q;x0) from the viewpoint of Chern number

modification accompanying the crossing of a boundary of an iso-Chern domain.

7.1 Geometric setting on the traceless 2× 2 Hermitian matrices

The condition for a 2× 2 Hermitian matrix H(2) to have degenerate eigenvalues is given
by detH(2)− 1

4
(trH(2))2 = 0 or equivalently by λ1λ2− 1

4
(λ1 +λ2)

2 = 0 for the eigenvalues
λ1, λ2 of H(2). Since

det
(
H(2) − 1

2
(trH(2))I

)
= detH(2) − 1

4
(trH(2))2, (74)

the eigenvalues of H(2) are degenerate if and only if det
(
H(2) − 1

2
(trH(2))I

)
= 0. The

latter condition is equivalent to the condition for the traceless Hermitian matrix H(2) −
1
2
(trH(2))I to have degenerate eigenvalues. Further, as is seen from (27), the transition

function is independent of diagonal elements except for the factors ε±, but the ε± are
irrelevant to the winding number and hence to the Chern number. Thus, as long as we
are interested in degeneracy of eigenvalues of H(2) and in related eigen-line bundles, we
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are allowed to study the traceless matrix H(2) − 1
2
(trH(2))I in place of H(2). For this

reason, our interest centers on the traceless 2 × 2 Hermitian matrices. We have already
denoted by H0(2) the set of the traceless 2× 2 Hermitian matrices.

On introducing the Pauli matrices with suffices shifted from the usual ones,

σ′
1 =

(
1
−1

)
, σ′

2 =

(
1

1

)
, σ′

3 =

(
−i

i

)
, (75)

the H0(2) is shown to be isomorphic with R3 through the isomorphism defined by

H0(2)→ R3;
∑
k

pkσ
′
k 7→ p =

p1p2
p3

 . (76)

The H0(2) is endowed with a metric through

− det(
∑
k

pkσ
′
k) =

∑
k

p2k, (77)

which is isometric with the standard metric on R3.
We now show that the adjoint action of a unitary matrix on H0(2) gives rise to an

orthogonal transformation on R3. Let U be a 2× 2 unitary matrix, which acts on H0(2)
by adjoint. Since the adjoint action on the basis σ′

k is described as

Uσ′
kU

−1 =
∑
j

hjkσ
′
j, k = 1, 2, 3, (78)

we have
U
∑
k

pkσ
′
kU

−1 =
∑
k,j

hjkpkσ
′
j, (79)

and hence
det
(
U
∑
k

pkσ
′
kU

−1
)

= det
(∑

k

pkσ
′
k

)
, (80)

which implies that ∥hp∥ = ∥p∥ with h = (hjk). Thus, the adjoint action on H0(2) by
U ∈ U(2) induces the orthogonal transformation p 7→ hp on R3 by h ∈ O(3). Since
the identity of U(2) corresponds to the identity of O(3) and since U(2) is connected, the
target space O(3) must be restricted to SO(3). Thus we have the map

T : U(2)→ SO(3); U 7→ h = (hjk). (81)

The kernel of this map is of course isomorphic to U(1).

7.2 Relevant 3× 3 real matrices

Let K
(2)
loc (t, q;x0) be the retract from a local Hamiltonian Kloc(t, q;x0) in normal form.

As is mentioned in Sec. 6.4, from the viewpoint of associated eigen-line bundles, we may
make K

(2)
loc (t, q;x0) into the traceless Hamiltonian

K̃
(2)
loc (t, q;x0) := K

(2)
loc (t, q;x0)−

1

2
(trK

(2)
loc (t, q;x0))I. (82)
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Since the diagonal elements of K
(2)
loc (t, q;x0) are degenerate eigenvalues for (t, q) = (0, 0),

the diagonal elements of K̃
(2)
loc (t, q;x0) become homogeneously linear in t, q1, q2 as well as

the off-diagonal elements. For notational simplicity, we set K(t, q) = K̃
(2)
loc (t, q;x0) and

put K in the form

K(t, q) =

(
K11 K12

K12 −K11

)
, (83)

where K11 and K12 are homogeneously linear in (t, q1, q2) ∈ R3. Taking the basis (75)
into account, we express them as

K11 =a11t+ b11q1 + c11q2, (84a)

K12 =a12t+ b12q1 + c12q2 − i(a13t+ b13q1 + c13q2), (84b)

where all coefficients, a11, . . . , c13 are real, and the present a11 and c12 are different from
those used in (20). From these coefficients, we introduce the following real vectors

a =

a11a12
a13

 , b =

b11b12
b13

 , c =

c11c12
c13

 . (85)

According to the isomorphism H0(2)→ R3, we have the correspondence

K(t, q) 7→ p(t, q) = at+ bq1 + cq2. (86)

Putting together these vectors, we define the 3× 3 real matrix by

C(K(t, q)) = (a, b, c). (87)

Then, the right-hand side of (86) takes the form

p(t, q) = C(K(t, q))

(
t
q

)
, (88)

where q =
(
q1
q2

)
∈ R2.

The vector space R×R2 to which

(
t
q

)
belongs is viewed as a tangent space to Γ×S2

at (c(0),x0), where Γ denotes the curve c(t) passing a degeneracy point in the control
parameter space when t = 0. If we denote by Λ0 the tangent line to the curve Γ at c(0)
and by Π0 the tangent plane to S2 at the degeneracy point x0 ∈ S2, the vector space to

which

(
t
q

)
belongs is described as Λ0 × Π0.

7.3 Left and right actions of SO(3)× SO(2) on C(K̃
(2)
loc (t, q;x0))

The adjoint action by U ∈ U(2) on K(t, q) induces the left action of T (U) = h ∈ SO(3)
on p(t, q), which gives rise to the left action of h on C = C(K(t, q));

C 7→ hC = (ha, hb, hc), h ∈ SO(3), (89)
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as is easy seen form (88).
We here recall that the rotation group SO(2) acts on the tangent plane Π0 through∑
κ
(2)
jk ξjwith κ(2) = (κ

(2)
jk ) ∈ SO(2), which means a change of frames on the tangent plane.

This SO(2) action is expressed as
∑

k κ
(2)
jk qk in the coordinates. In view of (88), we see

that the rotation matrix κ(2) gives rise to the right action on the matrix C through

C 7→ Cκ(3), κ(3) =:

(
1

κ(2)

)
∈ SO(2) ⊂ SO(3). (90)

Thus we have found that SO(3)× SO(2) acts on C(K(t, q)) in the manner

C(K(t, q)) 7→ hC(K(t, q))κ(3), (h, κ(3)) ∈ SO(3)× SO(2). (91)

As is easily seen from (91), detC(K(t, q)) is invariant under the left and right action of
SO(3)×SO(2). This implies that detC(K(t, q)) is independent of the choice of the basis

with respect to which the retracted local Hamiltonian K̃
(2)
loc (t, q;x0) with vanishing trace

is expressed, and of the choice of the frame on the tangent plane Π0, as long as the frame
in question is positively oriented.

7.4 Invariance of detC(K̃
(2)
loc (t, q;x0)) on the G-orbit

So far we have studied the local Hamiltonian at a degeneracy point x0. As the set of
degeneracy points on S2 forms an orbit of the symmetry group G, we are interested in
the dependence of det

(
C(K̃

(2)
loc (t, q;x0))

)
on degeneracy points. Let x′

0 = gx0, g ∈ G
be another degeneracy point. Let |ej(x0)⟩ be a basis with respect to which the local
Hamiltonian Kloc(t, q;x0) is in normal form. The vectors |ej(x′

0)⟩ := D̃(g)|ej(x0)⟩ are
orthonormal eigenvectors of H(c(0),x′

0). If we take the basis |ej(x′
0)⟩ instead of |ej(x0)⟩,

and adopt the frame ξ′k = gξk on the tangent plane Π′
0 at x′

0, then the local Hamiltonian
K ′

loc(t, q;x
′
0) on Π′

0 takes the same form as the local Hamiltonian on Π0,

K ′
loc(t, q;x

′
0) = Kloc(t, q;x0), (92)

which results from (60). Hence, retracting the local Hamiltonian to the eigenspace asso-
ciated with the degenerate eigenvalues, we have

K̃
′(2)
loc (t, q;x′

0) = K̃
(2)
loc (t, q;x0). (93)

If a frame other than ξ′k is adopted, the left-hand side of the above equation becomes

of the form K̃
′(2)
loc (t, κ(2)q;x′

0) with κ(2) ∈ SO(2). As is already shown in the preceding

subsection, det
(
C(K̃

′(2)
loc (t, q;x′

0))
)

is independent of the choice of the basis |ek(x′
0)⟩ and of

the choice of the frame ξ′k, we find that detC(K̃
′(2)
loc (t, q;x′

0)) is independent of the choice

of a degeneracy point x′
0 in the orbit of x0 by G. Put another way, det

(
C(K̃

(2)
loc (t, q;x0))

)
is invariant on the orbit Ox0 of the symmetry group G.

Proposition 7.1 For the retracted local Hamiltonian K̃
(2)
loc (t, q;x0) with vanishing trace,

the det
(
C(K̃

(2)
loc (t, q;x0))

)
is independent of the choice of the basis |ek(x0)⟩ and of the

frame ξk at x0, and further it is constant on the G-orbit of x0.
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8 Local delta-Chern at a degeneracy point

In this section, we show that the local delta-Chern at a degeneracy point is related to the
invariant det

(
C(K̃

(2)
loc (t, q;x0))

)
.

8.1 Eigen-line bundles for K̃
(2)
loc (t, q;x0)

Since K(t, q) = K̃
(2)
loc (t, q;x0) is traceless, the degeneracy point for eigenvectors of K(t, q)

is determined by

detK(t, q) = 0 ⇔ p(t, q) = C(K(t, q))

(
t
q

)
= 0. (94)

If detC(K(t, q)) ̸= 0, the degeneracy point on the tangent plane Π0 to S2 at x0 is given
by q = 0 for t = 0 only. This conclusion is consistent with our assumption that x0 is
an isolated degeneracy point corresponding to the parameter value c(0) in the vicinity of
t = 0. The case of detC(K(t, q)) = 0 will be discussed in Sec. 8.3.

For t ̸= 0, we can form eigen-line bundles associated with the eigenvalues λ±. Accord-
ing to (25) with a11−a22 = 2K11 and c12 = K12 (the c12 referred to in (25) being different
from the c12 used in this section), the exceptional point at which the eigenvector for the
“up” or “down” eigenvector is not defined is determined in every case by

p2(t, q) = a12t+ b12q1 + c12q2 = 0, p3(t, q) = a13t+ b13q1 + c13q2 = 0. (95)

On setting

B = B(K(t, q)) =

(
b12 c12
b13 c13

)
, (96)

we find that if detB(K(t, q)) ̸= 0, the exceptional point is given by

q1(t) = −
t

∣∣∣∣a12 c12
a13 c13

∣∣∣∣
detB

, q2(t) = −
t

∣∣∣∣b12 a12
b13 a13

∣∣∣∣
detB

. (97)

We here note that if the isotropy subgroup at x0 is non-trivial then one has a12 = a13 = 0
from the symmetry condition (56), as is observed on the example (59). In such a case,
the exceptional point q(t) is fixed at the origin q(t) = 0.

In order to assign the exceptional point (97) to “up” or “down” eigenvector, we return
to Eq. (25) with a11 − a22 = 2K11 and c12 = K12. For the eigenvector associated with
λ+, according as K11(t, q(t)) > 0 or K11(t, q(t)) < 0, the exceptional point q(t) is assigned
to the eigenvector |u+up(t, q)⟩ or |u+down(t, q)⟩. In contrast with this, for the eigenvector
associated with λ−, according as K11(t, q(t)) < 0 or K11(t, q(t)) > 0, the exceptional
point q(t) is assigned to the eigenvector |u−up(t, q)⟩ or |u−down(t, q)⟩.

The evaluation of K11 at the exceptional point (97) gives

K11(t, q(t)) =
detC(K(t, q))

detB(K(t, q))
t. (98)
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This means that the sign of K11 depends on those of detC/ detB and t. It then turns
out that the domains of respective eigenvectors are given in the following tables:

λ+ t < 0 t > 0

detC/ detB > 0
U+
up = Π0

U+
down = Π0 − {q(t)}

U+
up = Π0 − {q(t)}

U+
down = Π0

detC/ detB < 0
U+
up = Π0 − {q(t)}

U+
down = Π0

U+
up = Π0

U+
down = Π0 − {q(t)}

(99)

λ− t < 0 t > 0

detC/ detB > 0
U−
up = Π0 − {q(t)}

U−
down = Π0

U−
up = Π0

U−
down = Π0 − {q(t)}

detC/ detB < 0
U−
up = Π0

U−
down = Π0 − {q(t)}

U−
up = Π0 − {q(t)}

U−
down = Π0

(100)

From (99) and (100), we observe, for example, that in the case of detC/ detB < 0 the
exceptional point (97) is assigned to the “down” eigenvector |u−down(t, q)⟩ associated with
λ− for t < 0 and to the “down” eigenvector |u+down(t, q)⟩ associated with λ+ for t > 0. In
particular, for t = 0, the point p(t) = 0 becomes the degeneracy point. This observation
is depicted in Fig. 4, where x, y are used in place of q1, q2, and where the respective (blue)
small circles for t < 0 and t > 0 are those along which the winding numbers assigned to
respective exceptional points is evaluated, as will be shown in what follows.

The transition functions for eigen-line bundles associated with the eigenvalues λ± are
defined through (73) and given by

Φ±
(2)(t, q) = ε±

X + iY√
X2 + Y 2

, X = p2(t, q), Y = −p3(t, q), (101)

where ε± = sgn(λ± + K11). The winding number along a small circle γ around the
exceptional point q(t) on Π0 with t fixed is evaluated by

1

2πi

∫
γ

(Φ±
(2))

−1dΦ±
(2), (102)

which is independent of ε± factor in the definition (101). We here have to be careful in
determining the orientation of the circle γ. The orientation of γ should be consistent with
the orientation of the corresponding small circle on the sphere S2. When dividing the
sphere into regions S2

up and S2
down by using several circles Γj (see Fig. 2), we choose the

orientation of Γj to be in keeping with the orientation of the region S2
up. Then, a small cir-

cle centered at an exceptional point assigned to the “up” eigenvector is clockwise oriented
with respect to the positive frame ξk. In contrast with this, the orientation of a small
circle centered at an exceptional point assigned to “down” eigenvector is counterclockwise
(see Fig. 3).
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λ +

λ −
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xx

y y

t < 0 t = 0 t > 0

λ λ+ +

λ λ− −

Figure 4: A schematic representation of the evolution of eigenvalues of a local linearized
model Hamiltonian in a two-level approximation along with variation of a control param-
eter t crossing the boundary of the iso-Chern domain. Exceptional points (blue points)
assigned to the “down” eigenvector are shown in the λ+ (t > 0) and λ− (t < 0) compo-
nents.

The winding number assigned to each exceptional point is determined by the sign of

det

(
∂X
∂q1

∂X
∂q2

∂Y
∂q1

∂Y
∂q2

)∣∣∣∣∣
(q1(t),q2(t))

= − det

(
b12 c12
b13 c13

)
= − detB(K(t, q)), (103)

where X = p2(t, q), Y = −p3(t, q). According as the sign of the Jacobian of the left-hand
side of the above equation is positive or negative, the winding number of an counterclock-
wise oriented circle is +1 or −1, as was found in Sec. 5.2. If the orientation of the circle
is reversed, the sign of the winding number is also reversed.

8.2 Delta-Chern accompanying a change in the parameter

We are now in a position to discuss a change in the winding number assigned to the
exceptional point p(t) when the parameter t passes the critical value t = 0, and thereby
to find a local delta-Chern assigned to the degeneracy point x0. From (99) in the case of
the eigen-line bundle associated with λ+, we observe that according to whether the sign of
det(C(K)) det(B(K)) is positive or negative, the exceptional point p(t) is assigned to the
“up” eigenvector for t > 0 or for t < 0. In comparison with this, if the “down” eigenvector
is chosen, from the same equation (99) it follows that according to whether the sign of
det(C(K)) det(B(K)) is positive or negative, the exceptional point p(t) is assigned to the
“down” eigenvector for t < 0 or for t > 0. We describe the assignment of the exceptional
point with the symbol or , where the small circle
stands for the degeneracy point and the solid and broken lines mean that the exceptional
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point assigned to the “up/down” eigenvector is present and absent, respectively. For
example, the symbol means that there is no exceptional point assigned
to the “up/down” eigenvector for t < 0, and the exceptional point in question is assigned
to the “up/down” eigenvector for t > 0.

As is shown in the last subsection (see (103) and the successive sentences), the winding
number assigned to an exceptional point is determined from the sign of detB together with
the orientation of the small circle depending on whether it is assigned to “up” or “down”
eigenvector. In the case of the “up” eigenvector associated with λ+, according to whether
detB(K) > 0 or detB(K) < 0, the assigned winding number is +1 or −1. We denote
by W(t>0) and W(t<0) the winding numbers assigned to the exceptional points for t > 0
and t < 0, respectively. If there is no exceptional point assigned for t > 0 or t < 0, one
has W(t>0) = 0 or W(t<0) = 0. Thus, if detB(K) > 0, to the symbols
and , we can assign the transitions W(t<0) = 0 → W(t>0) = +1 and
W(t<0) = +1 → W(t>0) = 0 in the winding numbers, respectively. If detB(K) < 0,
the assigned transitions are W(t<0) = 0 → W(t>0) = −1 and W(t<0) = −1 → W(t>0) = 0,
respectively. We define the symbol ∆W by ∆W = W(t>0)−W(t<0). A similar procedure is
performed if the exceptional point assigned to the “down” eigenvector is chosen. Putting
all these discussions together, we have the following tables in the case of the eigen-line
bundle associated with λ+.

detC(K) detB(K) exc.pt.up(t) W(t<0) →W(t>0) ∆W
+ + 0 → +1 +1
+ − −1 → 0 +1
− + +1 → 0 −1
− − 0 → −1 −1

(104)

detC(K) detB(K) exc.pt.down(t) W(t<0) →W(t>0) ∆W
+ + −1 → 0 +1
+ − 0 → +1 +1
− + 0 → −1 −1
− − +1 → 0 −1

(105)

From the left- and rightmost columns of the above tables, we observe that the variation
∆W in the winding number is given by

∆W := W(t>0) −W(t<0) = sgn(detC(K)), (106)

independently of whether the “up” or “down” eigenvector is adopted in evaluating winding
numbers. Further, this variation is independent of detB(K) as well.

In association with the eigenvalue λ+, we see from (47) and (106) that the variation
in the Chern number contribution from a degeneracy point x0, or the local delta-Chern,
is given by

∆+c(x0) = −sgn(detC(K̃
(2)
loc (t, q;x0))), (107)

where the superscript + indicates that the quantity in question is associated with the
eigenvalue λ+. Note that the ∆+c(x0) is evaluated for the parameter transition from the
t < 0 side to the t > 0 side.
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In comparison between (99) and (100), we observe how the exceptional point is assigned
to the “up” or “down” eigenvector, and thereby can obtain tables for the eigenvalue λ−

like (104) and (105), from which we see that ∆−c(x0) = −∆+c(x0). This is because the
sum of the Chern numbers is invariant against the rearrangement of bundle structures.

8.3 The extension of the local delta-Chern formula

In obtaining the local delta-Chern formula (107), we have assumed so far that detC(K) ̸=
0 and detB(K) ̸= 0. We now consider what happens if detC(K) = 0. Let us assume that
rankC(K) = 2. Then, one has dim kerC(K) = 1. If the one-dimensional vector space
kerC(K) is transverse to the (q1, q2) plane in the (t, q1, q2)-space, we have a degeneracy
point parametrized by t on the (q1, q2) plane, by projecting kerC(K) onto the (q1, q2)
plane for t ̸= 0. In this case, eigen-line bundles cannot be defined on the (q1, q2) plane.
In contrast with this, if kerC(K) is sitting on the (q1, q2) plane, we have a degeneracy
line (i.e., a continuum of degeneracy points) on the (q1, q2) plane for t = 0 only, and
no degeneracy point appears on the (q1, q2) plane for t ̸= 0. Then, we may talk about
eigen-line bundles on the (q1, q2) plane for t ̸= 0. If rankC(K) = 2 and if for t ̸= 0
there are no exceptional points emerging from the degeneracy point, or equivalently, if
the assignment of exceptional points is described by the symbol , we
may have ∆+c(x0) = 0. Here, we note that the condition for no exceptional point for
t ̸= 0 is

rankC2(K) > rankB(K), C2(K) =

(
a12 b12 c12
a13 b13 c13

)
, B(K) =

(
b12 c12
b13 c13

)
, (108)

as is seen from (95). Hence, the delta-Chern formula is extended so that ∆c+(x0) = 0 =
−sgn(det(C(K))) may hold, if the definition of sgn is extended so as to be sgn(x) = 0 for
x = 0.

If rankC(K) = 1, the vector space kerC(K) is two-dimensional. If it intersects with
the plane t = 0 along a line, there exists a degeneracy line parametrized by t on the
(q1, q2)-plane for t ̸= 0, when kerK(C) with t fixed is projected there. In this case, eigen-
line bundles cannot be defined either. If the kerK(C) coincides with the (q1, q2)-plane, we
have a degeneracy plane for t = 0 only, and no degeneracy points exist on the (q1, q2)-plane
for t ̸= 0. If further Eq. (108) is satisfied, there is no exceptional point for t ̸= 0. Since
rankC(K) = 1, the only possibility for this is that the left-hand and right-hand sides of
(108) are 1 and 0, respectively. Then, one has B(K) = 0, but the delta-Chern formula
may work to result in the vanishing delta-Chern. If both sides of (108) are equal to 1,
there exist exceptional points for t ̸= 0. However, those points form a line, and hence the
linearization method fails as well. If both sides of (108) are equal to 0, the linearization
method fails of course.

If the linearization method fails at an degeneracy point, we can define the local Hamil-
tonian by adopting quadratic terms or the first non-vanishing higher-order terms from the
expansion of the full Hamiltonian in terms of local coordinates on the tangent plane to S2

at the degeneracy point. Then, the variation in winding number ∆W = W(t>0) −W(t<0)

can be calculated for the exceptional point of the “up” or “down” eigenvector of the local
(quadratic) Hamiltonian, though the second equality of (106) fails. The local delta-Chern
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assigned to the degeneracy point is now obtained as −∆W for the eigen-line bundle as-
sociated with the positive (or negative) eigenvalue, as will be mentioned in Sec. 14.1. We
will give such an example in Sec. 14.2.

9 Global delta-Chern

We proceed to the global delta-Chern for the full Hamiltonian. Since detC(K̃
(2)
loc (t, q;x0))

is invariant on the G-orbit Ox0 of x0, we have

∆+c(x0) = ∆+c(gx0), gx0 ∈ Ox0 . (109)

In summary, in association with λ+, the total amount of the delta-Chern throughout the
G-orbit is given by

∆+c(Ox0) =
∑

gx0∈Ox0

∆+c(gx0) = (#Ox0)∆
+c(x0). (110)

So far we have studied the local delta-Chern in relation to the retract K̃
(2)
loc (t, q;x0)

from Kloc(t, q;x0) in normal form with respect to the basis |ej(x0)⟩. Our last task is to
relate the totality (110) of the local delta-Chern to the global Chern number modification
or global delta-Chern for the full Hamiltonian H(c(t),x) against the variation in t. Let
K(c(t),x) denote the Hamiltonian expressed with respect to the basis |ej(x0)⟩. From
the viewpoint of eigen-line bundles, we may use K(c(t),x) as well as H(c(t),x). Let Λ0

be a tangent line to Γ at c(0) in the control parameter space. Then, there exists such a
neighborhood of the origin of Λ0×Π0 that it is diffeomorphic to a neighborhood of the point
(c(0),x0) in Γ × S2, where (t, q1, q2) serves as a coordinate system on this neighborhood
(see the last paragraph of Sec. 7.2). If projected on Λ0 × Π0 and expanded in terms
of (t, q1, q2) in the neighborhood mentioned above, the K(c(t),x) can be homotopically
deformed to Kloc(t, q;x0) by making higher order terms smaller and then vanish.

We now denote by |w±
up/down(t,x)⟩ the normalized “up” and “down” eigenvectors as-

sociated with the eigenvalues ν±(t,x) of K(c(t),x), where ν±(t,x) are supposed to be
approximate to the degenerate eigenvalues λ2(c(0),x0) = λ3(c(0),x0) in the neighborhood
of (c(0),x0) ∈ Γ × S2. Then, the setting for constructing the eigen-line bundles for the
full Hamiltonian is given by

K(c(t),x)|w±
up/down(t,x)⟩ = ν±(t,x)|w±

up/down(t,x)⟩, (111)

|w±
up(t,x)⟩ = Φ±

full(t,x)|w±
down(t,x)⟩, x ∈ W±

up ∩W±
down, (112)

where Φ±
full(t,x) are the transition functions and W±

up and W±
down are the domains of the

“up” and “down” eigenvectors, respectively. In a similar manner, the setting for the local
Hamiltonian is

Kloc(t, q;x0)|v±up/down(t, q)⟩ = µ±(t, q)|v±up/down(t, q)⟩, (113)

|v±up(t, q)⟩ = Φ±
(3)(t, q)|v

±
down(t, q)⟩, q ∈ V ±

up ∩ V ±
down. (114)
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Since the K(c(t),x) can be homotopically deformed and projected to Kloc(t, q;x0), the
eigenvectors |w±

up/down(t,x)⟩ are also homotopically deformed and projected to |v±up/down(t, q)⟩,
and thereby the transitions function Φ±

full(t,x) is homotopically deformed and projected
to Φ±

(3)(t, q) as well. As we have already observed, Φ±
(3)(t, q) is approximated by Φ±

(2)(t, q),
if t, q1, q2 are small enough. Thus, we verify that the winding number is deformation
invariant:

1

2πi

∫
γ

(Φ±
full)

−1dΦ±
full =

1

2πi

∫
γ′

(Φ±
(3))

−1dΦ±
(3) =

1

2πi

∫
γ′′

(Φ±
(2))

−1dΦ±
(2), (115)

where γ is a small circle centered at the exceptional point, say, for |w±
up(t,x)⟩ in the

neighborhood of x0 in S2 for either t > 0 or t < 0, and where γ′ and γ′′ are small circles
centered at the corresponding exceptional points in the neighborhood of the origin in Π0.

From (115), we see that the Chern numbers c± of the eigen-line bundles associated
with the eigenvalues ν± of the full Hamiltonian are given by

c± =
∑
j

i

2π

∫
γj

(Φ±
full)

−1dΦ±
full = −

∑
j

W±(γ′′j ), W±(γ′′j ) =
1

2πi

∫
γ′′
j

(Φ±
(2))

−1dΦ±
(2).

(116)
Since the formula (110) is established on the variation (106) in winding numbers, the
variation in Chern number for the full Hamiltonian is given by the formula (110) as well.

Theorem 9.1 Assume that accompanying the change in the parameter t from the t <
0 side to the t > 0 side, the direct sum of eigen-line bundles for the full Hamilto-
nian H(c(t),x) is reorganized through the degeneracy of eigenvalues, λ1(c(0),x0) >
λ2(c(0)x0) = λ3(c(0),x0) at t = 0, as

L1 ⊕ L2 ⊕ L3 −→ L1 ⊕ L′
2 ⊕ L′

3. (117)

Then, the total (or global) delta-Chern is given byc(L1)− c(L1)
c(L′

2)− c(L2)
c(L′

3)− c(L3)

 =
−→
∆c(Ox0) = (#Ox0)

−→
∆c(x0),

−→
∆c(x0) =

∆0c(x0)
∆+c(x0)
∆−c(x0)

 , (118)

where the over-right arrow is attached to indicate that the change in the parameter t
is in the positive direction, and where ∆0c(x0) = 0 and ∆−c(x0) = −∆+c(x0). If the
degeneracy is of the form λ1(c(0),x0) = λ2(c(0),x0) > λ3(c(0),x0), Eqs. (117) and (118)
take the form

L1 ⊕ L2 ⊕ L3 −→ L′
1 ⊕ L′

2 ⊕ L3, (119)c(L′
1)− c(L1)

c(L′
2)− c(L2)

c(L3)− c(L3)

 =
−→
∆c(Ox0) = (#Ox0)

−→
∆c(x0),

−→
∆c(x0) =

∆+c(x0)
∆−c(x0)
∆0c(x0)

 , (120)

respectively. If the variation in the parameter is reversed, i.e., from the t > 0 side to the

t < 0 side, the delta-Chern is also reversed through
←−
∆c(x0) = −

−→
∆c(x0).
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As is suggested by the above formula, the formula (118) and (120) can be extended
to an n-level system in which only two of eigenvalues are degenerate and the others are
distinct, if the G-orbit is a finite set.

Though we have obtained Theorem 9.1 in the case where the linearization method
works. However, if the delta-Cherns ∆±c(x0) can be evaluated, and if the ∆±c(x0) are
constant on the orbit of x0 by G, this theorem holds true. As was mentioned in the last
paragraph of Sec. 8.3 and will be explained in Sec. 14.1, we can evaluate the delta-Chern
∆±c(x0) for a, say, quadratic local Hamiltonian by modifying the study made for the case
of linear local Hamiltonian. We will give an example in Sec. 14.2 in which a quadratic
local Hamiltonian provides the global delta-Chern.

10 A three-level model with O symmetry

We are to apply the global delta-Chern formula to find out the iso-Chern diagram for the
three-level model Hamiltonian given by (19). The first task is to identify the iso-Chern
domain by determining degeneracy curves in the control parameter space R2 = {(a, b)}.
The next task is to find the Chern numbers of respective eigen-line bundles assigned to one
of iso-Chern domains. The third task is to calculate the delta-Chern accompanying the
crossing the boundaries of iso-Chern domains by applying Theorem 9.1 with respective
local Hamiltonians in normal form. Putting these results together, we can complete the
iso-Chern diagram for the Hamiltonian (19) coming from [20].

10.1 Degeneracy points and iso-Chern domains

The first task is to find degeneracy curves in the control parameter space R2 = {(a, b)}.
As is already known, the degeneracy points on the sphere S2 form G-orbits, and the sphere
S2 is stratified into strata according to the action of the symmetry group G. As for the
octahedral group, the stratification of the sphere is well known. Each stratum consists
of points at which the isotropy subgroup of the O group is isomorphic to a cyclic group
Ci with i = 1, 2, 3, 4. With respect to the Cartesian coordinate system we adopt on R3,
the strata with isotropy subgroups Cj, j = 2, 3, 4, form O-orbits, which are given by (34),
(31), (33), respectively. Since these points are entitled to be degeneracy points on S2,
we are in turn allowed to find corresponding degeneracy curves in the control parameter
space by using these points. Because of symmetry, we may choose a point from each
O-orbit to find such degeneracy curves. The stratum with the trivial isotropy subgroup
C1 will be treated separately.

We first pick up a point x0 = ( 1√
2
, 1√

2
, 0) at which the isotropy subgroup is C2. Then,

the Hamiltonian is evaluated at x0 as

H(x0) =

−
a
2

b
2
− i√

2
b
2
−a

2
i√
2

i√
2
− i√

2
a

 , x0 =

 1√
2
1√
2

0

 . (121)

The characteristic equation for the H(x0) is written out as

det(λI −H(x0) =
(
λ+

1

2
(a− b)

)(
λ2 − 1

2
(a− b)λ− 1

2
(a2 + ab+ 2)

)
= 0, (122)
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whose solutions are given by

−1

2
(a− b), 1

4
(a− b)± 1

2

√
1

4
(a− b)2 + 2a(a+ b) + 4. (123)

Since the quantity under the square root is positive, degeneracy in eigenvalues occurs
between the first eigenvalue and one of the last two. The condition for the degeneracy is
shown to be equivalent to

b2 − 2 = 3ab. (124)

Hence, when degenerate, the three eigenvalues given above are expressed, independently
of sgn(b), as

1

3

(
b+

1

b

)
,

1

3

(
b+

1

b

)
, −2

3

(
b+

1

b

)
. (125)

This implies that according to whether b > 0 or b < 0 the degeneracy occurs between
upper two eigenvalues or between lower two eigenvalues. Then, the degeneracy occurs in
the form λ1 = λ2 > λ3 for b > 0 or λ1 > λ2 = λ3 for b < 0.

We turn to a point x0 = ( 1√
3
, 1√

3
, 1√

3
) at which the isotropy subgroup is C3. The

Hamiltonian takes the form at x0

H(x0) =

 0 i√
3

+ b
3
− i√

3
+ b

3

− i√
3

+ b
3

0 i√
3

+ b
3

i√
3

+ b
3
− i√

3
+ b

3
0

 , x0 =


1√
3
1√
3
1√
3

 . (126)

The characteristic equation is expressed in the factorized form as

det(λI −H(x0)) =
(
λ− 2

3
b
)(
λ+

1

3
b− 1

)(
λ+

1

3
b+ 1

)
= 0. (127)

The eigenvalues are then given by

2

3
b, −1

3
b+ 1, −1

3
b− 1. (128)

Degeneracy in eigenvalues occurs between 2
3
b and −1

3
b + 1 for b > 0 and between 2

3
b and

−1
3
b− 1 for b < 0. Hence, the degeneracies occur for

b = ±1. (129)

According to whether b = 1 or b = −1, the eigenvalues are λ1 = λ2 = 2
3
, λ3 = −4

3
or

λ1 = 4
3
, λ2 = λ3 = −2

3
.

We proceed to a point x0 = (0, 0, 1) at which the isotropy subgroup is C4. The
Hamiltonian H(x0) evaluated at x0 is put in the form

H(x0) =

 a i 0
−i a 0
0 0 −2a

 , x0 =

0
0
1

 . (130)

The characteristic equation for H(x0) is expressed as

det(λI −H(x0)) = (2a+ λ)((a− λ)2 + 1) = 0. (131)
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The eigenvalues are then given by

−2a, a± 1. (132)

Degeneracy of eigenvalues occurs between −2a and a− 1 for a > 0 and between −2a and
a+ 1 for a < 0. It then follows that the degeneracies occur for the parameter values

a = ±1

3
. (133)

According to whether a = 1
3

or a = −1
3
, the eigenvalues are λ1 = 4

3
, λ2 = λ3 = −2

3
or

λ1 = λ2 = 2
3
, λ3 = −4

3
.

Thus we have obtained the degeneracy curves (124), (129), (133) in the control pa-
rameter space. The remaining task is to consider the O-orbit with the trivial isotropy
subgroup C1. To this end, we can work with the discriminant for the characteristic
equation det(λI − H(x)) = 0 in terms of invariant polynomials for the O group. The
calculation for the discriminant can be made by using computer algebra. As a result, the
discriminant D(a, b,x) of the characteristic equation is expressed, in terms of the invariant
polynomials for the O group,

P2 = x2 + y2 + z2, P4 = x4 + y4 + z4, P6 = x2y2z2, (134)

as

D(a, b,x) = 1
2
(3a− b)3(3a+ b)3P 3

4

−3
4
(135a4 − 90a3b− 3a2b2 − 144a2 + 60ab+ 12ab3 − 4b2 + 36− 2b4)(3a+ b)2P 2

4

+3
2
(3a− b+ 2)(3a+ b)(3a− b− 2)(18a3 + 6a2b− 3ab2 − 12a− 8b− b3)P4

−27(3a− 2b)(−ab+ 3a2 − 2)(3a+ b)3P4P6

+27(3a− 2b)(5a3 − ab2 − 2a− 2b)(3a+ b)2P6

−27(3a− 2b)2(3a+ b)4P 2
6

−1
4
(3a− b− 2)(3a− b+ 2)(81a4 + 54a3b− 36a2 − 9a2b2 − 60ab− 12ab3 − 2b4 + 4− 20b2)

,

(135)
where P2 has been set as P2 = 1 on account of the constraint to the unit sphere. We
can show that this discriminant does not vanish on the C1 stratum by verifying that the
discriminant is positive on the C1 stratum, whereas it vanishes only on the Cj strata with
j = 2, 3, 4. In order for D(a, b,x) to have a zero at some internal point of the C1 stratum,
the discriminant viewed as a quadratic polynomial in P6 should vanish, which condition
is written as

54(3a− 2b)2(3a+ b)4((9P4 − 3)a2 + (1− P4)b
2 + 2)3 = 0. (136)

Since the range of P4 is 1
3
≤ P4 ≤ 1 on the unit sphere, the last factor of the left-hand side

of the above equation never vanish. Hence, we have two possibilities for the vanishing of
the left-hand side, which are 3a− 2b = 0 and 3a+ b = 0. (i) In the case of b = −3a, the
discriminant takes the form

D(a,−3a,x) = 4(3a− 1)2(3a+ 1)2. (137)
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This discriminant vanishes at a = 1
3
, b = −1 and a = −1

3
, b = 1. We have already obtained

these two points in the control parameter space, which are the simultaneous intersection
points of the C2, C3, and C4 degeneracy curves and will be discussed in detail later on.
(ii) In the case of 3a− 2b = 0, the discriminant becomes

D(a,
3a

2
,x)

=
19683

128
a6P 3

4 +
(
−2187

4
a2 − 45927

128
a6 +

15309

16
a4
)
P 2
4

+
(32805

128
a6 − 6561

8
a4 + 648a2

)
P4 −

6561

128
a6 +

2997

16
a4 − 693

4
a2 + 4. (138)

As a polynomial in P4 with the range 1
3
≤ P4 ≤ 1, the above function vanishes only when

P4 = 1, 1
2
, 1
3
. However, the values P4 = 1, 1

2
, 1
3

are taken only at the orbits whose isotropy
subgroups are C4, C2, C3, respectively. It then turns out that there is no degeneracy points
with isotropy subgroup C1.

The degeneracy curves are now shown in Fig. 5, which form boundaries of iso-Chern
domains. To each point of degeneracy curves in Fig. 5, there corresponds a set of degen-
eracy points on S2, which forms an orbit of the O group. The symbols Ck attached to
each degeneracy curve denote the isotropy subgroups at corresponding degeneracy points
in S2.

0

2

-1

1

0
-2

-1

-2

b

21
b

a

C4

C 2

2C

C4

C3

C 3

Figure 5: Degeneracy curves in the space of control parameters for the Hamiltonian (19).

On account of Theorem 9.1, we see that the global delta-Chern is given by #Ox0 =
#G0/#G times the local delta-Chern ∆±c(x0) at a representative degeneracy point x0.
If the Chern numbers of the eigen-line bundles assigned to one of iso-Chern domains,
the Chern numbers of the eigen-line bundles assigned to every iso-Chern domain are
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evaluated by using the global delta-Chern formula. Our next tasks are to choose an iso-
Chern domain to evaluate the Chern numbers as easily as possible and then to find the
local delta-Chern accompanying the crossing of degeneracy curves of every type Ck.

10.2 A seed system

We pick up the iso-Chern domain containing the origin of the control parameter space.
The simplest model is given by setting a = b = 0,

H(x) =

 0 iz −iy
−iz 0 ix
iy −ix 0

 , x ∈ S2, (139)

which has eigenvalues λ = 0,±1. For λ = 0, the normalized eigenvector is given by

|w0(x)⟩ = x, (140)

which is globally defined on S2, so that the associated eigen-line bundle is trivial. Hence,
the Chern number of this eigen-bundle is 0.

We proceed to the eigen-line bundle associated with λ = 1. A normalized eigenvector
associated with the λ = 1 is given, in two ways, by

|w+
up(x)⟩ =

1√
2(1− z2)

−xz − iy−zy + ix
1− z2

 on W+
up = S2 − {z = ±1}, (141a)

|w+
down(x)⟩ =

1√
2(1− x2)

 1− x2
−xy − iz
−zx+ iy

 on W+
down = S2 − {x = ±1}. (141b)

The transition function is defined through |w+
up(x)⟩ = Φ+(x)|w+

down(x)⟩ and given by

Φ+(x) =
−zx− iy√

(1− z2)(1− x2)
on W+

up ∩W+
down. (142)

The local connection forms are defined to be

ω+
up := ⟨w+

up(x)|d|w+
up(x)⟩, ω+

down := ⟨w+
down(x)|d|w+

down(x)⟩ (143)

on W+
up and on W+

down, respectively, which are related by

ω+
up = Φ+(x)−1dΦ+(x) + ω+

down on W+
up ∩W+

down. (144)

The curvature is globally defined by

Ω+ =

{
dω+

up on W+
up,

dω+
down on W+

down.
(145)
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This system is so simple that we can calculate the Chern number in a straightforward
manner. In terms of the spherical polar coordinates (θ, ϕ) on S2, the local connection
form is expressed as

ω+
up := ⟨w+

up(x)|d|w+
up(x)⟩ = i cos θdϕ, (146)

and then the curvature as

Ω+ = dω+
up = −i sin θ dθ ∧ dϕ, (147)

so that we have the Chern number

i

2π

∫
S2

Ω+ =
1

2π

∫
S2

sin θ dθdϕ = 2. (148)

The Chern number of the eigen-line bundle associated with the eigenvalue λ = −1
should be −2. Thus, we have obtained Chern numbers of respective eigen-line bundles,
which are assigned to the iso-Chern domain {(a, b) : |a| < 1

3
, |b| < 1}.

10.3 Delta-Chern in crossing C2 degeneracy curves

We consider the degeneracy curves defined by (124) in the control parameter space. As
each point of the degeneracy curves (124) has corresponding degeneracy points on S2

which form the orbit of the O group with the isotropy subgroup isomorphic to C2, we
refer to the degeneracy curves (124) as C2 degeneracy curves. As is shown in Fig. 5, the
curves have two components, which are distinguished by b > 0 and b < 0. There are four
intersection points with the other degeneracy curves, which are (a, b) = (1

3
,−1), (−1

3
, 1)

and (a, b) = (1
3
, 2), (−1

3
,−2). As will be seen later, the triple intersection points (a, b) =

(1
3
,−1), (−1

3
, 1) are distinguished from the double intersection points (a, b) = (1

3
, 2), (−1

3
,−2)

and have to be excluded for the reason of the validity of the linearization method.
The Hamiltonian we treat at first is given by (121) together with (124). For b > 0,

orthonormalized eigenvectors associated with the degenerate eigenvalue λ1 = λ2 = 1
3
(b+ 1

b
)

are obtained as

|e1(x0)+⟩ =
1√
2

1
1
0

 , |e2(x0)+⟩ =
1√

1 + b2

− i√
2

i√
2

b

 , (149)

and a normalized eigenvector associated with λ3 = −2
3
(b+ 1

b
) is given by

|e3(x0)+⟩ =
1√

1 + b2

 ib√
2

− ib√
2

1

 . (150)

The eigenvectors |ek(x0)+⟩, k = 1, 2, 3, form an orthonormal basis of C3, where the sub-
script + is attached to indicate that b > 0.

We turn to the case of b < 0. For the degenerate eigenvalue λ2 = λ3 = 1
3
(b + 1

b
), we

have the normalized eigenvectors

|e2(x0)−⟩ =
1√
2

1
1
0

 , |e3(x0)−⟩ =
1√

1 + b2

− i√
2

i√
2

b

 , (151)
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and for λ1 = −2
3
(b+ 1

b
) > 0, we have

|e1(x0)−⟩ =
1√

1 + b2

 ib√
2

− ib√
2

1

 , (152)

where the subscript − is attached in reference to b < 0.
We note here that according to the parameter inversion (a, b)→ (−a,−b), the Hamil-

tonian is subject to the transformation

H(a, b,x0) = −H(−a,−b,x0), (153)

where we have denoted the Hamiltonian by H(a, b,x0) to show its dependence on the
parameters a, b. The above equation implies that the eigenvectors |ek(x0)+⟩ and |ek(x0)−⟩
are related by the complex conjugation and the inversion of the parameter b. For example,
the complex conjugate of |e2(x0)+⟩ with the inversion b→ −b is equal to −|e3(x0)−⟩.

We now treat the isotropy subgroup G0
∼= C2 at x0, where x0 is given in (121). The

generator of this subgroup is given by

h =

 1
1

−1

 . (154)

As is easily seen, the representation matrix of h with respect to |ek(x0)+⟩ is expressed as

D
(3)
+ (h) =

1
−1

−1

 , (155)

where the subscript + is attached to indicate that the basis |ek(x0)+⟩ is adopted. In
a similar manner, we obtain the representation matrix of h with respect to the basis
|ek(x0)−⟩,

D
(3)
− (h) =

−1
1
−1

 . (156)

Our next task is to take a frame on the tangent plane Π0 at x0. We here take the
frame at x0 as

ξ1 =
1√
2

−1
1
0

 , ξ2 =

0
0
1

 , (157)

which is positive in the sense that ξ1×ξ2 = x0, where the x0 in the right-hand side of this
equation is identified with the unit out-going normal vector at x0 ∈ S2. The Cartesian
coordinates (q1, q2) are introduced on the tangent plane Π0 through q1ξ1 + q2ξ2. With
respect to the frame (157), the action of h on the tangent plane Π0 is expressed as

h(2) =

(
−1

−1

)
. (158)
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We proceed to calculate the local Hamiltonian defined on the product of the tangent
plane Π0 at x0 and the tangent line Λ0 at t = 0 to a curve (or a line) c(t) transverse to
the C2 degeneracy curve. We take the c(t) as

c(t) = (a+ t, b), 3ab = b2 − 2, b ̸= ±1, ±2, (159)

where t is restricted to such an interval that the line segment c(t) with |t| < εmay not cross
any other degeneracy curves, and where the conditions b ̸= ±1, ±2 are imposed so that
the line segment c(t) may not pass the intersection points of degeneracy curves. Following
the definition (52) of the local Hamiltonian, and expressing the local Hamiltonian with
respect to the basis |ej(x0)+⟩ given by (149) and (150) for b > 0, we obtain the local
Hamiltonian in normal form,

Kloc(t, q;x0)+

=


1
3

(
b+ 1

b

)
− 1

2
t −2(b−1/b)iq1+(b2−1)q2√

1+b2
(b2−3)iq1+2bq2√

1+b2

2(b−1/b)iq1+(b2−1)q2√
1+b2

1
3

(
b+ 1

b

)
+

− 1
2
+b2

1+b2
t 3b

2(1+b2)
t

−(b2−3)iq1+2bq2√
1+b2

3b
2(1+b2)

t −2
3

(
b+ 1

b

)
+

1− 1
2
b2

1+b2
t

 . (160)

In a similar manner, with respect to the basis |ej(x0)−⟩ given by (151) and (152) for b < 0,
we obtain the local Hamiltonian in normal form,

Kloc(t, q;x0)−

=


−2

3
(b+ 1

b
) +

1− 1
2
b2

1+b2
t −(b2−3)iq1+2bq2√

1+b2
0

(b2−3)iq1+2bq2√
1+b2

1
3
(b+ 1

b
)− 1

2
t −2(b−1/b)iq1+(b2−1)q2√

1+b2

0 2(b−1/b)iq1+(b2−1)q2√
1+b2

1
3
(b+ 1

b
) +

− 1
2
+b2

1+b2
t

 . (161)

Retracting the local Hamiltonian to that on the eigenspace associated with the degen-
erate eigenvalues, i.e., picking up the upper left 2×2 block matrix for b > 0 and the lower
right 2 × 2 block matrix for b < 0, and making each of those matrices into a traceless
matrix, we obtain, in both cases of b > 0 and b < 0,

K̃
(2)
loc (t, q;x)± =

(
−α0t α1q2 − iβ1q1

α1q2 + iβ1q1 α0t

)
, (162)

where

α0 =
3b2

4(1 + b2)
, α1 =

b2 − 1√
1 + b2

, β1 =
2(b2 − 1)

b
√

1 + b2
. (163)

Then, the relevant matrices C(K±) and B(K±) defined in (87) and (96), respectively, are
expressed as

C(K±) =

−α0 0 0
0 0 α1

0 β1 0

 , B(K±) =

(
0 α1

β1 0

)
. (164)

Since detB(K±) ̸= 0 and since

detC(K±) = α0α1β1

{
> 0 for b > 0, b ̸= 1,
< 0 for b < 0, b ̸= −1,

(165)
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we find from (107) that

∆+c(x0) =

{
−1 for b > 0, b ̸= 1,
+1 for b < 0, b ̸= −1.

(166)

It then follows from (118) and (120) with #Ox0 = 12 that the delta-Chern accompanying
the variation of the parameter t from the t < 0 side to the t > 0 side is given by

−→
∆c(Ox0) =



#Ox0

∆+c(x0)
∆−c(x0)
∆0c(x0)

 =

−12
12
0

 for b > 0, b ̸= 1,

#Ox0

∆0c(x0)
∆+c(x0)
∆−c(x0)

 =

 0
12
−12

 for b < 0, b ̸= −1.

(167)

We have to make remarks on the case of b = ±1,±2. As is seen from (163) and
(164), if b = ±1 (or if (a, b) = (−1

3
, 1), (1

3
,−1)), then one has rankC(K±) = 1 and both

sides of Eq. (108) vanish; rankC2(K±) = rankB(K±) = 0. As was already mentioned in
Sec. 8.3, the linearization method fails in these cases. In contrast with this, if b = ±2 (or if
(a, b) = (1

3
, 2), (−1

3
,−2)) in spite of our initial assumption in (159), Eq. (167) is valid, but

we have to take into account the formula (209) at the same time for the delta-Chern, since
at the points (a, b) = (1

3
, 2), (−1

3
,−2) isolated degeneracy points exists simultaneously on

the C2 and C4 degeneracy curves.

10.4 Delta-Chern in crossing C3 degeneracy curves

We deal with the degeneracy curves defined by (129) in the control parameter space,
which we call the C3 degeneracy curves (or lines). As is done in the preceding section,
the triple intersection points (a, b) = (1

3
,−1), (−1

3
, 1) have to be excluded, but the double

intersection points (a, b) = (1
3
, 1), (−1

3
,−1) are included with due attention. We will make

a remark on this problem at the end of the present subsection. The Hamiltonian we
start with is given by (126) together with (129). For b = 1, orthonormalized eigenvectors
associated with the degenerate eigenvalues λ1 = λ2 = 2

3
are given by

|e1(x0)+⟩ =
1√
2

eπi/31
0

 , |e2(x0)+⟩ =
1√
6

e−πi/3

eπi/3

2

 , (168)

and a normalized eigenvector associated with λ3 = −4
3

is given by

|e3(x0)+⟩ =
1√
3

 e2πi/3

−eπi/3
1

 , (169)

where the subscript + is attached to the eigenvectors in reference to b = 1 > 0.
Eigenvectors for b = −1 are easy to find by using the relation

H(x0)|b=−1 = −H(x0)|b=1. (170)
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It turns out that the normalized eigenvectors of H(x0)|b=−1 associated with the eigenvalue
λ1 = 4

3
is given by

|e1(x0)−⟩ =
1√
3

 e−2πi/3

−e−πi/3

1

 , (171)

and those associated with the degenerate eigenvalues λ2 = λ3 = −2
3

are given by

|e2(x0)−⟩ =
1√
2

e−πi/3

1
0

 , |e3(x0)−⟩ =
1√
6

 eπi/3

e−πi/3

2

 , (172)

where the subscript − is attached to the eigenvectors in reference to b = −1 < 0.
We now treat the action of the isotropy subgroup at the degeneracy point x0 given

in (126). The isotropy subgroup G0 at x0 is isomorphic with the cyclic group C3 and
generated by

h =

 1
1

1

 . (173)

A straightforward calculation shows that with respect to the basis |ek(x0)+⟩ given by
(168) and (169) the matrix expression of h takes the form

D
(3)
+ (h) =

1
2
eπi/3

√
3
2
e−πi/3 0√

3
2

1
2
eπi/3 0

0 0 e−2πi/3

 . (174)

Since the isotropy subgroup G0
∼= C3 is Abelian, the representation matrix can be of

diagonal matrix form with respect to a suitably chosen basis. By introducing the new
basis

(|e′1(x0)+⟩, |e′2(x0)+⟩, |e′3(x0)+⟩) =(|e1(x0)+⟩, |e2(x0)+⟩, |e3(x0)+⟩)U+, (175a)

U+ =

 eπi/6/
√

2 eπi/6/
√

2 0

ie−πi/6/
√

2 −ie−πi/6/
√

2 0
0 0 1

 , (175b)

the representation matrix (174) is diagonalized into

D̃
(3)
+ (h) =

1
e2πi/3

e−2πi/3

 . (176)

We turn to the case of b = −1. Introducing the new basis by

(|e′1(x0)−⟩, |e′2(x0)−⟩, |e′3(x0)−⟩) =(|e1(x0)−⟩, |e2(x0)−⟩, |e3(x0)−⟩)U−, (177a)

U− =

1

e−πi/6/
√

2 e−πi/6/
√

2

ieπi/6/
√

2 −ieπi/6/
√

2

 , (177b)
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we have the representation matrix of the diagonal form

D̃
(3)
− (h) =

e2πi/3 e−2πi/3

1

 . (178)

The isotropy subgroup G0
∼= C3 acts also on the tangent plane Π0 to S2 at x0, where

x0 is given in (126). We take the frame on Π0 as

ξ1 =
1√
2

−1
1
0

 , ξ2 =
1√
6

−1
−1
2

 . (179)

This frame is positively oriented, since ξ1 × ξ2 = x0. The action of h on the plane Π0 is
easily found to be expressed with respect to the basis ξk, k = 1, 2 as

h(2) =

(
−1

2
−

√
3
2√

3
2
−1

2

)
. (180)

Our next task is to find the local Hamiltonian in normal form. The C3 degeneracy
curves has two components, which can be distinguished by the sign of b. We take a curve
transverse to the C3 degeneracy curves in the control parameter space as

c(t) =

{
(a, 1 + t) for b > 0,
(a,−1 + t) for b < 0,

a ̸= ±1

3
, (181)

where the parameter t is restricted to |t| < ε so that the curve c(t) may not cross other
degeneracy curves in the control parameter space. Following the definition of the local
Hamiltonian (52), and expressing the local Hamiltonian with respect to the basis |e′j(x0)+⟩
given by (175) for b > 0, we obtain the local Hamiltonian in normal form,

Kloc(t, q;x0)+ =


2
3

+ 2
3
t iγ(q1 − iq2) βeπi/6(q1 + iq2)

−iγ(q1 + iq2)
2
3
− 1

3
t γeπi/6(q1 − iq2)

βe−πi/6(q1 − iq2) γe−πi/6(q1 + iq2) −4
3
− 1

3
t

 , (182)

where

γ =
√

2(a+
1

3
), β =

√
2(a− 1

3
). (183)

In a similar manner, with respect to the basis |e′j(x0)−⟩ given by (177) for b < 0, the local
Hamiltonian is expressed as

Kloc(t, q;x0)− =

 4
3
− t

3
βeπi/6(q1 − iq2) αeπi/6(q1 + iq2)

βe−πi/6(q1 + iq2) −2
3
− t

3
iβ(q1 − iq2)

αe−πi/6(q1 − iq2) −iβ(q1 + iq2) −2
3

+ 2
3
t

 , (184)

where

β =
√

2(a− 1

3
), α =

√
2(a+

2

3
). (185)
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Retracting the local Hamiltonian to that on the eigenspace associated with the de-
generate eigenvalues, i.e., picking up the upper left 2× 2 block matrix for b > 0 and the
lower right 2× 2 block matrix for b < 0, and making each matrix into a traceless matrix,
we obtain, in the cases of b > 0 and b < 0,

K̃
(2)
loc (t, q;x0)+ =

(
t
2

iγ(q1 − iq2)
−iγ(q1 + iq2) − t

2

)
, (186)

K̃
(2)
loc (t, q;x0)− =

(
− t

2
iβ(q1 − iq2)

−iβ(q1 + iq2)
t
2

)
, (187)

respectively. Then, the relevant matrices are written as

C(K+) =

1
2

0 0
0 0 γ
0 −γ 0

 , B(K+) =

(
0 γ
−γ 0

)
, (188)

C(K−) =

−1
2

0 0
0 0 β
0 −β 0

 , B(K−) =

(
0 β
−β 0

)
. (189)

Since detB(K±) ̸= 0, and since{
detC(K+) = 1

2
γ2 > 0 for b > 0, a ̸= −1

3
,

detC(K−) = −1
2
β2 < 0 for b < 0, a ̸= 1

3
,

(190)

we find from (107) that

∆+c(x0) =

{
−1 for b > 0, a ̸= −1

3
,

+1 for b < 0, a ̸= 1
3
.

(191)

It then follows from (118) and (120) with #Ox0 = 8 that the delta-Chern accompanying
the variation of the parameter t from the t < 0 side to the t > 0 side is given by

−→
∆c(Ox0) =



#Ox0

∆+c(x0)
∆−c(x0)
∆0c(x0)

 =

−8
8
0

 for b > 0, a ̸= −1
3
,

#Ox0

∆0c(x0)
∆+c(x0)
∆−c(x0)

 =

 0
8
−8

 for b < 0, a ̸= 1
3
.

(192)

We note here that for (a, b) = (−1
3
,−1), (1

3
, 1) the formula (192) is valid in spite of

the earlier assumption in (181). However, we have to take into account the formula
(209) at the same time, since at the parameter values (a, b) = (−1

3
,−1), (1

3
, 1) there exist

simultaneously isolated degeneracy points on the C3 and C4 degeneracy curves. In contrast
with this, for (a, b) = (1

3
,−1), we have rankC(K−) = 1 and rankC2(K−) = rankB(K−) =

0, and for (a, b) = (−1
3
, 1), we have rankC(K+) = 1 and rankC2(K+) = rankB(K+) = 0.

In these cases, the linearization method fails.
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10.5 Delta-Chern in crossing C4 degeneracy curves

We discuss the delta-Chern accompanying the crossing of C4 degeneracy curves given by
(133). We have here to exclude the triple intersection points (a, b) = (1

3
,−1), (−1

3
, 1) but

may include the intersection points (a, b) = (1
3
, 1), (−1

3
,−1), as in preceding subsections.

The curves have two components distinguishable by the sign of a.
We start with the Hamiltonian given by (130) together with (133). For a = 1

3
, or-

thonormalized eigenvectors of H(x0)|a= 1
3

are easily calculated, which are given by

|e1(x0)+⟩ =
1√
2

i1
0

 , |e2(x0)+⟩ =
1√
2

−i1
0

 , |e3(x0)+⟩ =

0
0
1

 , (193)

where the subscript + is attached in reference to a = 1
3
> 0. The eigenvector |e1(x0)+⟩ is

associated with the eigenvalue λ1 = 4
3
, and the eigenvectors |e2(x0)+⟩ and |e3(x0)+⟩ span

the eigenspace associated with the doubly degenerate eigenvalue λ2 = λ3 = −2
3
.

For a = −1
3
, the eigenvectors are

|e1(x0)−⟩ =
1√
2

i1
0

 , |e2(x0)−⟩ =

0
0
1

 , |e3(x0)−⟩ =
1√
2

−i1
0

 , (194)

where the subscript − is attached in reference to a = −1
3
< 0. The eigenvectors |e1(x0)−⟩

and |e2(x0)−⟩ span the eigenspace associated with the doubly degenerate eigenvalue λ1 =
λ2 = 2

3
, and the eigenvector |e3(x0)−⟩ is associated with λ3 = −4

3
.

We discuss the action of the isotropy subgroup G0
∼= C4 at x0 given in (130). The

isotropy subgroup is generated by

h =

 −1
1

1

 . (195)

The representation matrix of h with respect to the basis |ek(x0)+⟩ is found to be given
by

D
(3)
+ (h) =

i −i
1

 . (196)

Likewise, the representation matrix of h with respect to |ek(x0)−⟩ is given by

D
(3)
− (h) =

i 1
−i

 . (197)

The isotropy subgroup G0 at x0 acts also on the tangent plane Π0 to S2 at x0. The
Π0 is spanned by the orthonormal basis

ξ1 =

1
0
0

 , ξ2 =

0
1
0

 , (198)
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and is endowed with the Cartesian coordinates (q1, q2) through q = q1ξ1 + q2ξ2. Since
ξ1× ξ2 = x0, the tangent plane Π0 is positively oriented, where x0 in the right-hand side
is viewed as a unit normal at x0. The h action on the tangent plan is expressed, with
respect to the basis ξ1, ξ2, as

h(2) =

(
−1

1

)
. (199)

We proceed to discuss the local Hamiltonian on the tangent plane Π0, taking a curve
transverse to the degeneracy curve in the control parameter space by

c(t) =

{
(1
3

+ t, b) for a > 0,
(−1

3
+ t, b) for a < 0,

b ̸= ±1,±2, (200)

where t is restricted to a small interval |t| < ε so that the curve c(t) may not cross
the other degeneracy curves. Following the definition of the local Hamiltonian (52), and
expressing the local Hamiltonian with respect to the basis |ej(x0)+⟩ given by (193) for
a > 0, we obtain the local Hamiltonian in normal form,

Kloc(t, q;x0)+ =


4
3

+ t 0 b−1√
2

(−iq1 + q2)

0 −2
3

+ t b+1√
2

(iq1 + q2)

b−1√
2

(iq1 + q2)
b+1√

2
(−iq1 + q2) −2

3
− 2t

 . (201)

In a similar manner, with respect to the basis |ej(x0)−⟩ given by (194) for a < 0, the local
Hamiltonian in normal form is found to be written as

Kloc(t, q;x0)− =


2
3

+ t b−1√
2

(−iq1 + q2) 0
b−1√

2
(iq1 + q2)

2
3
− 2t b+1√

2
(−iq1 + q2)

0 b+1√
2

(iq1 + q2) −4
3

+ t

 . (202)

Retracting the local Hamiltonian to that on the eigenspace associated with the de-
generate eigenvalues, i.e., picking up the lower right 2 × 2 block matrix for a > 0 and
the upper left 2 × 2 block matrix for a < 0, and making respective block matrices into
traceless matrices, we obtain, in the cases of a > 0 and a < 0,

K̃
(2)
loc (t, q;x0)+ =

(
3
2
t b+1√

2
(iq1 + q2)

b+1√
2

(−iq1 + q2) −3
2
t

)
, (203)

K̃
(2)
loc (t, q;x0)− =

(
3
2
t b−1√

2
(−iq1 + a2)

b−1√
2

(iq1 + q2) −3
2
t

)
, (204)

respectively. Then, the relevant matrices are expressed as

C(K+) =

3
2

0 0
0 0 b+1√

2

0 − b+1√
2

0

 , B(K+) =

(
0 b+1√

2

− b+1√
2

0

)
, (205)
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C(K−) =

3
2

0 0
0 0 b−1√

2

0 b−1√
2

0

 , B(K−) =

(
0 b−1√

2
b−1√

2
0

)
. (206)

Since detB(K±) ̸= 0 and since detC(K+) = 3
2

(
b+1√

2

)2
> 0 for a > 0, b ̸= −1,

detC(K−) = −3
2

(
b−1√

2

)2
< 0 for a < 0, b ̸= 1,

(207)

we find from (107) that

∆+c(x0) =

{
−1 for a > 0, b ̸= −1,
+1 for a < 0, b ̸= 1,

(208)

It then follows from (118) and (120) with #Ox0 = 6 that the delta-Chern accompanying
the variation of the parameter t from the t < 0 side to the t > 0 side is given by

−→
∆c(Ox0) =



#Ox0

∆0c(x0)
∆+c(x0)
∆−c(x0)

 =

 0
−6
6

 for a > 0, b ̸= −1,

#Ox0

∆+c(x0)
∆−c(x0)
∆0c(x0)

 =

 6
−6
0

 for a < 0, b ̸= 1.

(209)

We need remarks similar to those made in the preceding two subsections. In spite
of our earlier assumption in (200), the formula (209) is valid for (a, b) = (1

3
, 2), (−1

3
,−2)

and for (a, b) = (1
3
, 1), (−1

3
,−1). However, for (a, b) = (1

3
, 2), (−1

3
,−2), we have to take

into account the formula (167) at the same time, and for (a, b) = (1
3
, 1), (−1

3
,−1), the

formula (192) at the same time. For the exclusive points (a, b) = (1
3
,−1), (−1

3
, 1), we have

rankC(K+) = 1, rankC2(K+) = rankB(K+) = 0, and rankC(K−) = 1, rankC2(K−) =
rankB(K−) = 0, respectively. In these cases, the linearization method fails.

10.6 Delta-Chern and Chern diagrams

From (167), (192), (209), we have the delta-Chern diagram shown in Fig. 6. Blue vertical
lines represent C3 degeneracy curves (or lines). Green horizontal lines represent C4 degen-
eracy curves (or lines). Red curves represent C2 degeneracy curves. With each degeneracy
curve (the boundary of the iso-Chern domain) is associated a three-component column
giving delta-Cherns for respective eigen-line bundles with an arrow indicating the direc-

tion of the path in the control parameter space. Here, the relation
←−
∆c(Ox0) = −

−→
∆c(Ox0)

has been used, depending on which direction the change is made in the parameter t. For
example, the upper right column attached to the C2 degeneracy curve with b > 0 is of

the form
←−
∆c(Ox0) =

+12
−12

0

 = −
−→
∆c(Ox0), as is seen from (167) with b > 0.
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Figure 6: Delta-Chern diagram for the Hamiltonian (19).

Now that we have obtained the delta-Chern diagram, we can find out the iso-Chern

diagram as follows: Starting with the column of Chern numbers

+2
0
−2

 assigned to the iso-

Chern domain {(a, b) : |a| < 1
3
, |b| < 1}, which are obtained in Sec. 10.2, we consecutively

apply the delta-Chern diagram to determine the column of Chern numbers on respective

iso-Chern domains. For example, starting with the seed column

+2
0
−2

, we obtain

c(L1)
c(L′

2)
c(L′

3)

 =

+2
0
−2

+

 0
−6
+6

 =

+2
−6
+4

 , {(a, b) : |b| < 1, a >
1

3
, 3ab−b2+2 > 0}, (210)

where
←−
∆c(Ox0) =

 0
+6
−6

 given by the upper left column attached to a C4 degeneracy

curve in Fig. 6 in used in the reverse form
−→
∆c(Ox0). Eventually, we obtain the following

proposition.

Proposition 10.1 The iso-Chern diagram for the Hamiltonian (19) is shown in Fig. 7.
A column of Chern numbers is assigned to each iso-Chern domain bounded by degeneracy
curves, where the Chern numbers of the eigen-line bundle associated with the highest,
middle, and lowest eigenvalues are placed at the top, middle, and bottom of the column,
respectively.

The construction of the whole iso-Chern diagram for our present model has a simple
transformation property. The Hamiltonian (19) is subject to the following transformation
with respect to the reversing the control parameters (a, b);

H(−a,−b,x) = −H(a, b,x), (211)
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Figure 7: Iso-Chern diagram for the Hamiltonian (19).

where the overline means the complex conjugation. This equation means that changing
pair of control parameters (a, b) into (−a,−b) leads first to the overflopping of the band
(energy level) order i.e., a band with highest energy becomes a band with lowest energy
and vice versa, whereas a band with middle energy remains a middle energy band, and
second, to the inversion of the Chern numbers for all bands caused by complex conjugation.

10.7 Adding higher order terms to the initial Hamiltonian

As we have already discussed, there are two special points (a, b) = (1
3
,−1), (−1

3
, 1) in

Fig. 5, at which three degeneracy curves simultaneously cross. As was already observed,
for these points, respective local Hamiltonians K̃

(2)
loc (t, q;x0) have degeneracy points ev-

erywhere on the tangent plane Π0 for t = 0. This conspicuous feature comes from a
similar feature of the degeneracy points for the full Hamiltonian. In fact, the set of cor-
responding degeneracy points is shown to be the whole sphere. As is easily seen, for
(a, b) = (1

3
,−1), (−1

3
, 1), the characteristic equations become independent of x ∈ S2 and

are given by

λ3 − 4

3
λ2 +

16

27
= 0, λ3 − 4

3
λ2 − 16

27
= 0, (212)

respectively. Hence, the respective eigenvalues are {−4
3
, 2
3
, 2
3
} and {−2

3
,−2

3
, 4
3
}, indepen-

dently of x ∈ S2. This means that the corresponding degeneracy points are all the points
of the sphere. In this sense, the model Hamiltonian (19) is not generic one.

We can dissolve the triple crossing by adding basis polynomials of degree three to the
Hamiltonian (19) in the manner that

H(x) + c

 0 iz(z2 − 3
5
r2) −iy(y2 − 3

5
r2)

−iz(z2 − 3
5
r2) 0 ix(x2 − 3

5
r2)

iy(y2 − 3
5
r2) −ix(x2 − 3

5
r2) 0

 , (213)

where r2 = x2+y2+z2 = 1, and where c is another control parameter. For the Hamiltonian
(213), the control parameter space becomes R3 = {(a, b, c)}, and then the degeneracy
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points form two-dimensional surfaces which are the boundary of iso-Chern domains. By
setting c = const, for example c = 1

2
, we restrict the control parameter space to a two-

dimensional control parameter space, in which we obtain degeneracy curves forming the
boundaries of iso-Chern domains. From the distant point of view, the new degeneracy
curves look similar to those given in Fig. 5, but are different from the initial ones in the
vicinities of (a, b) = (−1

3
, 1), (1

3
,−1). In fact, the triple intersections of degeneracy curves

disappear and regular intersections of two degeneracy curves come out.
The delta-Chern formula can be applied for the Hamiltonian (213) with c = 1

2
to yield

Fig. 8, in which the vicinity of the point (a, b) = (−1
3
, 1) is zoomed in.
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Figure 8: A part of the Chern diagram for the Hamiltonian (213) with c = 1
2

is zoomed
in.

11 The two-level model revisited

The delta-Chern formula (107) may be applied to the two-level system treated in Sec. 5.
For this system, we have two types of degeneracy points, (a, b) = (±1, 0), (0,±1), on
the reduced control parameter space, the unit circle a2 + b2 = 1. The former points
(±1, 0) are called C3 degeneracy points and the latter C1 degeneracy points, since the
former have the corresponding degeneracy points at each of which the isotropy subgroup
is isomorphic to C3 and the latter have the corresponding degeneracy points at each of
which the isotropy subgroup is C1 in general. We will encounter the case where we have
to use the extended local-Chern formula discussed in Sec. 8.3. Using this model as an
example, we also show that the appearance of exceptional points depends on the choice
of a basis with respect to which the Hamiltonian is expressed but the Chern number is
independent of the appearance of exceptional points.
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11.1 Delta-Chern in crossing C3 degeneracy points

At a C3 degeneracy point x0, the Hamiltonian (28) is evaluated as

H(x0) =

(
0 − ib

3
√
3

ib
3
√
3

0

)
, x0 =


1√
3
1√
3
1√
3

 . (214)

The eigenvalues of H(x0) are µ = ± b
3
√
3
. When b = 0, these eigenvalues are degenerate,

and H(x0) becomes a zero matrix, so that any linearly independent vectors serve as
associated eigenvectors. In order to find a suitable choice of eigenvectors, we try to take
normalized eigenvectors associated with

µ1 =
b

3
√

3
, µ2 = − b

3
√

3
, (215)

which are found to be given by

|e1(x0)⟩ =
1√
2

(
−i
1

)
, |e2(x0)⟩ =

1√
2

(
i
1

)
, (216)

respectively. Since these eigenvectors are independent of b, we are allowed to take them
as basis vectors of the eigenspace associated with the degenerate eigenvalue for b = 0.

We now treat the action of the isotropy subgroup at the degeneracy point x0. The
isotropy subgroup at x0 is isomorphic with C3, and generated by h given in (173). In
the two-dimensional irreducible representation of the total group O, the h is known to be
represented as

D(h) =

(
−1

2

√
3
2

−
√
3
2
−1

2

)
. (217)

As is easily verified, the representation matrix of h is put with respect to the basis |e1(x0)⟩
and |e2(x0)⟩ in the form

D̃(h) =

(
e2πi/3

e−2πi/3

)
. (218)

We now consider the action of the h ∈ C3 on the tangent plane Π0 to S2 at x0. The
frame ξk is the same as given in (179), and the representation matrix of h with respect
to the basis ξk is given by (180).

We proceed to the local Hamiltonian on the tangent plane Π0, taking the curve in the
control parameter space,

c(t) = (1, t), (219)

which is viewed as a tangent line to the unit circle a2 + b2 = 1 at (a, b) = (1, 0). The local
Hamiltonian expressed with respect to the basis |ek(x0)⟩ given in (216) is written out as

Kloc(t, q;x0) =

(
t

3
√
3

−2
√

2i(q1 − iq2)
2
√

2i(q1 + iq2) − t
3
√
3

)
, (220)
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which is in normal form. The relevant matrices are

C(K) =

 1
3
√
3

0 0

0 0 −2
√

2

0 2
√

2 0

 , B(K) =

(
0 −2

√
2

2
√

2 0

)
. (221)

Since detB(K) ̸= 0, and since detC(K) = 8
3
√
3
> 0, one has, from (107),

∆+c(x0) = −1. (222)

Since #Ox0 = 8, we obtain, from (110),

∆+c(Ox0) = −8. (223)

As is seen in Fig. 1, this explains the delta-Chern observed when passing the degeneracy
point (a, b) = (1, 0) from the t < 0 side to the t > 0 side; c(L′

1)− c(L1) = ∆+c(Ox0) with
c(L′

1) = −4 and c(L1) = 4.

11.2 Delta-Chern in crossing C1 degeneracy points

We take the degeneracy point (a, b) = (0, 1) and the tangent line

c(t) = (t, 1) (224)

to the unit circle a2 + b2 = 1 at (a, b) = (0, 1). The corresponding degeneracy points on
the sphere S2 have been given in (32). We take a degeneracy point x0 sitting on the circle
x2 + y2 = 1 but away from the orbits of type Cr, r = 4, 2,

x0 =

cosφ
sinφ

0

 , φ ̸= k
π

4
, k = 0, 1, 2, . . . , 7. (225)

The isotropy subgroup at x0 is trivial, that is, isomorphic to C1. The Hamiltonian
evaluated at x0 is then written as

H(x0) =

(
−t

√
3t cos 2φ√

3t cos 2φ t

)
. (226)

We choose the frame ξk at x0 as follows:

ξ1 =

− sinφ
cosφ

0

 , ξ2 =

0
0
1

 . (227)

This frame is positively oriented, since ξ1 × ξ2 = x0, where the x0 in the right-hand side
is viewed as the outgoing unit normal at x0 ∈ S2.

The local Hamiltonian is now given by

Hloc(t, q;x0) =

(
−t

√
3t cos 2φ− 1

2
i sin 2φ q2√

3t cos 2φ+ 1
2
i sin 2φ q2 t

)
. (228)
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Since the isotropy subgroup is trivial, this local Hamiltonian is already in normal form,
so that H̃loc = K̃loc. The relevant matrices are expressed as

C(K) =

 −1 0 0√
3 cos 2φ 0 0

0 0 1
2

sin 2φ

 , B(K) =

(
0 0
0 1

2
sin 2φ

)
, φ ̸= k

π

4
, (229)

where rankC(K) = 2 and rankB(K) = 1. Further, since

rank

(√
3 cos 2φ 0 0

0 0 1
2

sin 2φ

)
> rank

(
0 0
0 1

2
sin 2φ

)
, (230)

the inequality (108) is satisfied, so that no exceptional point appears for t ̸= 0. Hence,
we conclude that

∆+c(x0) = − detC(K) = 0, (231)

which explains the delta-Chern observed when passing the degeneracy point (a, b) = (0, 1)
from the t < 0 side to the t > 0 side; c(L′

1) − c(L1) = ∆+c(Ox0) with c(L′
1) = −4 and

c(L1) = −4.
We here make a comment on the fact that the degeneracy point is not isolated. Al-

though the set of degeneracy points is not a finite set but a continuum, it is a disjoint
union of finite sets from a viewpoint of orbits,

⊔
0<φ<π

4

∪
g∈O

{
g

cosφ
sinφ

0

}. (232)

For this reason, we are allowed to consider a degeneracy point x0 irrespective of the other
degeneracy points in order to discuss the delta-Chern.

To make the present discussion on the delta-Chern complete, we have to treat the
embedded degeneracy points, which correspond to φ = k π

4
. We take a degeneracy point

x0 =

1
0
0

 , (233)

which corresponds to φ = 0. The isotropy subgroup at the present x0 is generated by

h =

1
−1

1

 , (234)

and its representation matrix with respect to the E representation takes the from

D(h) =

(
−1

2
−

√
3
2

−
√
3
2

1
2

)
. (235)

From (228) with φ = 0, the local Hamiltonian is given by

Hloc(t, q;x0) =

(
−t

√
3t√

3t t

)
. (236)
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To put this local Hamiltonian in normal form, we take a new basis forming the unitary
matrix

U2 =

(
1
2

√
3
2

−
√
3
2

1
2

)
. (237)

Then, we obtain the local Hamiltonian in normal form

Kloc(t, q : x0) =

(
−t −

√
3t

−
√

3t t

)
. (238)

The relevant matrices are then expressed as

C(K) =

 −1 0 0

−
√

3 0 0
0 0 0

 , B(K) =

(
0 0
0 0

)
. (239)

Since the inequality (108) is satisfied, there is no exceptional point for t ̸= 0. Hence, the
delta-Chern vanishes, as is expected.

We turn to anther degeneracy point x0 = ( 1√
2
, 1√

2
, 0), which was treated in Sec. 10.3.

A generator of the isotropy subgroup at x0 and its representation matrix are given by

h =

 1
1

−1

 , D(h) =

(
1
−1

)
, (240)

respectively. Since D(h) is already of diagonal form, the local Hamiltonian given in (228)
with φ = π

4
provides the local Hamiltonian in normal form,

Kloc(t, q;x0) =

(
−t − i

2
q2

i
2
q2 t

)
. (241)

The relevant matrices are then expressed as

C(K) =

−1 0 0
0 0 0
0 0 1

2

 , B(K) =

(
0 0
0 1

2

)
. (242)

Because of the existence of a continuum of exceptional points q2 = 0, the linearization
method says nothing about the delta-Chern, where rankC2(K) = rankB(K) = 1 and then
the inequality (108) is not satisfied.

11.3 Basis dependence of the appearance of exceptional points

In Sec. 11.1, we have taken the basis (216) in putting the local Hamiltonian in normal
form. We are now interested in treating the full Hamiltonian expressed with respect to
this basis, which is written as

K(x) =

(
bϕ3 −a(ϕ1 − iϕ2)

−a(ϕ1 + iϕ2) −bϕ3

)
, (243)
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where we have used the symbol K in order to indicate that the basis (216) has been
adopted. The degeneracy points in the control parameter space and those on the sphere
S2 are, of course, the same as those for the initial Hamiltonian H(x) (see Prop. 5.1 and
(31)). As for exceptional points, if a ̸= 0, they are determined by and assigned to the
“up” and “down” eigenvectors according to

ϕ1 = ϕ2 = 0, bϕ3 > 0, (244a)

ϕ1 = ϕ2 = 0, bϕ3 < 0, (244b)

respectively. It then turns out that if b > 0 the exceptional points assigned to the “up”
eigenvector associated with the positive eigenvalue λ+ are only

e+
1 =


1√
3
1√
3
1√
3

 , e+
2 =

−
1√
3

− 1√
3

1√
3

 , e+
3 =

−
1√
3

1√
3

− 1√
3

 , e+
4 =


1√
3

− 1√
3

− 1√
3

 , (245)

and the exceptional points assigned to the “down” eigenvector associated with the λ+.
are only

e−
1 =

−
1√
3

− 1√
3

− 1√
3

 , e−
2 =

−
1√
3

1√
3
1√
3

 , e−
3 =


1√
3

− 1√
3

− 1√
3

 , e−
4 =


1√
3
1√
3

− 1√
3

 . (246)

If b < 0, the {e−
j }4j=1 are assigned to the “up” eigenvector and the {e+

j }4j=1 to the “down”
eigenvector. The manifestation of the exceptional points {e+

j }4j=1 or {e−
j }4j=1 for K(x)

is in marked contrast with that of {n±} or {a±, b±} for H(x) (see (35)). Thus, the
appearance of exceptional points depends on the choice of the bases with respect to
which the Hamiltonian is expressed. We note in addition that each of {e+

j }4j=1 and
{e−

j }4j=1 is the orbit of the tetrahedral group (the group of rotational symmetries of a
regular tetrahedron), a subgroup of the octahedral group.

The Chern number can be found by evaluating the winding number assigned to each
of the exceptional points {e+

j }4j=1 or to each of {e−
j }4j=1, like (47). Among the exceptional

points {e+
j }4j=1 to be assigned to the “up” eigenvector for b > 0, we pick up e+

1 , which is
the same as x0 given in (214). We adopt the linearization method explained in Sec. 5.2.
We then look at the local Hamiltonian (220) with t replaced by b. From this Hamiltonian,
we can obtain the winding number assigned to e+

1 . Since the constant factor is irrelevant
to the winding number, we see from the (1, 2) component of (220) that the quantity q1−iq2
determines the winding number together with the orientation convention of a small circle
centered at e+

1 . Since the orientation of the circle is clockwise for the exceptional point of
the “up” eigenvector, the winding number in question is +1, and hence the Chern number
contribution from e+

1 is −1. The same calculation can apply to all of {e+
j }4j=1, and hence

we find that the Chern number for b > 0 and a ̸= 0 is −4.
We now pick up the point e−

2 , which we denote by x′
0. The x0 and x′

0 are related by

x′
0 = gx0, g =

 −1
1

1

 . (247)
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In the E representation of the O group, the representation matrix of g is written as

D(g) =

(
1
−1

)
. (248)

We take the basis |ek(x′
0)⟩ and the frame ξ′k on the tangent plane Πx′

0
as

|ek(x′
0)⟩ = D(g)|ek(x0)⟩, ξ′k = gξk, (249)

respectively. Then, the local Hamiltonian in normal from at x′
0 is the same as (220);

Kloc(t, q;x
′
0) = Kloc(t, q;x0) with t replaced by b. For b < 0, the exceptional point x′

0

is assigned to the “down” eigenvector. Hence, the small circle centered at x′
0 is oriented

anticlockwise. With this orientation taken into account, the winding number assigned
to x′

0 is determined by q1 − iq2 from the (1, 2)-component of Kloc(t, q;x
′
0), which is −1.

Hence, the Chern number contribution from e−
2 is +1. The same calculation can apply

to all of {e−
j }4j=1, and thereby the Chern number for b < 0 and a ̸= 0 is +4. Thus we

have obtained again Fig. 1 by following the same method as in Sec. 5.2 with exceptional
points other than those adopted in Sec. 5.2.

Summing up the above discussion, we obtain the following tables on calculation of the
Chern number for the eigen-line bundle associate with the positive eigenvalue λ+;

“up” b < 0 b > 0
{e+

j }4j=1

{e−
j }4j=1

Chern no. +4 − 4

“down” b < 0 b > 0
{e+

j }4j=1

{e−
j }4j=1

Chern no. +4 − 4

(250)

Here, for example, the symbol means that for b < 0 the points in the
leftmost column are not assigned as exceptional points but assigned for b > 0. Thus, the
availability of the linearization at an exceptional point depends on the choice of the basis
with respect to which the Hamiltonian is expressed.

11.4 Basis dependence of the local Hamiltonian

We here recall that detC(K) is an invariant, but not so is detB(K). Though the delta-
Chern formula is independent of detB(K), we are interested in basis dependence of
detB(K), which leads to a better understanding of the (t, q1, q2) space.

We now return to the local Hamiltonian (220), which is in normal form. In contrast
with this, the local Hamiltonian

Hloc(t, q;x0) =

(
2
√

2q2 −2
√

2q1 − i t
3
√
3

−2
√

2q1 + i t
3
√
3

−2
√

2q2

)
, (251)

which is expressed with respect to the standard basis, is not in normal form. The relevant
matrices to this local Hamiltonian are written as

C(H) =

 0 0 2
√

2

0 −2
√

2 0
1

3
√
3

0 0

 , B(H) =

(
−2
√

2 0
0 0

)
. (252)
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For B(H), we have detB(H) = 0, and thereby the quantity corresponding to (98) makes
no sense. A question now arises as to whether the local delta-Chern formula (107), which
has been obtained on the assumption that detB(K) ̸= 0, is available even if detB(H) = 0
or not. We infer that the delta-Chern formula should hold, since detC(H) = detC(K)
and since the formula is independent of detB(K).

For the local Hamiltonian (251), the degeneracy point is given by q1 = q2 = t = 0. If we
formally apply the procedure (25), we conclude that the exceptional points determined
by t = 0, q1 = 0 for the positive eigenvalue of (251) are assigned to “up” or “down”
eigenvectors according as q2 > 0 or q2 < 0. However, this conclusion sounds strange.
In fact, although the exceptional points of the eigenvector for the full Hamiltonian are
isolated points, which are given by (35), the exceptional points in question form a half
line on the (q1, q2) plane. It then seems that the local Hamiltonian (251) fails to work for
the delta-Chern formula.

We now show that this discrepancy comes from our interpretation of the coordinates
(t, q1, q2). We think of t as a control parameter and of (q1, q2) as locally-defined dynamical
variables. This interpretation is reasonable from the physical point of view. However,
we have to be reminded of the fact that a change of basis with respect to which the
Hamiltonian is expressed gives rise to a rotation on the (t, q1, q2) space, which is shown
in (81). This implies that the distinguishing of (q1, q2) from t is a concept depending on
the choice of bases. With the basis (216), we associated the unitary matrix

U2 =
1√
2

(
−i i
1 1

)
. (253)

Then, two expressions of the local Hamiltonian are related by

U−1
2 Hloc(t, q;x0)U2 = Kloc(t, q;x0). (254)

The induced rotation h = (hjk) defined through U−1
2 σ′

jU2 =
∑

k hkjσ
′
k has the represen-

tation matrix

h =

 1
−1

−1

 , (255)

which transforms the set of seemingly strange exceptional points {(0, 0, τ); τ > 0} for the
“up” eigenvector of Hloc(t, q;x0) into the set of reasonable exceptional points {(τ, 0, 0); τ >
0} for the “up” eigenvector of Kloc(t, q;x0). Hence, we are allowed to say that we choose
to use the local Hamiltonian in normal form in search for the delta-Chern in order to
make distinct the difference between the physical variables and the control parameter.

12 A case study for triply degenerate eigenvalues

So far we have treated doubly degenerate eigenvalues and obtained the delta-Chern for-
mula accompanying the crossing of a degeneracy curve corresponding to doubly degenerate
eigenvalues.
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We now wish to observe what happens in the delta-Chern formula if triple degeneracy
occurs in eigenvalues, by using a model Hamiltonian. The model Hamiltonian we take up
here is given by

H(x) =

 0 −iZ iY
iZ 0 −iX
−iY iX 0

 , x ∈ S2 ⊂ R3, (256)

where X, Y, Z are functions defined to be

X =ax+ bx(x2 − 3

5
r2), (257a)

Y =ay + by(y2 − 3

5
r2), (257b)

Z =az + bz(z2 − 3

5
r2), (257c)

respectively, where r2 = x2+y2+z2, and where a, b are real parameters with (a, b) ̸= (0, 0).
The constraint r = 1 is imposed, of course. This Hamiltonian is a special one from (213).

As is easily verified, the eigenvalues of H(x) are λ = 0,±R with R2 = X2 + Y 2 + Z2,
so that degeneracy occurs if and only if R = 0, which provides degeneracy points, 0

0
±1

 ,

 0
±1
0

 ,

±1
0
0

 , if and only if
a

2
= − b

5
. (258)

 0
± 1√

2

± 1√
2

 ,

± 1√
2

0
± 1√

2

 ,

± 1√
2

± 1√
2

0

 , if and only if
a

1
=

b

10
. (259)

±
1√
3

± 1√
3

± 1√
3

 , if and only if
a

4
=

b

15
. (260)

Though this Hamiltonian is a three-level model, the eigenvalue problem is easy to solve
because of the existence of zero eigenvalue. The Chern numbers of respective eigen-line
bundles can be calculated in a manner similar to that used in Sec. 5. Without detail
calculation for Chern numbers, we here give a result on Chern numbers.

Proposition 12.1 The parameter space R2−{0} for the O-invariant Hamiltonian (256)
reduces to the unit circle. In association with the positive eigenvalue λ+ = R, an eigen-
line bundle is determined on each arc between consecutive degeneracy points on the unit
circle. The Chern numbers c+ assigned to respective iso-Chern domains (or arcs) are
shown in Fig. 9.

In what follows, we give a sketch of calculation for Chern numbers of the eigen-line
bundle associated with the positive eigenvalue λ+, along the tangent line (a, b) = (1, ε) to
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6

a

b

c+ = −2

c+ = 10

c+ = 14c+ = −10

c+ = 2

c+ = −14

Figure 9: Chern numbers c+ of the eigen-line bundle associated with the positive eigen-
value are assigned to arcs separated by degeneracy points.

the unit circle at (a, b) = (1, 0). The Chern number contribution from exceptional points
for the “up” eigenvector is given in the following table;

ε −5
2

5
3

15
4

10

n
(+)
± + deg(C4) − − − − − − −

a
(+)
±j + deg(C4) (empty) (empty) + + + deg(C2) −

b
(+)
±j + deg(C4) (empty) (empty) + + + deg(C2) −

c
(+)
±k (empty) (empty) (empty) (empty) − deg(C3) + deg(C2) (empty)

Ch.no 10 non-def −2 −2 −2 non-def 14 non-def −10

Here, the symbols n
(+)
± etc. in the leftmost column stand for exceptional points, which

we do not describe explicitly. The superscript (+) indicates that those exceptional points

are assigned to the “up” eigenvector. The subscripts j and k of a
(+)
±j , b

(+)
±j , c

(+)
±k range from

1 to 2 and from 1 to 4, respectively. The signs ± in the subscript of a
(+)
±j , etc, indicate the

sign of the z-component of each exceptional point, and hence a
(+)
±j denote four points, etc.

The signs ± in the table stand for the Chern number contribution from the exceptional
points listed in the leftmost column of the table, where + (resp. −) means that +1
(resp. −1) is assigned to each exceptional point. Although the signs ± are alloted in the
columns below ε = 15

4
and ε = 10, which seems to assign a Chern number contribution

from exceptional points, no Chern number is defined at ε = 1
4

and ε = 10 because of the
existence of degeneracy points.

We observe from this table that there are special values of the parameter ε at which
exceptional points changes their character.
(i) At ε = −5

2
, the exceptional points n

(+)
± become degeneracy points and then return to

exceptional points of different character for ε > −5
2
, and further the exceptional points

a
(+)
±j and b

(+)
±j change into degeneracy points, forming an O-orbit of type C4 together with

n
(+)
± , and then vanish for ε > −5

2
(see Fig. 10);
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n
(+)
± =

 0
0
±1

 , a
(+)
±j →

 0
±1
0

 , b
(+)
±j →

±1
0
0

 , j = 1, 2. (261)
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the equator

Figure 10: As ε → −5
2
, the exceptional points a

(+)
±j and b

(+)
±j are getting together to be

degeneracy points and then to vanish pairwise for ε > −5
2
.

(ii) When the parameter ε passes the value ε = 5
3
, the exceptional points a

(+)
±j , b

(+)
±j , and

c
(+)
±k branch off from the north and south poles (see Fig. 11).
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+1

Figure 11: When the parameter value passes ε = 5
3

upward, new exceptional points a
(+)
+j ,

b
(+)
+j , and c

(+)
+k branch off from the north pole n

(+)
+ .

(iii) The exceptional points n
(+)
± , a

(+)
±j , and b

(+)
±j remains to be exceptional at ε = 15

4
, but

the exceptional points c
(+)
±k become degeneracy points at ε = 15

4
, forming an O-orbit of

type C3;

a
(+)
±j =

 0
± 1√

3

±
√

2
3

 , b
(+)
±j =

±
1√
3

0

±
√

2
3

 c
(+)
±k =

±
1√
3

± 1√
3

± 1√
3

 for ε =
15

4
. (262)
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(iv) The exceptional points a
(+)
±j , b

(+)
±j , and c

(+)
±k become degeneracy points at ε = 10,

forming an O-orbit of type C2, but the c
(+)
±k vanish for ε > 10 (see Fig. 12);

a
(+)
±j →

 0
± 1√

2

± 1√
2

 , b
(+)
±j →

± 1√
2

0
± 1√

2

 , c
(+)
±k →

± 1√
2

± 1√
2

0

 . (263)
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Figure 12: As ε → 10, the exceptional points c
(+)
±k are getting together pairwise, and

vanish for ε > 10.

Since the Chern number of the eigen-line bundle associated with the negative eigen-
value λ− is minus that of the eigen-line bundle associated with the positive eigenvalue
λ+, and the Chern number of the eigen-line bundle associated with the zero eigenvalue
is always zero, the Chern number variation along the circle (a, b) = (cos θ, sin θ) is now
summarized in Fig. 13.

-

−2 14 −10 2 −14 10 −2

2 −14

14

10 −2 14 −10 2

0 0 0 0 0 0 0

C4C2C3C4C2C3

λ1 = R

λ2 = 0

λ3 = −R

θ = 0 θ = 2π

Figure 13: Chern number variation for the Hamiltonian (256)

Fig. 13 shows that the amount of the change in Chern numbers which is observed
when the control parameter passes each degeneracy point is twice the order of the orbit,
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2#(O/Ck), k = 2, 3, 4, or twice the number of degeneracy points, up to the sign. If the
number #(O/Ck) is assigned to a degeneracy point of multiplicity two, twice the number
#(O/Ck) is assigned to the triple degeneracy point up to sign. A possible explanation
of this fact is that since the triple crossing of the energy levels is considered as the
simultaneous occurrence of three double crossings of the levels, the total delta-Chern is
evaluated as the sum of contributions from all crossings:+∆c

−∆c
0

+

+∆c
0
−∆c

+

 0
+∆c
−∆c

 =

+2∆c
0

−2∆c

 , (264)

where |∆c| = #(O/Ck).

13 A relation to the Berry phase

So far we have mainly treated 3 × 3 Hermitian matrices depending on the control pa-
rameters (a, b) and on the variable x ∈ S2. The dimension of the total parameter space
R2 × S2 is four. We note here that the distinction between the dynamical variables and
the control parameters is made by the symmetry group action; the symmetry group acts
on the dynamical variables but not on the control parameters.

If we don’t care about the distinction between the control parameters and the physical
variables, nor about the topology of the set of physical variables, we are allowed to think
of the Hamiltonian as depending on parameters in R4. We now suppose that the Hamil-
tonian is not restricted to two- or three-level model ones but it has doubly degenerate
eigenvalues which are so far from the other eigenvalues that the eigenspace associated with
degenerate eigenvalues can be treated separately. Since the codimension for the doubly
degenerate eigenvalues is three for Hermitian matrices, there is a degeneracy curve in the
parameter space R4, which we denote by c(s) ∈ R4. Further, we denote by |ek(c(s))⟩ the
orthonormalized eigenvectors associated with degenerate eigenvalues λk(c(s)), k = 1, 2.
Then, we have

λ1(c(s)) = λ2(c(s)). (265)

and
H(c(s))|ek(c(s))⟩ = λk(c(s))|ek(c(s))⟩, ⟨ek(c(s))|ej(c(s))⟩ = δkj, (266)

where the symbol ⟨·|·⟩ stands for the inner product on the Hilbert space concerned.
We assume that |ek(c(s))⟩ and λk(c(s)) are smooth in s. Differentiating the eigenvalue

equation with respect to the parameter s, we obtain

dH(c(s))

ds
|ek(c(s))⟩+H(x(s))

d|ek(c(s))⟩
ds

=
dλk(c(s))

ds
|ek(c(s))⟩+ λk(c(s))

d|ek(c(s))⟩
ds

.

(267)
Taking the inner product of the above equation and the eigenvector |ej(c(s)⟩, and using
the fact that λ1 = λ2, we obtain⟨

ej(c(s))

∣∣∣∣dH(c(s))

ds

∣∣∣∣ ek((s))
⟩

=
dλk(c(s))

ds
δjk. (268)
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Let us denote by ∇H the matrix each of whose entries is the gradient of the entry of H
concerned; ∇H = (∇Hℓm) with H = (Hℓm). Then, one has⟨

ej(c(s))

∣∣∣∣dH(c(s))

ds

∣∣∣∣ ek(c(s))
⟩

= ⟨ej(c(s))|∇H(c(s))|ek(c(s))⟩ · dc(s)

ds
, (269)

where the center dot stands for the inner product on C4, which is formally extended from
that on R4. In particular, for (j, k) with j ̸= k, we have, from the above equations,

⟨ej(c(s))|∇H(c(s))|ek(c(s))⟩ · dc(s)

ds
= 0, (270)

and for (j, k) with j = k,

⟨e1(c(s))|∇H(c(s))|e1(c(s))⟩ · dc(s)

ds
− ⟨e2(c(s))|∇H(c(s))|e2(c(s))⟩ · dc(s)

ds

=
dλ1(c(s))

ds
− dλ2(c(s))

ds
= 0. (271)

This implies that the vectors

ℜ⟨ej(c(s))|∇H(c(s))|ek(c(s))⟩, ℑ⟨ej(c(s))|∇H(c(s))|ek(c(s))⟩, (272a)

1

2

(
⟨e1(c(s))|∇H(c(s))|e1(c(s))⟩ − ⟨e2(c(s))|∇H(c(s))|e2(c(s))⟩

)
(272b)

are orthogonal to the tangent vector
dc(s)

ds
to the curve c(s), where (j, k) = (1, 2), (2, 1).

In order to consider the Hamiltonian evaluated at points different from the degeneracy
curve c(s), we fix the parameter s at s0 for the time being and set c(s0) = c0. We further
set

aξ =
1

2

(
⟨e1(c0)|∇H(c0)|e1(c0)⟩ − ⟨e2(c0)|∇H(c0)|e2(c0)⟩

)
, (273a)

bη = ⟨e1(c0)|∇H(c0)|e2(c0)⟩, (273b)

where a and b are introduced so as to make ξ and η have the unit length. We here suppose
that the ξ, η, and η span the plane Π0 orthogonal to the curve c(s) at c(s0) = c0 on the
identification Π0

∼= R3 ∼= R × C. Let ζ be a vector sitting in the plane Π0 and ε denote
an infinitesimal parameter. Then, on setting r = c0 + εζ, we obtain, by differentiation
and arrangement,

1

2

(
⟨e1(c0)|H(r)|e1(c0)⟩ − ⟨e2(c0)|H(r)|e2(c0)⟩

)
= εaξ · ζ, (274a)

⟨e1(c0)|H(r)|e2(c0)⟩ = εbη · ζ. (274b)

Further, setting

µ(r) =
1

2

(
⟨e1(c0)|H(r)|e1(c0)⟩+ ⟨e2(c0)|H(r)|e2(c0)⟩

)
, (275)
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we have
µ(r) = µ(c0) + ε∇µ(x0) · ζ. (276)

We are now in a position to express the Hamiltonian H(r) evaluated approximately on
the plane Π0. From (274) and (276), it follows that

⟨e1(c0)|H(r)|e1(c0)⟩ = µ(c0) + ε∇µ(c0) · ζ + εaξ · ζ, (277a)

⟨e2(c0)|H(r)|e2(c0)⟩ = µ(c0) + ε∇µ(c0) · ζ − εaξ · ζ, (277b)

⟨e1(c0)|H(r)|e2(c0)⟩ = εbη · ζ. (277c)

Then the Hamiltonian evaluated at r = c0 + εζ ∈ Π0 and restricted to the eigenspace
spanned by the eigenvectors |ek(c0)⟩, k = 1, 2, is expressed as

H(r) =
(
µ(c0) + ε∇µ(c0) · ζ

)(1 0
0 1

)
+ ε

(
aξ · ζ bη · ζ
bη · ζ −aξ · ζ

)
. (278)

If we consider that the plane Π0 carries the dynamical variables only, we may introduce
the coordinates (q0, q1, q2) on the plane Π0 by setting

q0 = aξ · ζ, q1 − iq2 = bη · ζ, (279)

where we have paid little attention to the orientation of the coordinate system. Then,
from the second term of the right-hand side of (278), we obtain a local Hamiltonian with
vanishing trace in the form (

q0 q1 − iq2
q1 + iq2 −q0

)
. (280)

The eigenvectors of this Hamiltonian are defined only locally on the tangent plane Π0, and
the locally defined eigenvectors, which we have called “up” and “down” eigenvectors so
far, are put together to form an eigen-line bundle. This Hamiltonian has been extensively
discussed since Berry [21, 22].

If we consider that the plane Π0 carries one control parameter and two dynamical
variables, we may denote them by (t, q1, q2) in place of (q0, q1, q2), where we suppose
that an isotropy subgroup of the symmetry group acts on (q1, q2). However, as the two-
dimensional subspace for the dynamical variables (q1, q2) don’t need to be the same as
those given in (280), the local Hamiltonian with vanishing trace may take the form of
(83), after a linear transformation of (t, q1, q2).

In a typical case, we have the local Hamiltonian, in place of (280),

H(t, q) =

(
t q1 − iq2

q1 + iq2 −t

)
, (281)

for which the evolution of eigenvalues against t is depicted in Fig. 4. We now discuss this
Hamiltonian from the view point of Berry phase. The eigenvalues are given by

λ± = ±
√
t2 + |q|2, |q|2 = q21 + q22, (282)

The “up” eigenvector associated with λ+ is expressed as

|u+up(t, q)⟩ =
1

Nup

(
q1 − iq2√
t2 + |q|2 − t

)
, Nup =

√
2
(
t2 + |q|2 − t

√
t2 + |q|2

)
. (283)
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The exceptional point is the origin q = 0, which is assigned to |u+up(t, q)⟩ for t > 0 only.
We now consider the parallel translation of the vector

|v(τ)⟩ = eiθ(τ)|u+up(t, q(τ))⟩ (284)

along a circle q1 + iq2 = ρeiτ with ρ > 0, where t is fixed. Let

P = |u+up(t, q)⟩⟨u+up(t, q)| = |u+down(t, q)⟩⟨u+down(t, q)|, q ̸= 0, (285)

be the projection operator. Then, the vector |v(τ)⟩ parallel translates along the curve
q1 + iq2 = ρeiτ , if and only if

P
d

dτ
|v(τ)⟩ = |u+up(t, q(τ))⟩ieiθ

(dθ
dt
− ρ2

N2
up

)
= 0, ρ = |q|. (286)

Hence, after completing the parallel translation along the closed curve q1+ iq2 = ρeiτ with
0 ≤ τ ≤ 2π, the phase of the section |v(τ)⟩ of the eigen-line bundle associated with λ+

has increased by the angle
2πρ2

N2
up

, |q| = ρ > 0, (287)

which is viewed as a Berry phase.
If the parameter space is Rm with m ≥ 4, the curve c(s) is viewed as a curve sitting

in the degeneracy surface (or submanifold) determined by the degeneracy condition. The
variation vector r = c0+εζ sitting in the plane Π0 orthogonal to the degeneracy curve c(s)
at c0 has components some of which are tangent to the degeneracy surface and the others
normal to the degeneracy surface. In order to observe transition states accompanying
the crossing of the boundary (or degeneracy surface), we choose to use the coordinates
associated with the normal components, in forming a linearized Hamiltonian from (278).
Then, like (280), we obtain a linear Hamiltonian described in terms of the local coordinates
qj associated with transverse directions.

14 Possible extensions of delta-Chern analysis

So far we have encountered some cases where the linearization method fails (see Sec. 8.3).
If a linearization method fails at a degeneracy point of S2, we have to reform the lineariza-
tion method, for example, by taking quadratic terms in the expansion the Hamiltonian
at a degeneracy point in terms of local coordinates. Another way of extension is to find a
way to the delta-Chern formula assigned to a degeneracy point at which eigenvalues are
triply degenerate. This section is devoted to the discussion of these extensions.

14.1 Hessian of the Hamiltonian and symmetry

We now assume that the first derivative of the Hamiltonian vanishes at a point x0. Put in
detail, for a positively oriented frame ξk on the tangent plane to S2 at x0, the derivatives
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ξk · ∇H(x0) vanish. In order to take into account the second derivatives of the Hamilto-
nian, we need to calculate the Hessian of the Hamiltonian with respect to the frame ξk.
To this end, one needs covariant derivatives of functions on the sphere.

We now start with a geodesic x(s) passing x0 at s = 0, where s is the arc length
parameter. The second derivative of a function f(x) with respect to s along x(s) is
evaluated at s = 0 to provide the definition of the Hessian of f at x0 in the form

d2

ds2
f(x(s))

∣∣∣∣
s=0

= ζ · (Hessf(x0))ζ, ζ =
dx

ds
(0), (288)

where Hessf(x0) is viewed as a linear transformation of the tangent space Tx0(S
2). The

second derivative of the function f(x) with respect to s is written out as

d2

ds2
f(x(s)) =

d2x

ds2
· ∇f(x) +

dx

ds
· ∇2⊗f(x)

dx

ds
, (289)

where ∇2⊗ denotes the operator matrix given by

∇2⊗ =


∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

 . (290)

Taking into account the geodesic equation on S2

d2x

ds2
+ x = 0, (291)

we find from (288) and (289) that the Hessian of f(x) at x0 is determined through

ζ · (Hessf(x0))ζ = −x0 · ∇f(x0) + ζ · ∇2⊗f(x0)ζ, (292)

where ζ is a tangent vector in Tx0(S
2). The Hessian in generic form is defined through

η · Hessf(x0)(ζ)

=
1

2

(
(η + ζ) · Hessf(x0)(η + ζ)− η · Hessf(x0)(η)− ζ · Hessf(x0)(ζ)

)
. (293)

The Hessian of the Hamiltonian, HessH(x0), at x0 is now defined in a similar manner
by applying the above procedure to each components of the Hamiltonian and takes values
in End(Tx0(S

2))⊗Cn×n, where End(Tx0(S
2)) indicates that each component Hesshℓm(x0)

of HessH(x0) is viewed as a linear map of the tangent space Tx0(S
2). The second-order

approximation of the full Hamiltonian at x0 is given by

H2(q;x0) :=
1

2

∑
j,k

qjqkξj · (HessH(x0))ξk =
1

2

(∑
j,k

qjqkξj · (Hesshℓm(x0))ξk

)
. (294)

Like (8), for g ∈ G ⊂ SO(3), the Hamiltonian H2(q;x0) is shown to be subject to the
transformation

H2(q; gx0) = AdD(g)H2(q;x0), g ∈ G, (295)
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if the frame gξk is adopted at gx0. The proof is easy to perform. Since g ∈ G is an
isometry of the sphere, if x(s) is a geodesic, so is gx(s). Then, the symmetry condition
H(gx(s)) = AdD(g)H(x(s)) is twice differentiated with respect to s at s = 0 to yield the
above equation. For h ∈ G0, Eq. (295) becomes

AdD(h)H2(q;x0) = H2(h
(2)q;x0), h ∈ G0, (296)

where hξk =
∑

j h
(2)
jk ξj.

As in Sec. 6.1, we here consider a one-parameter Hamiltonian H(c(t),x), but we
assume that the linear approximation fails because of ξk · ∇H(c(0),x0) = 0. However, if
HessH(c(0),x0) does not vanish, we can define the local Hamiltonian, in place of (52),
to be

Hloc(t, q;x0) = H(c(0),x0) + tḢ(c(0),x0) +
1

2

∑
k

qjqkξj · (HessH(c(0),x0))ξk. (297)

Further, we can put the Hamiltonian Hloc(t, q;x0) in normal form by taking a basis with
respect to which the isotropy subgroup at x0 is represented in a diagonal matrix form.
We denote the representation matrix by D̃(g) and the local Hamiltonian in normal form
by the same symbol Kloc(t, q;x0) as that in the case of linear approximation. Like (296),
the local Hamiltonian Kloc(t, q;x0) transforms according to

AdD̃(h)Kloc(t, q;x0) = Kloc(t, h
(2)q;x0), h ∈ G0. (298)

If we adopt the basis |ej(x′
0)⟩ := D̃(g)|ej(x0)⟩ and the frame ξ′k = gξk at x′

0 = gx0, the
local Hamiltonian at x′

0 takes the same form as that at x0, like (92),

K ′
loc(t, q;x

′
0) = Kloc(t, q;x0). (299)

This is a core equation in the delta-Chern analysis. Starting with this equation, we
can modify the reasoning which leads to the global delta-Chern formula in the case of
linear local Hamiltonians, except for ∆W = sgn(detC(K)), in order to make it applicable
in the case of, say, quadratic local Hamiltonians. This is because the winding number is
independent of the choice of the frame at a degeneracy point and of the basis with respect
to which the local Hamiltonian is expressed, because the homotopic deformation of the
transition function is valid as well, and because ∆±c(gx0) is constant on the orbit Ox0 .
It then turns out that if we can evaluate ∆W directly, we can obtain the delta-Chern
formula, like Theorem 9.1.

14.2 Delta-Chern arising from second-order terms

We here give a simple but expressive example for a case study, in which the linear approx-
imation of the Hamiltonian fails but the second-order approximation works. We consider
the Hamiltonian

Hα(x) =(1− α)

(
1
−1

)
+ α

(
z (x− iy)2

(x+ iy)2 −z

)
=

(
1− α + αz α(x− iy)2

α(x+ iy)2 −1 + α− αz

)
, 0 ≤ α ≤ 1, x ∈ S2. (300)
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The symmetry group SO(2) given by

h(θ) =

cos θ − sin θ
sin θ cos θ

1

 (301)

acts on S2 and is represented as

D(h(θ)) =

(
e−iθ

eiθ

)
. (302)

The Hamiltonian (300) is invariant under the SO(2) action,

D(h(θ))Hα(x)D(h(θ))−1 = Hα(h(θ)x). (303)

The eigenvalues of Hα(x) are easily found to be

µ± = ±
√

(1− α + αz)2 + α2(x2 + y2)2. (304)

Hence, degeneracy in eigenvalues occurs if and only if

1− α + αz = 0, α(x2 + y2) = 0. (305)

The unique solution to this is given by

x0 =

 0
0
−1

 , α =
1

2
. (306)

The isotropy subgroup at x0 is SO(2) itself. We take at x0 the frame

ξ1 =

1
0
0

 , ξ2 =

 0
−1
0

 , (307)

which is positively oriented in the sense that ξ1 × ξ2 = x0. The Cartesian coordinates
are introduced through

∑
qkξk on the tangent plane Π0 to S2 at x0. With respect to the

frame ξk, the isotropy subgroup is represented as

h(2)(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (308)

As is easily seen from the Hamiltonian (300), the first derivative of Hα(x0) vanishes
on the tangent plane at x0; ∇Hα(x0) · ξk = 0. However, the derivative of H with respect
to α does not vanish and is evaluated as

Ḣα(x0) =

(
−2

2

)
. (309)
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If we adopt the local Hamiltonian H 1
2
(x0) + tḢ 1

2
(x0) +

∑
qk∇H 1

2
(x0) · ξk, the relevant

matrix C(K) is of rank one and the linearization method fails. We here note that the
present local Hamiltonian is in normal form, since the isotropy subgroup is represented
in the diagonal form (302).

We apply the formulas (292) and (293) to entries of the Hamiltonian Hα(x). For the
function z = z(x), we have

ξj · Hess z(x0)ξk = δjk. (310)

The second-order term in the expansion of z in terms of qk is now written as

1

2

∑
jk

qjqkξj · (Hess z(x0))ξk =
1

2
(q21 + q22). (311)

For the function (x − iy)2, the second derivative with respect to s along a geodesic
x(s) is evaluated at s = 0 or at x0 as

d2

ds2
(x− iy)2

∣∣∣∣
s=0

= 2
(dx
ds

(0)− idy
ds

(0)
)2
, (312)

from which the Hessian of (x− iy)2 at x0 is found to be

Hess (x− iy)2(x0) =

(
2 2i
2i −2

)
. (313)

Hence, the second order term in the expansion of (x− iy)2 is written as

1

2

∑
jk

qjqkξj · (Hess (x− iy)2(x0))ξk = (q1 + iq2)
2. (314)

It turns out that the local Hamiltonian up to the second order terms in q1, q2 at the
degeneracy point x0 for α = 1

2
is defined and given by

Hloc(t, q;x0) =tḢ 1
2
(x0) +

1

2

∑
qjqkξj · (HessH 1

2
(x0))ξk

=

(
−2t+ 1

4
(q21 + q22) 1

2
(q1 + iq2)

2

1
2
(q1 − iq2)2 2t− 1

4
(q21 + q22)

)
. (315)

We here note that the Hloc(t, q;x0) is invariant under the action of the isotropy subgroup
SO(2) on the tangent plane Π0,

D(h(θ))Hloc(t, q;x0)D(h(θ))−1 = Hloc(t, h
(2)(θ)q;x0), (316)

where D(h(θ)) and h(2)(θ) are given in (302) and (308), respectively.
The eigenvalues of Hloc(t, q;x0) are expressed as

λ± = ±
√(

2t− 1

4
(q21 + q22)

)2
+

1

4

(
q21 + q22

)2
. (317)
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The degeneracy point of the present local Hamiltonian is then determined by

2t− 1

4
(q21 + q22) = 0, q21 + q22 = 0, (318)

to which the solution is t = 0, q1 = q2 = 0, as is expected. The exceptional point for
the eigenvector associated with the positive eigenvalue λ+ is determined by q1 + iq2 = 0,
and then given by q1 = q2 = 0. According to the procedure explained in Sec. 4, the
exceptional point q = 0 is assigned to the “up” or “down” eigenvector, according as
−2t + 1

4
(q21 + q22) = −2t is positive or negative. It then turns out that for t < 0 the

exceptional point q = 0 is assigned to the “up” eigenvector and for t > 0 to the “down”
eigenvector.

We choose to use the “up” eigenvector to evaluate the Chern number contribution from
the exceptional point. Since a small circle centered at the origin q = 0 is oriented clockwise
and since the transition function is proportional to (q1+iq2)

2, the winding number assigned
to the origin for t < 0 is −2. We now denote the winding number for t < 0 and t > 0
by and W(t<0) and W(t>0), respectively. For t > 0, there is no exceptional point on Π0 (or
in the vicinity of x0 in S2), we obtain ∆W = W(t>0) −W(t<0) = 0 − (−2) = +2. Hence,
the delta-Chern is −2; ∆+c(x0) = −2. If we use the “down” eigenvector, the orientation
of the small circle is anti-clockwise, so that the winding number for t > 0 is +2. Hence,
we have ∆W = W(t>0) −W(t<0) = 2 − 0 = +2 and ∆+c(x0) = −2 as well. Since the
delta-Chern for the eigen-line bundle associated with the negative eigenvalue λ− is related
to that for the positive eigenvalue by ∆−c(x0) = −∆+c(x0), we have(

∆+c(x0)
∆−c(x0)

)
=

(
−2
+2

)
. (319)

Since the degeneracy point is x0 only and since the Chern number of each eigen-line
bundle is zero for 0 < α < 1

2
or for t < 0, we conclude that the Chern numbers of the

eigen-line bundles associated with the positive and negative eigenvalue are −2 and +2,
respectively.

With respect to the “down” eigenvector, the transition of exceptional points are de-
picted in Fig. 14, where the double dots attached to the maximum or the minimum point
of the energy surface means that the corresponding exceptional point look like a dipole in
view of the field line determined by d(q1 + iq2)/dτ = (q1 + iq2)

2, where (q1 + iq2)
2 comes

from the transition function.
The Chern number of the initial Hamiltonian Hα(x) given in (300) can be evaluated

in a straightforward manner. We note here that Eq. (300) with α = 1 is a special case of
the Hamiltonian treated in [4]. For the positive eigenvalue µ+, the exceptional point of
the associated eigenvector is determined by

α(x− iy)2 = 0, (320)

from which we have x = y = 0 for α ̸= 0. Then, one has x = y = 0 and z = ±1. The
exceptional point is assigned to the “up” or “down” eigenvector according as 1− α+ αz
is positive or negative. If z = 1, then 1 − α + αz = 1 > 0, so that the exceptional
point (x, y, z) = (0, 0, 1) =: n+ is assigned to the “up” eigenvector. If z = −1, then
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λ +

λ −

x xx

t = 0 t > 0

λ λ+ +

λ λ− −

yyy

t < 0

Figure 14: A schematic description of the evolution of the energy surface for (315) in a
vicinity of a degeneracy point along with a variation in the control parameter passing the
degeneracy value t = 0

1 − α + αz = 1 − 2α. This implies that for 0 < α < 1
2

only, the exceptional point
(x, y, z) = (0, 0,−1) =: n− is assigned to the “up” eigenvector, and it is not so for α > 1

2
.

The transition function is proportional to (x−iy)2, which determines the winding number
assigned to an exceptional point along with the orientation of a small circle centered at
the exceptional point in question.

We first consider the case for 0 < α < 1
2
. Since the orientation of the coordinate

system (x, y) is positive and the orientation of the small circle centered at the exceptional
point n+ assigned to the “up” eigenvector is clockwise, the factor (x − iy)2 gives rise
to the winding number +2. In contrast with this, since the orientation of the coordinate
system (x, y) is negative and the orientation of the small circle centered at the exceptional
point n− assigned to the “up” eigenvector is clockwise, the factor (x − iy)2 gives rise to
the winding number −2. Thus, the sum of the winding numbers is zero, which means
that the Chern number is zero. If we choose the “down” eigenvector, we obtain the zero
Chern number, since there is no exceptional point assigned.

In the case of 1
2
< α < 1, we have the winding number +2 from the exceptional point

n+ assigned to the “up” eigenvector. As there is no other exceptional point, the total
winding number is +2, and hence the Chern number is −2. If we choose the “down”
eigenvector, we will obtain the winding number −2 as well. Since the orientation of the
coordinate system (x, y) is negative and the orientation of the small circle centered at
the exceptional point n− assigned to the “down” eigenvector is anticlockwise, the factor
(x− iy)2 gives rise to the winding number +2. Hence, the Chern number is −2.

Summing up the above discussion, we obtain the following tables;

“up” α < 1
2

α > 1
2

n+

n−
Chern no. 0 − 2

“down” α < 1
2

α > 1
2

n+

n−
Chern no. 0 − 2

(321)
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Here, the symbol means that the point n+ is always an exceptional point
assigned to the “up” eigenvector for 0 < α < 1, and the symbol that the
point n− is not an exceptional point assigned to the “down” eigenvector for 0 < α < 1

2
,

but so for 1
2
< α < 1, and further the double line indicates that the winding number

contribution from the exceptional point in question is either +2 or −2.
If we choose the representation of SO(2) as D(h(θ)) = diag(e−imθ, eimθ) in place of

(302), we will obtain Chern numbers ±2m for an associated Hamiltonian Hα(x) with
1
2
< α < 1.

14.3 Second-order approximation at exceptional points

The Hessian formula given in Sec. 14.1 can provide an improved method for evaluating
Chern number contributions from exceptional points like the exceptional points n± men-
tioned in Sec. 5.2, at which the linearization method fails. Now we look back at Fig. 2.
If we make h get close to 1, we obtain small circles γ± centered at n±, where n± in ques-
tion are exceptional points assigned to the “up” eigenvector associated with the positive
eigenvalue. Then, the Chern number is given by

c+ = −W (γ+)−W (γ−), W (γ±) =
1

2πi

∫
γ±

(Φ+)−1dΦ+. (322)

We may approximate the transition function Φ+ in a vicinity of n± in order to evaluate
the winding numbers W (γ±). Since the linear approximations of Φ+ fails at n±, we are
recommended to take a quadratic (or higher) approximation of Φ+. To this end, we start
with the tangent planes to S2 at n±. The frames ξk we take on the tangent planes are

ξ1 =

1
0
0

 , ξ2 =

0
1
0

 at n+ =

0
0
1

 , (323)

ξ1 =

1
0
0

 , ξ2 =

 0
−1
0

 at n− =

 0
0
−1

 . (324)

Applying the formulas (292) and (293) to ϕj given in (29), we obtain the second-order
terms of the expansion of ϕj in terms of (q1, q2),

ψ1(q;n+) :=
1

2

∑
k,ℓ

qkqℓξk · (Hessϕ1(n+))ξℓ =− 3(q21 + q22), (325a)

ψ2(q;n+) :=
1

2

∑
k,ℓ

qkqℓξk · (Hessϕ2(n+))ξℓ =
√

3(q21 − q22), (325b)

ψ3(q;n+) :=
1

2

∑
k,ℓ

qkqℓξk · (Hessϕ3(n+))ξℓ =q1q2. (325c)

As is easily verified, we have the same results as above for the second-order terms ψj(q;n−)
for ϕj at n−.
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We proceed to the Chern number contributions from n±. Since the defining equation
of W (γ±) is put in the form of a contour integral which takes an integer value, and
since the integrand can be homotopically deformed without changing the integral values,
the transition function Φ+ can be projected to the function aψ2(q;n+) − ibψ3(q;n+) =√

3a(q21 − q22) − ibq1q2 within a positive real-valued factor on the tangent plane at n+.
Since the Chern number of the eigen-line bundle associated with the positive eigenvalue
is viewed as a constant function on the domain {(a, b); a > 0, b > 0}, we may set a =
1√
3
, b = 2 for the evaluation of the Chern number contribution from n+. Then, we have√

3a(q21−q22)− ibq1q2 = (q1− iq2)2. Since the exceptional point n+ is assigned to the “up”
eigenvector, the orientation of the small circle γ+ centered at n+ is anti-clockwise, so that
we see that the winding number W (γ+) assigned to n+ is +2, and hence the Chern number
contribution from n+ is −2. The Chern number contribution from n− is the same as that
from n+, since the second-order terms ψj(q;n±) have the same expression at n± and
since both n± are assigned to the “up” eigenvector. Thus, the sum of the Chern number
contributions form n± are −4, i.e., c+ = −4 for {(a, b); a > 0, b > 0}. In the case of
a > 0, b < 0, we may set a = 1√

3
, b = −2. Then, we have

√
3a(q21−q22)+ibq1q2 = (q1+iq2)

2.

By the same reasoning as above, we obtain c+ = +4. Thus we have obtained the same
results on the Chern numbers as those obtained in a different method.

14.4 Delta-Chern at a triple degeneracy point

Another extension of the delta-Chern analysis is to find a way to the delta-Chern formula
assigned to a degeneracy point at which eigenvalues are triply degenerate. We have already
investigated such an example in Sec. 12 and inferred a possible form of the delta-Chern
formula (264). However, since the model Hamiltonian (256) is of quite special type from
the viewpoint of symmetry and since the triple degeneracy is much more complicate than
the generic double degeneracy, the suggested formula (264) might be valid for a class of
triple degeneracy points. We want to have another example supporting (264).

As a simple example of a Hamiltonian having triply degenerate eigenvalues, we take

Hα(x) = (1− α)Sz + αx · S, 1 ≤ α ≤ 1, x ∈ S2 ⊂ R3, (326)

where Sk are the representation basis matrices for so(3) with representation parameter
s = 1. The symmetry group of this Hamiltonian is SO(2), which is expressed as

h(θ) =

cos θ − sin θ
sin θ cos θ

1

 , (327)

and represented as

D(h(θ)) = e−iθS3 =

e−iθ

1
eiθ

 . (328)
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The Hα(x) is written out as

Hα(x) =

1− α + αz α√
2
(x− iy) 0

α√
2
(x+ iy) 0 α√

2
(x− iy)

0 α√
2
(x+ iy) −1 + α− αz

 (329)

and satisfies the symmetry condition

D(h(θ))Hα(x)D(h(θ))−1 = Hα(h(θ)x). (330)

The characteristic equation for the present Hα(x) is given by

det(µI −Hα(x)) = µ
(
µ2 − (α2(x2 + y2) + (1− α + αz)2)

)
= 0. (331)

The degeneracy in eigenvalues occurs if and only if

α2(x2 + y2) = 0, 1− α + αz = 0. (332)

The only solution to this equation is

x = y = 0, z = −1, α =
1

2
. (333)

This means that α = 1
2

is a degeneracy point in the control parameter space (or interval)
0 ≤ α ≤ 1, and (0, 0,−1) is the only degeneracy point on the sphere S2. Further,
the degeneracy is triple. The Chern number of the eigen-line bundles associated with
the eigenvalues 1, 0,−1 for the Hamiltonian H1(x) = x · S are known to be −2, 0, 2,
respectively. This fact is proved in the context of the Berry phase (see [23], for example).

We now investigate the transition in Chern numbers by means of the linearization
method applied at the degeneracy point

x0 =

 0
0
−1

 for α =
1

2
. (334)

The isotropy subgroup at x0 is the symmetry group SO(2) itself. We choose the same
frame ξk as (307) on the tangent plane Π0 at x0. The Cartesian coordinates (qk) are
defined on the tangent plane through

∑
qkξk. The action of the isotropy subgroup on the

tangent plane Π0 is put in the same form as (308).
We first note that H 1

2
(x0) = 0. The local Hamiltonian is now defined and given by

Hloc(t; q;x0) =tḢ 1
2
(x0) + q1∇H 1

2
(x0) · ξ1 + q2∇H 1

2
(x0) · ξ2

=

 −2t 1
2
√
2
(q1 + iq2) 0

1
2
√
2
(q1 − iq2) 0 1

2
√
2
(q1 + iq2)

0 1
2
√
2
(q1 − iq2) 2t

 , (335)

which is already in normal form. This local Hamiltonian satisfies the local symmetry
condition

D(h(θ))Hloc(t, q;x0)D(h(θ))−1 = Hloc(t, h
(2)(θ)q;x0), (336)
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where D(h(θ)) and h(2)(θ) are given in (328) and (308), respectively.
The characteristic equation for Hloc(t; q;x0) is given by

det(λI −Hloc(t, q;x0)) = λ(λ2 − 4t2 − 1

4
(q21 + q22)) = 0, (337)

and the eigenvalues by

λ = 0, ±
√

4t2 +
1

4
(q21 + q22), (338)

Then, the degeneracy in the eigenvalues occurs if and only if

t = 0, q1 = q2 = 0. (339)

For the positive eigenvalue λ+ =
√

4t2 + 1
4
(q21 + q22), associated “up” and “down”

eigenvectors are expressed as 1
2
√
2
(q1 + iq2)

2

(λ+ + 2t)(q1 + iq2)

−
√
2
4

(q21 + q22) + 2
√

2λ+(λ+ + 2t)


up

,

2
√

2λ+(λ+ − 2t)−
√
2
4

(q21 + q22)
(λ+ − 2t)(q1 − iq2)

1
2
√
2
(q1 − iq2)2


down

, (340)

respectively. From these expressions, the exceptional points assigned to the “up” and
“down” eigenvectors are shown to be determined by

q1 + iq2 = 0, λ+ + 2t = 0, (341)

and by
q1 − iq2 = 0, λ+ − 2t = 0, (342)

respectively. Thus, we find that according as t < 0 or t > 0 the origin q = 0 is an
exceptional point assigned to the “up” or “down” eigenvector.

If we denote the normalized “up” and “down” eigenvectors associated with λ+ by
|v+(q)up⟩ and |v+(q)down⟩, respectively, and the respective domains of |v+(q)up⟩ and |v+(q)down⟩
by V +

up and V +
down, then the transition function Φ+(q) is defined through

|v+(q)up⟩ = Φ+(q)|v+(q)down⟩ on V +
up ∩ V +

down. (343)

The transition function is proportional to the ratio of the middle components of the “up”
and “down” eigenvectors,

(λ+ + 2t)(q1 + iq2)

(λ+ − 2t)(q1 − iq2)
=
λ+ + 2t

λ+ − 2t

(q1 + iq2)
2

q21 + q22
. (344)

With this function in mind, we proceed to the winding numbers assigned to exceptional
points. For t < 0, the origin is assigned to the “up” eigenvector. According to our
convention, the orientation of a small circle centered at the exceptional point assigned
to the “up” eigenvector is clockwise with respect to the frame ξk, so that the winding
number, which is independent of the real factor of the transition function, is evaluated
through (q1 + iq2)

2 as −2, as is observed from (344). For t > 0, the “up” eigenvector has
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no exceptional points. Then, we have W(t<0) = −2 and W(t>0) = 0. Thus, the variation
of the winding number is ∆W = W(t>0) −W(t<0) = 0− (−2) = 2.

The same result on ∆W is obtained by using the “down” eigenvector. The “down”
eigenvector has an exceptional point at q = 0 for t > 0 only. Since the orientation of
a small circle centered at the exceptional point assigned to the “down” eigenvector is
anticlockwise, so that the winding number is evaluated through (q1 + iq2)

2 as +2. Hence,
we have ∆W = W(t>0) −W(t<0) = 2− 0 = 2.

From the above discussion, we conclude that when the parameter t passes the degen-
eracy point t = 0 from the t < 0 side to the t > 0 side, the local delta-Chern assigned
to the degeneracy point x0 is given by ∆+c(x0) = −2 in association with the positive
eigenvalue λ+.

With the eigenvalue λ0 = 0, associated are the “up” and “down” eigenvectors 1
2
√
2
(q1 + iq2)

2t
− 1

2
√
2
(q1 − iq2)


up

,

− 1
2
√
2
(q1 + iq2)

−2t
1

2
√
2
(q1 − iq2)


down

, (345)

respectively. This means that the exceptional point assigned to the “up” and the “down”
eigenvectors are both the origin q = 0 for t = 0 only. Put another way, there is no
exceptional point assigned to either “up” or the “down” eigenvector for t ̸= 0. Hence, we
have ∆W = W(t>0) −W(t<0) = 0. The delta-Chern is then ∆0c(x0) = 0 for the middle
eigenvalue among three.

Since the negative eigenvalue λ− is related to the positive eigenvalue λ+ by λ− = −λ+,
the similar reasoning to that for λ+ provides the delta-Chern as ∆−c(x0) = +2.

The global delta-Chern is now easy to obtain. Since the orbit of the degeneracy point
consists only one point, the global delta-Chen is equal to the local delta-Chern, so that
we have the column of the global delta-Chern∆+c(x0)

∆0c(x0)
∆−c(x0)

 =

−2
0

+2

 , (346)

as is expected. Since |∆c| = #Ox0 = 1, it is plausible to understand that this model
supports the delta-Chern formula (264) for a class of triple degeneracy points, while the
symmetry group is not a finite but a continuous subgroup of SO(3).

With respect to the “down” eigenvector, the transition in exceptional points is depicted
in Fig. 15, where the double dots attached to the maximum or the minimum point of the
energy surface means that the corresponding exceptional point look like a dipole, as in
Fig. 14.

It is to be noted that this figure gives a local description of the eigenvalue evolution
against the parameter t. Without a global point of view, a question arises as to the
exceptional point of the “down” eigenvector of the local Hamiltonian. For t < 0 (i.e., for
0 < α < 1

2
), the origin is an exceptional point, which means that a winding number is

assigned to the origin. However, the Chern number of the eigen-line bundle associated
with each eigenvalue should be zero for 0 < α < 1

2
. In order that the Chern number be

zero, there must be another exceptional point to which a winding number is assigned with
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Figure 15: A schematic description of the evolution of eigenvalues in a vicinity of triple
degeneracy point along with a variation in the control parameter passing the degeneracy
value t = 0

the reverse sign. To confirm this expectation, we now return to the initial Hamiltonian.
From (331), the eigenvalues of the initial Hamiltonian are given by

µ = 0, ±
√
α2(x2 + y2) + (1− α + αz)2. (347)

For the positive eigenvalue µ+ =
√
α2(x2 + y2) + (1− α + αz)2, “up” and “down”

eigenvectors are given by α2

2
(x− iy)2(

µ+ − (1− α + αz)
)

α√
2
(x− iy)

−α2

2
(x2 + y2) + µ+(µ+ − (1− α + αz))


up

,

µ+(µ+ + 1− α + αz)− α2

2
(x2 + y2)

(µ+ + 1− α + αz)
√
2
2

(x+ iy)
α2

2
(x+ iy)2


down

,

(348)
respectively.

Exceptional points assigned to the “up” eigenvector are then determined by

x− iy = 0, µ+ − (1− α + αz) = 0. (349)

From x− iy = 0, we obtain x = y = 0, and hence z = ±1. If z = 1, then µ+ = 1, so that
µ+− (1−α+αz) = 0. Thus, (x, y, z) = (0, 0, 1) =: n+ is an exceptional point. If z = −1,
then µ+ = |1 − 2α|, and further µ+ − (1 − α + αz) = |1 − 2α| − (1 − 2α). This implies
that for 0 < α < 1

2
, µ+ − (1 − α + αz) = 0 holds, so that (x, y, z) = (0, 0,−1) =: n− is

another exceptional point for 0 < α < 1
2
, and further for 1

2
< α < 1, the point n− is not

an exceptional point.
Exceptional points assigned to the “down” eigenvector are determined by

µ+ + 1− α + αz = 0, x+ iy = 0. (350)

From x + iy = 0, we obtain x = y = 0, and hence z = ±1. If z = 1, then µ+ = 1, and
hence µ++1−α+αz = 2. This means that (x, y, z) = (0, 0, 1) =: n+ is not an exceptional
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point for the “down” eigenvector. If z = −1, then µ++1−α+αz = |1−2α|+1−2α. This
implies that (x, y, z) = (0, 0,−1) = n− is an exceptional point assigned to the “down”
eigenvector for 1

2
< α < 1 only.

The transition function is proportional to the ratio of middle elements of the “up” and
“down” eigenvectors,

µ+ − (1− α + αz)

µ+ + 1− α + αz

x− iy
x+ iy

=
µ+ − (1− α + αz)

µ+ + 1− α + αz

(x− iy)2

x2 + y2
. (351)

Since the real factor of the transition function is irrelevant to the winding number, the
winding number is determined by the factor (x − iy)2 together with the orientation of
the coordinate system (x, y) at the exceptional point in question and the orientation of a
small circle centered at the exceptional point.

Although the Hamiltonian treated in this subsection is different from that treated
in Sec. 14.2, the reasoning to be made in the following is quite the same as those done
in the latter part of Sec. 14.2 except for the last paragraph. We then obtain the same
result as (321) on the Chern number of the eigen-line bundle associated with the positive
eigenvalue µ+, which shows that the Chern number for 0 < α < 1

2
is zero.

15 Concluding remarks

In the previous papers [4, 5], we have observed from the two-level model Hamiltonians with
symmetry that the possible values of Chern numbers of the eigen-line bundles associated
with respective eigenvalues are closely related to representations of the symmetry group.
From the same point of view, we now have another look at the results on Chern numbers
realized on our model Hamiltonians.

Let (J) denote the representation of SO(3) labeled by J , which is considered as a
reducible representation of the finite O group. Then, the tensor product of the (J)
representation of SO(3) and the Fi, i = 1, 2, representation of the O group is decomposed
into the direct sum of the form

Fi ⊗ (J) = (J + ∆max)i ⊕ (J + ∆middle)i ⊕ (J + ∆min)i, (352)

where
∆max + ∆middle + ∆min = 0, (353)

and where (J + ∆k)i, k = max,middle,min, denote for short (J + ∆k) ⊗ Ai, i = 1, 2,
with Ai referring to the representation of the O group. Possible pairs of values (∆max −
∆min,∆middle) are given in Fig. 16. Some of possible values of ∆k, k = max,midle,min,
are given in Tables 10 and 11 in [3], pp. 117-118, for low values of J .

From Fig. 16, we pick up several sets of values of ∆k with ∆middle ̸= 0, ∆max

∆middle

∆min

 =

 2
1
−3

 ,

 3
−1
−2

 ,

 3
1
−4

 ,

 4
−1
−3

 ,

 6
1
−7

 ,

 7
−1
−6

 ,

 3
2
−5

 ,

 5
−2
−3

 .

(354)
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Figure 16: Small circles stand for possible pairs of (∆max−∆min,∆middle) corresponding to
the decomposition (352) subject to (353). As the figure is symmetric with respect to the
reflection ∆middle → −∆middle, only positive values of ∆middle are shown. Broken lines are
drawn to make the figure readable. A characteristic pattern of the lattice is that the lattice
shown above is periodic with an elementary cell with vertices (0, 2), (0, 14), (2, 20), (2, 8).

If doubled, each of the above columns of possible values of ∆i is in one-to-one correspon-
dence to one of columns of the Chern numbers shown in Fig. 7 and Fig. 8 as sets of num-
bers. If ∆middle = 0, possible values of ∆max−∆min are shown to be 12j±2, j = 0, 1, 2, . . . ,
as is seen from Fig. 16. A set of possible values of ∆k with ∆middle = 0 ∆max

∆middle

∆min

 =

 1
0
−1

 ,

 5
0
−5

 ,

 7
0
−7

 (355)

are, if doubled, realized as Chern numbers shown in Fig. 13. Though the model Hamil-
tonian (256) is of special type from the viewpoint of symmetry, it is worth pointing out
that the Chern numbers shown in Fig. 13 can be treated on the same footing as that for
Chern numbers associated with the Hamiltonian (19) of generic type.

These correspondences seem to be rather formal, since no line bundle appears in (352).
However, if we view the operators concerning with (J) representation as classical variables
and as forming the sphere, the right-hand side of (352) may be considered as corresponding
to the direct sum of eigen-line bundles over the sphere, and A1 or A2 may be looked upon
as a representation of the O group acting on sections of respective eigen-line bundles.

In the same picture, we look again at the Chern numbers obtained in Sec. 14. Let
(m)SO(2) and (J)SO(3) denote the irreducible representations of SO(2) and SO(3) labeled
by m and J , respectively, where (J)SO(3) is viewed as a reducible representation of SO(2);

(J)SO(3) =
∑J

m=−J(m)SO(2). Then, like (352), we have the decomposition of the tensor
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product representation(
(−m)SO(2) ⊕ (m)SO(2)

)
⊗ (J)SO(3) = (J −m)SO(3) ⊕ (J +m)SO(3), (356)

where (J −m)SO(3) and (J + m)SO(3) should be understood as the tensor products with
the trivial representation of SO(2), (J −m)SO(3) ⊗ (0)SO(2) and (J + m)SO(3) ⊗ (0)SO(2),
respectively. From this decomposition, we expect that the corresponding Chern numbers
are (−2m, 2m). On the model Hamiltonian (300), we have realized the Chern numbers
(−2, 2) with m = 1.

In a similar manner, we have the decomposition(
(−1)SO(2)⊕ (0)SO(2)⊕ (1)SO(2)

)
⊗ (J)SO(3) = (J−1)SO(3)⊕ (J)SO(3)⊕ (J+1)SO(3). (357)

If we rewrite the left-hand side as (1)SO(3) ⊗ (J)SO(3), the above decomposition is exactly
the same as the Clebsch-Gordan formula for the SO(3) (or SU(2)) representation. The
expected Chern numbers (−2, 0, 2) are realized on the model Hamiltonian (329).

While we have applied the delta-Chern formula to two- and there-level semi-quantum
systems, the delta-Chern formula can be applied to n-level semi-quantum systems, as was
remarked after Thm. 9.1. A formal application of the delta-Chern formula to a five-level
model is found in [6], where the model comes from the tetrahedral molecule SiH4.

We have observed that the possible values of Chern numbers of the eigen-line bundles
associated with respective eigenvalues are closely related to representations of the sym-
metry group for the three-level model Hamiltonians with symmetry in the present article
as well as for the two-level model Hamiltonians in the preceding papers [4, 5]. Though a
number of supporting results have been accumulated, the systematic proof of the marked
correspondence between possible Chern numbers and possible decomposition of the tensor
product representation remains to be open. Another big step for extending the present
Chern number analysis consists in a generalization to fiber bundles defined over higher
dimensional base space such as CP n. Example of such a three-level model over CP 2 was
studied in [24].

After finishing the present work, we have achieved a progress in the study of band
rearrangements in comparison between full quantum and semi-quantum systems. As is
pointed out in Introduction, the delta-Chern can be interpreted as describing a band
rearrangement. This statement has been confirmed by introducing a Dirac operator cor-
responding to a linearized Hamiltonian at a degeneracy point of S2. A local delta-Chern
for the linearized semi-quantum Hamiltonian and an extended notion of spectral flow for
the full quantum Dirac operator are in fine correspondence [25, 26].

A Cubic symmetry

Let ek, k = 1, 2, 3, denote the standard basis of R3. We take six points ±ek as ver-
tices of the regular octahedron. Each vertex is given a number as follows: 1,2,3 are as-
signed to e1, e2, e3, respectively, and 4,5,6 to−e1,−e2,−e3, respectively. The orientation-
preserving symmetry group for the regular octahedron is called the octahedral rotation
group and is denoted by O. The O group is known to be isomorphic with the symmetric
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group S4 and the order of O is 24. Each of the elements has the symbol to denote the
assigned rotation, which, except for the identity, are

{CX
4 , C

−X
4 , CY

4 , C
−Y
4 , CZ

4 , C
−Z
4 },

{C [111]
3 , C

[−11−1]
3 , C

[1−1−1]
3 , C

[−1−11]
3 , C

[−1−1−1]
3 , C

[1−11]
3 , C

[−111]
3 , C

[11−1]
3 },

{CX
2 , C

Y
2 , C

Z
2 },

{C [011]
2 , C

[01−1]
2 , C

[101]
2 , C

[−101]
2 , C

[110]
2 , C

[−110]
2 },

(358)

where the elements in each parentheses are conjugate to one another, and where CX
4

denote the counterclockwise rotation about the X-axis by the angle 2π/4, C
[111]
3 the coun-

terclockwise rotation about the (1, 1, 1)T -axis by 2π/3, CX
2 the counterclockwise rotation

about X-axis by 2π/2, and C
[011]
2 the counterclockwise rotation about the (0, 1, 1)T -axis

by 2π/2. In Fig. 17, the axes for CZ
4 , C

[111], and C
[110]
2 are described. The other symmetry

axes, which are not drawn, can be easily found.
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Figure 17: Representative symmetry axes. The C4, C3, and C2 axes shown in the figure
correspond to CZ

4 , C
[111]
3 , and C

[110]
2 , respectively. Since the centers of the respective faces

of the regular cube are the vertices of the regular octahedron, the orientation-preserving
symmetry group of the regular cube is isomorphic with the octahedral group.

We have already the matrix expressions of the CZ
4 and C

[−1−1−1]
3 in (12), which we

denote by ζ and τ , respectively, in this Appendix,

ζ =

 −1
1

1

 , τ =

 1
1

1

 . (359)

As is mentioned in Sec. 2, the O group is generated by ζ and τ . For example, C
[110]
2 has

the matrix expression which is generated by ζ and τ as

C
[110]
2 7→

 1
1

−1

 = τζτ. (360)
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We now describe a few of the representation of the O group. The O group generated
by ζ and τ acts on R3 and naturally induces its representation on the linear span of the
monomials x, y, and z, which is called a T1 representation. In a similar manner, the linear
span of the monomials

X = yz, Y = zx, Z = xy (361)

form a three dimensional (T2-representation) space for the O group. Under the actions of
ζ and by τ on R3, these basis polynomials transform according to

(X, Y, Z) 7→ (Y,−X,−Z), (X, Y, Z) 7→ (Y, Z,X), (362)

respectively. For another example, let

ϕ1 = 2z2 − x2 − y2, ϕ2 =
√

3(x2 − y2). (363)

The linear span of ϕ1 and ϕ2 forms a two-dimensional representation (or E-representation)
space for the O group. Under the actions by ζ and by τ on R3, the basis polynomials
transform according to

ϕ1 7→ ϕ1, ϕ2 7→ −ϕ2, (364a)

ϕ1 7→ −
1

2
ϕ1 +

√
3

2
ϕ2, ϕ2 7→ −

√
3

2
ϕ1 −

1

2
ϕ2, (364b)

respectively. This gives rise to the representation matrices given in (13).
The group O acts on R3 as matrices and also on 3 × 3 matrices by adjoint action.

Since the O is a subgroup of SO(3), the O is considered as acting on the sphere S2. For
the Hamiltonian (19), the symmetry condition (1) takes the form

gH(x)g−1 = H(gx) for g ∈ G, (365)

where G denote the group O whose elements g’s are matrices generated by ζ and τ given
in (359) or in (12). In order to verify (365), we put the Hamiltonian (19) in the form of
a linear combination of the three Hermitian matrices Ha, Hd, Hs, where

Ha(x) =

 0 −iz iy
iz 0 −ix
−iy ix 0

 , (366a)

Hd(x) =

2x2 − y2 − z2
2y2 − z2 − x2

2z2 − x2 − y2

 , (366b)

Hs(x) =

 0 xy zx
xy 0 yz
zx yz 0

 . (366c)

Since the octahedral group is generated by ζ and τ , and since the Hamiltonian is the
linear combination of Ha, Hd, Hs, it is sufficient for us to check whether the symmetry
condition (1) holds or not, for Ha, Hd, Hs and ζ, τ only (see [6] for tensorial expressions
of these Hamiltonians). These procedures can be easily carried out.
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For the Hamiltonian (18), the symmetry condition (1) takes the form

D(g)H(x)D(g)−1 = H(gx), (367)

where D(g) are matrices (see (13)) generated by

D(ζ) =

(
1
−1

)
, D(τ) =

(
−1

2
−

√
3
2√

3
2
−1

2

)
. (368)

The procedure to show the invariance (367) is similar to that for (365)
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Figure 1: Chern numbers assigned to arcs of the unit circle
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Figure 2: division of the sphere into the disjoint union of S2
up and S2

down with ω+
up and

ω+
down being smoothly defined on S2

up and S2
down, respectively
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Figure 3: Deformation of contours Γi, i = 1, 2, into small circles γj, j = 1, 2, 3, 4, centered
at exceptional points
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Figure 4: A schematic representation of the evolution of eigenvalues of a local linearized
model Hamiltonian in a two-level approximation along with variation of a control param-
eter t crossing the boundary of the iso-Chern domain. Exceptional points (blue points)
assigned to the “down” eigenvector are shown in the λ+ (t > 0) and λ− (t < 0) compo-
nents.
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Figure 5: Degeneracy curves in the space of control parameters for the Hamiltonian (19).
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Figure 9: Chern numbers c+ of the eigen-line bundle associated with the positive eigen-
value are assigned to arcs separated by degeneracy points.
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Figure 14: A schematic description of the evolution of the energy surface for (315) in a
vicinity of a degeneracy point along with a variation in the control parameter passing the
degeneracy value t = 0
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Figure 15: A schematic description of the evolution of eigenvalues in a vicinity of triple
degeneracy point along with a variation in the control parameter passing the degeneracy
value t = 0
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Figure 16: Small circles stand for possible pairs of (∆max−∆min,∆middle) corresponding to
the decomposition (352) subject to (353). As the figure is symmetric with respect to the
reflection ∆middle → −∆middle, only positive values of ∆middle are shown. Broken lines are
drawn to make the figure readable. A characteristic pattern of the lattice is that the lattice
shown above is periodic with an elementary cell with vertices (0, 2), (0, 14), (2, 20), (2, 8).
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Figure 17: Representative symmetry axes. The C4, C3, and C2 axes shown in the figure
correspond to CZ

4 , C
[111]
3 , and C

[110]
2 , respectively. Since the centers of the respective faces

of the regular cube are the vertices of the regular octahedron, the orientation-preserving
symmetry group of the regular cube is isomorphic with the octahedral group.
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