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Abstract. A topological characterization of energy-band rearrangements
against parameters for molecular problems with slow/fast variables comes
around to a study of a Dirac equation with a parameter. In this arti-
cle, the Dirac equation of space-dimension two is studied under both
the APS (an abbreviation of Atiyah-Patodi-Singer) and the chiral bag
boundary conditions, where the mass is viewed as a parameter rang-
ing over all real numbers. The APS boundary condition requires that
eigenstates evaluated on the boundary should belong to the subspace of
eigenstates associated with positive or negative eigenvalues for a bound-
ary operator, and the chiral bag boundary condition requires that eigen-
states evaluated on the boundary have chiral components related by a
unitary operator. The spectral flow for a one-parameter family of op-
erators is the net number of eigenvalues passing through zeros in the
positive direction as the parameter runs. It is shown that the spectral
flow for the Dirac equation with the APS boundary condition is ±1,
depending on the sign of the total angular momentum eigenvalue. A
counterpart of the spectral flow in the case of the chiral bag boundary
condition is treated as an extension of spectral flow. In addition, discrete
symmetry is discussed to explain the pattern of eigenvalues as functions
of the parameter.
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1. Setting up

There is a class of band structures of molecular spectra, in which energy
excitations can be separated into low and high ones. For example, the energy
of typical rotational excitation is much smaller than the typical vibrational
excitation (see Fig. 1). The low and the high excited levels form high density
states and a small number of isolated states, respectively. Accordingly, the
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whole dynamical variables are separated into slow and fast variables in such
a way that the slow variables are for describing high density states and the
fast ones for a small number of isolated states.

6
6rotational

excitations 6

6

vibrational
excitations

Figure 1. A characteristic pattern of energy levels for a
molecular problem with one slow (rotational) and one fast
(vibrational) degrees of freedom.

We give a simple model Hamiltonian consisting of slow and fast variables
of different nature. Let Jk and Sk be generators of SU(2), which are taken
as describing the orbital and the spin variables, respectively. We define a
one-parameter family of Hamiltonian operators to be

Ĥτ = (1− τ)1⊗ (−S3) + τ

3∑
k=1

Jk ⊗ Sk, 0 ≤ τ ≤ 1. (1)

For the representation parameters j = 1, s = 1
2 , the Ĥτ takes the form of

6× 6 Hermitian matrix. The eigenvalues are easily found as functions of the
parameter τ , which exhibit the band rearrangement against τ , as is shown in
Fig. 2.

If j is sufficiently large, the Jk can be taken as slow variables and treated
as classical ones but the fast variables Sk remain to be quantum ones. The
treatment of slow and fast variables as classical and quantum variables, re-
spectively, is called a semi-quantum model.

On the assumption that the Jk can be treated as classical variables [2],

the operator Ĥτ with Jk replaced by xk is converted into

Hτ (x) =
1− τ

2

(
−1 0
0 1

)
+
τ

2

(
x3 x1 − ix2

x1 + ix2 −x3

)
, x ∈ S2 ⊂ R3, (2)

where x = (xk) has been restricted to the unit sphere S2 by the normalization
Jk/J due to the conservation of the angular momentum. The eigenvalues of
Hτ (x) are

λ±(τ,x) = ±
√
−1

4
+
τ(1− τ)

2
(1 + x3), |x| = 1, (3)
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Figure 2. A redistribution of eigenvalues for Ĥτ against the parameter τ .

which are degenerate if and only if x3 = 1 (or x = e3 = (0, 0, 1)) and τ = 1
2 .

For each of eigenvalues λ±(τ,x), the associated eigenspace is attached at
x ∈ S2, and the totality of such eignspaces forms a complex line bundle over
S2, which we denote by L±(τ), respectively, and call the eigen-line bundles.
As long as the eigenvalues are not degenerate, we have the direct sum of eigen-
line bundles, L+(τ)⊕L−(τ). When τ = 0, both of the eigen-line bundles are
trivial; L±(0) = S2 × C. When the parameter passes the value τ = 1

2 , the
direct sum of the eigen-line bundles fails, since the eigenvalues are degenerate
at x = e3 for τ = 1

2 . This means that accompanying the variation in the
parameter τ , the eigen-line bundles topologically change. This change can
be detected by using the first Chern number assigned to each of L±(τ). For
τ = 1, the Hamiltonian is expressed as

H1(x) =
1

2

(
x3 x1 − ix2

x1 + ix2 −x3

)
, x ∈ S2 ⊂ R3, (4)

and the first Chern numbers of L±(1) are easily calculated as

c1(L±(1)) =
i

2π

∫
S2

F± = ∓1, (5)

where F± denote the curvature forms assigned to L±(1), respectively. Since
the Chern number is integer-valued and depends continuously on the param-
eter τ , it is constant in τ except for τ = 1

2 . Thus, the modification of band
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structure against the parameter τ shown in Fig. 2 finds a counterpart in
the corresponding semi-quantum model, in the form of a piece-wise constant
behavior of Chern numbers shown in Fig. 3.

-

6

d
d

d
τ

0 11
2

c1(L−(τ)) = +1

c1(L+(τ)) = −1

c1(L∓(τ))

= 0

Figure 3. Change in the Chern numbers against τ for the semi-
quantum model (2).

We give here, after [3], a more complicated semi-quantum Hamiltonian
than (2),

H(x) =

(
X Y − iZ

Y + iZ −X

)
, x ∈ S2 ⊂ R3, (6)

where

X(x) =b1(y2 − x2) + b2zy, (7a)

Y (x) =2b1yx− b2zx, (7b)

Z(x) =a1z + a2y(y2 − 3x2), (7c)

and (a1, a2, b1, b2) are real constants with the assumption that (a1, a2) 6=
(0, 0) and (b1, b2) 6= (0, 0). We note that this Hamiltonian admits D3 symme-
try,

DE(g)H(x)DE(g)−1 = H(DE⊕A2(g)x), g ∈ D3, (8)

where D3 is a discrete subgroup of SO(3) and where E and A2 denote a
two-dimensional and one-dimensional not totally-symmetric representations
of D3, respectively. The action of D3 on the sphere, denoted by the symbol
DE⊕A2 , is illustrated in Fig. 4. The z axis is the C3 symmetry axis. Three
C2 symmetry axes belong to the xy plane. Two intersection points of the C3

symmetry axis and the sphere form the two-point orbit with C3 stabilizer.
Six points of intersection of three C2 symmetry axes with the sphere form
two three-point orbits with stabilizer C2.

After [3], we describe the Chern numbers of the eigen-line bundles for the
Hamiltonian (6). Owing to the invariance of the Chern numbers with respect
to the scaling of the parameters (a1, a2, b1, b2), the parameter space (R2 −
{0})× (R2 − {0}) reduces to the two-torus T 2 described as a1 = cosφ1, a2 =
sinφ1 and b1 = cosφ2, b2 = sinφ2. The reduced parameter space is divided
into a certain number of connected regions to which respective fixed Chern
numbers are assigned, and such regions are called iso-Chern domains. The
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Figure 4. D3 group and its action on the sphere.

parameter space with such partition and Chern numbers is called the iso-
Chern diagram. The iso-Chern diagram for the eigen-line bundle associated
with the positive eigenvalue is shown in Fig. 5. The red and blue lines (φ1 =
±π2 , φ2 = ±π2 ) and black curves (cosφ1 cosφ2 = sinφ1 sin3 φ2) are the sets of

degeneracy points in the reduced parameter space T 2.
The iso-Chern diagram for the eigen-line bundle associated with nega-

tive eigenvalue is obtained by opposing the sign of the Chern number assigned
to each iso-Chern domain.
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Figure 5. The iso-Chern diagram for the eigen-line bundle associated
with the positive eigenvalue of the D3 invariant Hamiltonian (6)

In view of Fig. 5, we observe that when we move from an iso-Chern
domain to an adjacent one, passing the boundary between them, the change
in the Chern number, which we call a delta-Chern, is one of the four values,
±2,±6. The numbers 2 and 6 are those of D3 orbits with stabilizers C3 and
C2, respectively. In fact, we can show that degeneracy points on S2 form D3

orbits and that the delta-Chern is given by “±1 times the order of the orbit
in question”. The number +1 or −1 originally comes from a winding number,
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and is called a local delta-Chern, which has already appeared in Fig. 3. In
the case of Hamiltonian (2), the number of degeneracy points is one and the
initial bundle L±(τ) with τ < 1

2 is trivial, so that the delta-Chern and the
local delta-Chern coincide.

The local delta-Chern can be evaluated through a linearization method
at the degeneracy point in question. Let (τ0,x0) be a degeneracy point, where
τ0 is a parameter value at which a path in the parameter space crosses the
boundary between adjacent iso-Chern domains and where x0 is a degeneracy
point on the sphere at which the two eigenvalues are degenerate for τ0. Then,
the Hamiltonian can be homotopically deformed to the linearized Hamil-
tonian Hloc(t, p; τ0,x0) in the neighborhood of (τ0,x0) by means of deleting
higher order terms in (t, p1, p2), and hence the winding number attached to
the degeneracy point can be evaluated by using Hloc(t, p; τ0,x0) to obtain the
local delta-Chern. This idea is mentioned not in [3] but in [6]. For the semi-
quantum Hamiltonian (2), the linearized Hamiltonian at (τ,x) = ( 1

2 ,x0) is
given by

Hloc(t, q;
1

2
,x0) = tḢ 1

2
(x0) + p1∇H 1

2
(x0) · e1 + p2∇H 1

2
(x0) · e2

=
1

4

(
4t p1 − ip2

p1 + ip2 −4t

)
, (9)

where ek are the standard basis vectors with x0 = e3, and where e1, e2 are
viewed as tangent vectors to S2 at x0.

We are interested in what corresponds to the delta-Chern, in full quan-
tum description. To this end, we consider a full quantum Hamiltonian corre-
sponding to a linearized semi-quantum Hamiltonian. For notational simplic-
ity, we take up the simple semi-quantum Hamiltonian, in place of (9),

H(t, p) =

(
t p1 − ip2

p1 + ip2 −t

)
. (10)

Replacing pk by −i∂/∂qk, we obtain the corresponding full quantum Hamil-
tonian expressed as

Ĥt =

(
t −i ∂

∂q1
− ∂

∂q2

−i ∂
∂q1

+ ∂
∂q2

−t

)
= −i

2∑
k=1

σk
∂

∂qk
+ tσ3, (11)

where σk are the Pauli matrices. Thus we come to a Dirac operator Ĥt.

2. The Dirac equation on a bounded domain

A Dirac operator on Rd is given by

H = −i
d∑
k=1

γk∇k + µγd+1, ∇k = ∂/∂xk, (12)
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where µ is a mass parameter which is assumed to take all real values in this
article, and where γk are the gamma matrices satisfying

γkγj + γjγk = 2δjkI, j, k = 1, . . . , d,

γkγd+1 + γd+1γk = 0,

(γd+1)2 = I,

(γν)† = γν , ν = 1, . . . , d, d+ 1,

with I denoting the d× d identity matrix. In the present article, our interest
centers on the case of d = 2, and the gamma matrices are realized as the
Pauli matrices, γν = σν , ν = 1, 2, 3 (see (11)).

To pose a boundary condition, we need Green’s formula [1]. Let V and S
denote a bounded domain in Rd and its boundary, respectively. Green’s for-
mula for the Dirac operator H is given by

〈Φ, HΨ〉V − 〈HΦ,Ψ〉V = −i〈φ,~γ · ~nψ〉S , (13)

where φ = Φ|S , ψ = Ψ|S and ~γ · ~n =
∑
γjnj with ~n being the outward unit

normal to S.
Any boundary condition for the Dirac equation HΦ = EΦ should re-

quire the vanishing of the right-hand side of the above equation. If such a
boundary condition is adopted, the operator H becomes a symmetric opera-
tor. Furthermore, with some Sobolev conditions, it becomes self-adjoint.

In what follows, we give two boundary conditions, the APS and the
chiral bag boundary conditions. The APS boundary condition is given as
follows: If we can find a self-adjoint boundary operator B on S such that
B has no zero eigenvalue, we obtain the decomposition of the Hilbert space
H(S) into

H(S) = H(+)(S)⊕H(−)(S), (14)

where H(±)(S) are subspaces such that B|H(+)(S) > 0 and B|H(−)(S) < 0. We
assume further that

(~γ · ~n)H(±)(S) = H(∓)(S). (15)

The APS boundary condition requires that eigenstates evaluated on the
boundary should belong to H(+)(S) or H(−)(S).

To describe the chiral bag boundary condition, we decompose spinors
into the sum of chiral components,

Φ = Φ+ + Φ−, Φ± :=
1

2
(I ± ~γ · ~n)Φ. (16)

The components Φ± belong to the eigenspaces associated with the eigenvalues
±1 of ~γ · ~n, respectively, and those eigenspaces are orthogonal to each other,
so that any chiral components, Φ± and Ψ±, satisfy

~γ · ~nΦ+ = Φ+, ~γ · ~nΦ− = −Φ−, 〈Ψ+,Φ−〉 = 0. (17)

Then, the right-hand side of Green’s formula is brought into

−i〈φ,~γ · ~nψ〉S = −i〈φ+, ψ+〉S + i〈φ−, ψ−〉S . (18)
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If the chiral components ψ± of ψ = Ψ|S are related by

ψ− = Uγd+1ψ+, (19)

where U is any unitary operator acting on spinors defined on the boundary
and further commutes with ~γ ·~n, then those components satisfy 〈φ−, ψ−〉S =
〈φ+, ψ+〉S , so that the boundary integral vanishes. The above equation is
called the chiral bag boundary condition.

From a physical point of view, we have to consider currents on the
boundary. The continuity equation of the current and the density is described
as

∂

∂τ
(Ψ†Ψ) +

d∑
k=1

∂

∂xk
(Ψ†γkΨ) = 0, (20)

where τ denotes the time parameter in this equation only. The transverse

component of the current vector ~J = (Ψ†γkΨ), which is given by

Ψ†(~γ · ~n)Ψ, (21)

should vanish on the boundary S.

3. Feasible solutions to the 2D Dirac equation

Before solving the Dirac equation for the Hamiltonian Ĥt given in (11), we

have to mention the U(1) symmetry of Ĥt. Let

D(eiτ ) :=

(
e−iτ/2 0

0 eiτ/2

)
, R(τ) :=

(
cos τ − sin τ
sin τ cos τ

)
, τ ∈ R. (22)

Then, the U(1) action Uτ on the two-component spinor Φ on R2 is defined
to be

UτΦ = D(eiτ )Φ ◦R(−τ). (23)

As is straightforwardly verified, the Ĥt admits the U(1) symmetry,

Uτ ĤtU
−1
τ = Ĥt. (24)

The infinitesimal generator Ĵ of Uτ , which is defined through Uτ =
exp(−iτ Ĵ), is called the (spin-orbital) angular momentum operator. By dif-
ferentiation of Uτ with respect to τ at τ = 0, we obtain

Ĵ =
1

2
σ3 + i1

(
q2

∂

∂q1
− q1

∂

∂q2

)
=

1

2
σ3 − i1

∂

∂θ
, (25)

where (r, θ) are the polar coordinates. The differentiation of (24) with respect
to τ at τ = 0 yields

[Ĵ , Ĥt] = 0. (26)

The Hamiltonian (11) is expressed in the polar coordinates as

Ĥt = −iσr
∂

∂r
− i

r
σθ

∂

∂θ
+ tσ3, (27)
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where

σr =

(
0 e−iθ

eiθ 0

)
, σθ =

(
0 −ie−iθ
ieiθ 0

)
. (28)

We now apply the separation of variables method in the polar coor-
dinates. We start with the eigenvalue equation JΦ = jΦ, which is solved
by

Φj(r, θ) =

(
ei(j−

1
2 )θφ

(−)
j (r)

ei(j+
1
2 )θφ

(+)
j (r)

)
, j ∈ {±1

2
,±3

2
, · · · }, (29)

where φ
(±)
j (r) are unknown radial functions. The Dirac equation ĤtΦ = EΦ

then reduces to ĤtΦj = EjΦj , which gives for radial functions φ
(±)
j (r)

−i
dφ

(+)
j

dr
− i

r
(j +

1

2
)φ

(+)
j + tφ

(−)
j = Ejφ

(−)
j , (30a)

−i
dφ

(−)
j

dr
+
i

r
(j − 1

2
)φ

(−)
j − tφ(+)

j = Ejφ
(+)
j . (30b)

These equations are put together to give rise to a second-order differential
equation. According as |Ej | > |t| or |Ej | < |t|, the differential equation in
question is the Bessel equation or the modified Bessel equation.

Figure 6. The (E, t)-parameter space is divided into four regions
with different solutions to (30).

To each of four regions shown in Fig. 6, assigned is a type of feasible
solution:

(i) Feasible solutions with |Ej | > |t|:

Φj(r, θ) =c

(√
Ej + tei(j−

1
2 )θJj− 1

2
(βjr)

i
√
Ej − tei(j+

1
2 )θJj+ 1

2
(βjr)

)
for Ej > 0, (31a)

Φj(r, θ) =c′

( √
|Ej + t|ei(j− 1

2 )θJj− 1
2
(βjr)

−i
√
|Ej − t|ei(j+

1
2 )θJj+ 1

2
(βjr)

)
for Ej < 0, (31b)

where βj =
√
E2
j − t2 and where c and c′ are complex constants.
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(ii) Feasible solutions with |Ej | < |t|:

Φj(r, θ) =c

( √
t+ Eje

i(j− 1
2 )θIj− 1

2
(εjr)

−i
√
t− Ejei(j+

1
2 )θIj+ 1

2
(εjr)

)
for t > 0, (32a)

Φj(r, θ) =c′

(√
|t+ Ej |ei(j−

1
2 )θIj− 1

2
(εjr)

i
√
|t− Ej |ei(j+

1
2 )θIj+ 1

2
(εjr)

)
for t < 0, (32b)

where εj =
√
t2 − E2

j and where c and c′ are complex constants.

In the limit as t → 0 within the constraint |Ej | < |t|, one has
Ej = t = 0.

(iii) Feasible solutions with Ej = t = 0:

Φj(r, θ) = c

(
0

ei(j+
1
2 )θr−(j+

1
2 )

)
for j < 0, (33a)

Φj(r, θ) = c′
(
ei(j−

1
2 )θrj−

1
2

0

)
for j > 0. (33b)

In terms of z = reiθ, these solutions are expressed as

c

(
0

z|j|−
1
2

)
for j < 0, and c′

(
zj−

1
2

0

)
for j > 0, (34)

respectively, where |j| − 1
2 and j − 1

2 are non-negative integers.

4. The APS boundary condition

Let At be the restriction of Ĥt to the circle r = R. The boundary operator
Bt is then defined to be and expressed as

Bt = iσrAt =

(
i
R
∂
∂θ −ite−iθ

iteiθ − i
R
∂
∂θ

)
, (35)

where t 6= 0. The case of t = 0 will be treated separately. Further, we note
that

σrBt +Btσr =
1

R
σr. (36)

Eigenvalues and associated eigenstates of Bt are easily obtained as fol-
lows:

φ
(−)
j (θ) =c′j

(
−it ei(j− 1

2 )θ

( jR + λ−j )ei(j+
1
2 )θ

)
for κ−j :=

1

2R
+ λ−j < 0, (37a)

φ
(+)
j (θ) =cj

(
−it ei(j− 1

2 )θ

( jR + λ+j )ei(j+
1
2 )θ

)
for κ+j :=

1

2R
+ λ+j > 0, (37b)

where

λ±j = ±
√
j2

R2
+ t2, t 6= 0. (38)



Change in energy eigenvalues against parameters 11

Let D2
R and ∂D2

R denote the 2-disk of radius R and its boundary, re-
spectively. Define

H(±)(∂D2
R) = span

{
φ
(±)
j , j ∈ {±1

2
,±2

3
, · · · }

}
. (39)

Then, the Hilbert space H(∂D2
R) attached to ∂D2

R is decomposed into

H(∂D2
R) = H(+)(∂D2

R)⊕H(−)(∂D2
R), (40)

where

H(+)(∂D2
R) ⊥ H(−)(∂D2

R), σrH(∓)(∂D2
R) = H(±)(∂D2

R). (41)

The APS boundary condition for t 6= 0 is now described as

Φj(R, θ) ∈ H(−)(∂D2
R) or Φj(R, θ) ∈ H(+)(∂D2

R). (42)

In what follows, we list functional equations to determine eigenvalues [6].

(i) Edge state eigenvalues with Φj(R, θ) ∈ H(−)(∂D2
R) are determined by

the functional equations

t

√
t+ Ej
t− Ej

Ij− 1
2
(εjR) =

( j
R

+

√
j2

R2
+ t2

)
Ij+ 1

2
(εjR), for t > 0, (43a)

|t|

√
|t+ Ej |
|t− Ej |

Ij− 1
2
(εjR) =

( j
R

+

√
j2

R2
+ t2

)
Ij+ 1

2
(εjR), for t < 0. (43b)

These equations can be solved numerically to provide edge state eigen-
values as functions of t, as is shown in Fig. 7.

Figure 7. Edge state eigenvalues as functions of t. Left panels are
for j = 11/2, j = 5/2, and right panels for j = −11/2 and j = −5/2.

(ii) There exist no edge state eigenvalues with Φj(R, θ) ∈ H(+)(∂D2
R).
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(iii) Regular state eigenvalues with Φj(R, θ) ∈ H(−)(∂D2
R) are determined

by the functional equations

−t

√
Ej + t

Ej − t
Jj− 1

2
(βjR) =

( j
R

+

√
j2

R2
+ t2

)
Jj+ 1

2
(βjR) for Ej > 0,

(44a)

t

√
|Ej + t|
|Ej − t|

Jj− 1
2
(βjR) =

( j
R

+

√
j2

R2
+ t2

)
Jj+ 1

2
(βjR) for Ej < 0.

(44b)

(iv) Regular state eigenvalues with Φj(R, θ) ∈ H(+)(∂D2
R) are determined

by the functional equations

−t

√
|Ej + t|
|Ej − t|

Jj− 1
2
(βjR) =

( j
R
−
√
j2

R2
+ t2

)
Jj+ 1

2
(βjR) for Ej > 0,

(45a)

t

√
|Ej + t|
|Ej − t|

Jj− 1
2
(βjR) =

( j
R
−
√
j2

R2
+ t2

)
Jj+ 1

2
(βjR) for Ej < 0.

(45b)

Equations (44) and (45) are numerically solved to give regular and edge
state eigenvalues as functions of t, respectively, as is shown in Fig. 8.

Figure 8. Regular state eigenvalues as functions of t un-
der the APS boundary condition. Green lines are eigenvalues
with Φj(R, θ) ∈ H(−)(∂D2

R). Blue lines are eigenvalues with

Φj(R, θ) ∈ H(+)(∂D2
R). Black lines are edge state eigenvalues.
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We turn to the case of t = 0. To pose the APS boundary condition for
t = 0, we find eigenstates of the boundary operator B0. From (35) with t = 0,
the eigenvalues and associated eigenstates for B0 prove to be given by

B0φ
(0,+)
j =

1

R
(j +

1

2
)φ

(0,+)
j , φ

(0,+)
j =

(
0

aje
i(j+ 1

2 )θ

)
, (46a)

B0φ
(0,−)
j = − 1

R
(j − 1

2
)φ

(0,−)
j , φ

(0,−)
j =

(
bje

i(j− 1
2 )θ

0

)
. (46b)

Now we are in a position to state the APS boundary condition for t = 0.
Define

H(±)
0 (∂D2

R) = span{φ(0,±)j ; j = ±1

2
,±3

2
, · · · }. (47)

Then, we obtain the decomposition

H(∂D2
R) = H(+)

0 (∂D2
R)⊕H(−)

0 (∂D2
R), (48)

where

H(+)
0 (∂D2

R) ⊥ H(−)
0 (∂D2

R), σrH(±)
0 (∂D2

R) = H(∓)
0 (∂D2

R). (49)

In spite of the superscripts (±), both H(±)
0 (∂D2

R) have eigenstates associated
with negative, zero, and positive eigenvalues of B0.

The APS boundary condition for t = 0 is expressed as

Φj(R, θ) ∈ H(−)
0 (∂D2

R) or Φj(R, θ) ∈ H(+)
0 (∂D2

R). (50)

The solutions given in (33) are shown to satisfy the APS boundary condition

Φj(R, θ) ∈ H(+)
0 (∂D2

R) for j < 0, (51a)

Φj(R, θ) ∈ H(−)
0 (∂D2

R) for j > 0. (51b)

Eigenstates associated with zero eigenvalue are called zero modes.

We now show that the zero modes are indeed linked with edge eigen-
states when the parameter t reaches the zero value. To this end, we introduce
the power series IPν (z) through

Iν(z) =
(z

2

)ν
IPν (z), IPν (z) =

∞∑
n=0

1

n!Γ(ν + n+ 1)

(z
2

)2n
. (52)

Using IP
j+ 1

2

(z) with j > 0 and choosing suitable constant factors, we can

modify (32) with prescribed εj into the edge eigenstates of the form

Φ̃
(+)
edg =

(
ei(j−

1
2 )θrj−

1
2 IP
j+ 1

2

(εjr)

−i t−Ej2 rj+
1
2 ei(j+

1
2 )θIP

j+ 1
2

(εjr)

)
for t > 0, (53a)

Φ̃
(−)
edg =

(
ei(j−

1
2 )θrj−

1
2 IP
j+ 1

2

(εjr)

i
|t−Ej |

2 rj+
1
2 ei(j+

1
2 )θIP

j+ 1
2

(εjr)

)
for t < 0. (53b)
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Then, as t tends to zero, the both edge states Φ̃
(±)
edg prove to reach the same

limit,

Φ̃
(−)
edg −→

1

Γ(j + 1
2 )

(
rj−

1
2 ei(j−

1
2 )θ

0

)
←− Φ̃

(+)
edg , as Ej → 0. (54)

In a similar manner, for the eigenstates defined for j < 0 to be

Ψ̃
(+)
edg =

( t+Ej
2 e−i(|j|+

1
2 )θr|j|+

1
2 IP|j|+ 1

2

(εjr)

−ie−i(|j|− 1
2 )θr|j|−

1
2 IP|j|− 1

2

(εjr)

)
for t > 0, (55a)

Ψ̃
(−)
edg =

(
− |t+Ej |2 e−i(|j|+

1
2 )θr|j|+

1
2 IP|j|+ 1

2

(εjr)

−ie−i(|j|− 1
2 )θr|j|−

1
2 IP|j|− 1

2

(εjr)

)
for t < 0, (55b)

we find that

Ψ̃
(−)
edg −→

1

Γ(|j|+ 1
2 )

(
0

−ie−i(|j|− 1
2 )θr|j|−

1
2

)
←− Ψ̃

(+)
edg , as Ej → 0. (56)

In the rest of this section, we discuss discrete symmetry and currents
on the boundary. As is easily verified, the operators Ht, J , and Bt defining
the Dirac equation with the APS boundary condition satisfy

σ1Htσ1 = −Ht, (57a)

σ1Jσ1 = −J, (57b)

σ1Btσ1 = Bt. (57c)

These equations imply that if Ej is a regular (resp. edge) state eigenvalue with
the angular momentum j then −Ej is a regular (resp. edge) state eigenvalue
with the angular momentum −j. This fact explains the pattern of eigenvalues
shown in Figs. 7 and 8. If the graph of one of left panels is reflected with
respect to the t-axis (the horizontal axis with E = 0), then the resultant
graph coincides with the graph of the adjacent right panel.

We turn to another discrete symmetry. In a similar manner to the above,
we verify that

iσ2Ht(−iσ2) = H−t, (58a)

iσ2J(−iσ2) = −J, (58b)

iσ2Bt(−iσ2) = B−t. (58c)

It then follows that if Ej is a regular (resp. edge) state eigenvalue with the
angular momentum j for t, then Ej is a regular (resp. edge) state eigenvalue
with the angular momentum −j for −t. This fact explains that the pattern
of eigenvalues shown in Figs. 7 and 8 is of t-reflection along with j-inversion.

We proceed to currents on the boundary. We recall that the boundary
values of both edge and regular eigenstates are proportional to eigenstates of
the boundary operator Bt. Then, we can easily verify that the radial and the
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tangential components of the current for φ
(±)
j given in (37) are evaluated as

(φ
(±)
j )†σrφ

(±)
j = 0, (φ

(±)
j )†σθφ

(±)
j = 2t|c|2

( j
R
±
√
j2

R2
+ t2

)
, (59)

respectively, where c is a constant. While the radial component vanishes, the
tangential component alternates the sign, according as t < 0 or t > 0.

5. The chiral bag boundary condition

If the unitary operator U in (19) is chosen as

U = e2i arctan e
λ

1, (60)

the chiral bag boundary condition is brought into

σrψ = −ieλσ3σ3ψ. (61)

With this boundary condition applied to feasible solutions, the func-
tional equations for determining edge and regular state eigenvalues are found
to be given as follows [7]: (i) For |Ej | < |t|, those functional equations are√

t+ Ej
t− Ej

Ij− 1
2
(εjR) = e−λIj+ 1

2
(εjR) for t > 0, (62a)

−

√
|t+ Ej |
|t− Ej |

Ij− 1
2
(εjR) = e−λIj+ 1

2
(εjR) for t < 0, (62b)

and (ii) for |Ej | > |t|, they are√
Ej + t

Ej − t
Jj− 1

2
(βjR) = −e−λJj+ 1

2
(βjR) for Ej > 0, (63a)√

|Ej + t|
|Ej − t|

Jj− 1
2
(βR) = e−λJj+ 1

2
(βjR) for Ej < 0. (63b)

Though Eq. (62b) has no solution, the other functional equations for regular
and edge state eigenvalues are numerically solved to provide the eigenvalues
as functions of t, as is shown in Fig. 9.

A remarkable property observed in Fig. 9 is that one of regular state
eigenvalues is connected with an edge state eigenvalue. We refer to the state
as a critical state, which corresponds to the eigenvalue as a limit of both the
regular and the edge state eigenvalues. Since the critical states are charac-
terized by the conditions that E = ±t, we can easily solve Eq. (30) with
E = ±t to find the critical states within constant multiples, along with the



16 Toshihiro Iwai and Boris Zhilinskii

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

t

E

j=5/2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

t

E

j=-5/2

Figure 9. Eigenvalues of regular (blue) and edge (red) eigenstates with
R = 10, λ = 0.1 for j = 5/2 (left panel) and for j = −5/2 (right panel).

eigenvalues,

Φ =

(
irj−

1
2 ei(j−

1
2 )θ

eλ

R r
j+ 1

2 ei(j+
1
2 )θ

)
, Ecri

j = −
eλ(j + 1

2 )

R
, for j > 0, (64a)

Φ =

(
− e

−λ

R r−(j−
1
2 )ei(j−

1
2 )θ

ir−(j+
1
2 )ei(j+

1
2 )θ

)
, Ecri

j =
e−λ(|j|+ 1

2 )

R
, for j < 0. (64b)

Like (34), these critical states are also described in z = reiθ as

Φ =

(
izj−

1
2

eλ

R z
j+ 1

2

)
, j > 0, (65a)

Φ =

(
− e

−λ

R z|j|+
1
2

iz|j|−
1
2

)
, j < 0. (65b)

We can verify that the transition indeed occurs from a regular eigenstate
to an edge eigenstate. Like (53), choosing a suitable scaling factor, we can
introduce a regular and an edge eigenstates for j > 0 of the form

Φ̃reg =

(
rj−

1
2 ei(j−

1
2 )θJP

j− 1
2

(βjr)

−i |Ej−t|2 rj+
1
2 e(j+

1
2 )θJP

j+ 1
2

(βjr)

)
, (66a)

Φ̃edg =

(
ei(j−

1
2 )θrj−

1
2 IP
j+ 1

2

(εjr)

−i t−Ej2 rj+
1
2 ei(j+

1
2 )θIP

j+ 1
2

(εjr)

)
, (66b)

respectively, where JPν is a power series defined through

Jν(z) =
(z

2

)ν
JPν (z), JPν (z) =

∞∑
n=0

(−1)n

n!Γ(ν + n+ 1)

(z
2

)2n
. (67)

It is easily shown that as Ej(t)→ −t, there occurs the transition

Φ̃reg −→
1

Γ(j + 1
2 )

(
rj−

1
2 ei(j−

1
2 )θ

−i e
λ

R r
j+ 1

2 ei(j+
1
2 )θ

)
←− Φ̃edg. (68)
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For j < 0, we take

Ψ̃reg =

(Ej+t
2 e−i(|j|+

1
2 )θr|j|+

1
2 JP|j|+ 1

2

(βjr)

−ie−i(|j|− 1
2 )θr|j|−

1
2 JP|j|− 1

2

(βjr)

)
, (69a)

Ψ̃egd =

( t+Ej
2 e−i(|j|+

1
2 )θr|j|+

1
2 IP|j|+ 1

2

(εjr)

−ie−i(|j|− 1
2 )θr|j|−

1
2 IP|j|− 1

2

(εjr)

)
. (69b)

Then, a straightforward calculation shows that as Ej(t) → t, there occurs
the transition

Ψ̃reg −→
1

Γ(|j|+ 1
2 )

(
e−λ

R e−i(|j|+
1
2 )θr|j|+

1
2

−ie−i(|j|− 1
2 )θr|j|−

1
2

)
←− Ψ̃edg. (70)

In the rest of this section, we mention discrete symmetry and boundary
currents. Like (57), we verify that

σ1Htσ1 = −Ht, (71a)

σ1Jσ1 = −J, (71b)

σrσ1ψ = −ie−λσ3σ3σ1ψ. (71c)

In contrast to (57c), the chiral bag boundary condition is not invariant under
the σ1K, where K denotes the complex conjugation. In fact, in the right-hand
side of (71c), the exponent λ of the boundary condition (61) is replaced by
−λ. However, if the λ is viewed as a real parameter, the inversion λ→ −λ is
acceptable as a transformation, so that we may view the above equations as
representing a pseudo-symmetry of the family of the Dirac equations with the
chiral bag boundary condition depending on λ. It then turns out that if Ej
is a regular (resp. edge) state eigenvalue with the angular momentum j then
−Ej is a regular (resp. edge) state eigenvalue with the angular momentum −j
under the boundary condition with the parameter value −λ. This symmetry
is observed in the pattern of eigenvalues shown in Fig.10.

Figure 10. Eigenvalues of regular (blue) and edge (red) eigenstates with
|j| = 7

2 , R = 10 and with λ = −0.5 (left panel) and λ = 0.5 (right panel).
The solid and dashed curves are for j > 0 and for j < 0, respectively. Black
lines are auxiliary lines E = ±t separating the regions referred to in Fig. 6.



18 Toshihiro Iwai and Boris Zhilinskii

In contrast to (58), the operator iσ2K cannot be a symmetry operator
for the eigenvalue problem with the chiral bag boundary condition. In fact,
we obtain the following equations in correspondence with (58),

iσ2Ht(−iσ2) = H−t, (72a)

iσ2J(−iσ2) = −J, (72b)

σr(iσ2)ψ = ie−λσ3σ3(iσ2)ψ. (72c)

As is seen in (72c), the boundary condition is not (pseudo-)invariant under
the action of iσ2K. In the right-hand side of the (72c), the factor −i of
the condition (61) is replaced by i. This gives a reason why the pattern of
eigenvalues shown in Fig. 10 is not of t-reflection along with j-inversion.

Currents on the boundary for edge states (32) with r = R and Ej
specified are given, within constant multiples, by

ψ†σrψ = 0, (73a)

ψ†σθψ = −2(t+ Ej)e
λIj− 1

2
(εjR)2 for t > 0. (73b)

For regular states (31) with r = R and Ej specified, one has, within constant
multiples,

ψ†σrψ = 0, (74a)

ψ†σθψ =

{
−2(t+ Ej)e

λJj− 1
2
(βjR)2 for Ej > 0,

−2|t+ Ej |eλJj− 1
2
(βjR)2 for Ej < 0.

(74b)

6. Comparison between the APS and the chiral bag boundary
conditions

We are interested in transition states both for the APS and the chiral bag
boundary conditions. As is well known, the spectral flow for a one-parameter

-

6

�
�
�
��

@
@
@
@@

@
@
@

@@

�
�
�

��

E E = t

E = −t

(j < 0)

(j > 0)
t -

6

�
�
�
��

@
@
@
@@

@
@
@

@@

�
�
�

��

E

t

E = t

E = −t

(j < 0)

(j > 0)

Figure 11. A schematic view of transient eigenvalue curves. The left and
the right panels are for the chiral bag and the APS boundary conditions,
respectively. In the left panel, the parameter is chosen as λ = 0 for simplicity.

family of operators is the net number of eigenvalues passing through zero
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in the positive direction as the parameter runs. This notion works well for
characterizing the band rearrangement under the APS boundary condition.
In fact, the spectral flow in question is given by −sgn(j). However, it does not
serve as a characteristic quantity under the chiral bag boundary condition,
since the zero eigenvalue does not carry a special meaning.

Figure 12. Eigenvalues of regular (black) and edge (red) eigenstates against
j under the APS boundary condition with R = 1.0 for t = −5.0 (left panel)
and for t = 5.0 (right panel). The dashed horizontal lines in the left and
the right panels correspond to the lines E = ±t with t = −5.0 and t = 5.0,
respectively.

Figure 13. Eigenvalues of regular (black) and edge (red) eigenstates against
j under the chiral bag boundary condition with R = 1.0, λ = 0.0 for t = −5.0
(left panel) and for t = 5.0 (right panel). The dashed horizontal lines in the
left and the right panels correspond to the lines E = ±t with t = −5.0 and
t = 5.0, respectively.

We need an extended notion of the spectral flow to characterize the
band rearrangement under the chiral bag boundary condition. In the case of
the chiral bag boundary condition, there exists a transient eigenvalue curve
which crosses one of the boundary lines E = ±t, depending on whether j > 0
or j < 0 (see Fig. 11, the left and the right panels of which are abstracted
from Fig. 9 and Fig. 7, respectively). If we assign −1 and +1 to the crossing
of the boundary lines E = −t and E = t, respectively, the extended spectral
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flow for the chiral bag boundary condition is given by −sgn(j). Then, band
rearrangement is characterized by −sgn(j) in both cases of the APS and the
chiral bag boundary conditions.

In conclusion, we compare two boundary conditions from another point
of view. If we plot energy eigenvalues against j under the chiral bag boundary
condition with the parameter t fixed at a value, we obtain Figs. 12 and 13
for the APS and the chiral bag boundary conditions, respectively. Difference
is distinctively observed in the pattern of edge state eigenvalues (red dots).

Acknowledgment

We would like to thank Dr. Guillaume Dhont for his graphical description of
eigenvalues. Part of this work was supported by a Grant-in Aid for Scientific
Research No. 26400068 (T.I) from JSPS.

References

[1] M. Asorey, A.P. Balachandran, and J.M. Pérez-Pardo, Edge states: topological
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