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Abstract Formation of energy bands in the system of rotation-vibration quantum states
of molecules is described within semi-quantum models under the presence of a symmetry
group characterizing the equilibrium molecular configuration. Effective rotation-vibration
Hamiltonians are written in two-quantum state models with rotational variables treated as
classical ones. Eigen-line bundles associated with eigenvalues of 2 × 2 Hermitian matrix
defined on rotational classical phase space which is a two-dimensional sphere are charac-
terized by the first Chern class. Explicit procedure for the calculation of Chern numbers are
suggested and realized for a family of Hamiltonians depending on extra control parameters
in the presence of symmetry. Effective Hamiltonians for two vibrational states transforming
according to some representations of the cubic symmetry group are studied. Chern numbers
are evaluated for respective model Hamiltonians. The iso-Chern diagrams are introduced
which split the parameter space into regions with fixed Chern numbers.

Keywords Energy bands · Topological invariants · Chern class · Molecules

1 Introduction

The energy spectra of many different quantum systems show the presence of bands, i.e.
the intermittance of energy regions with high density of states (bands) and zero density
of states (gaps). The well-known examples are electronic bands in periodic solids, rota-
tional multiplets in rovibrational structure of isolated molecules, Rydberg (Coulomb) shells
in one-electron atomic systems etc. Very often this band structure depends on some con-
trol parameters: rotational angular momentum, external field parameters, and so on, in such
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a way that under variation of control parameters certain qualitative modifications of the band
structure occur. These modifications are typically related to the redistribution of energy lev-
els between bands for isolated molecules or to the discontinuity of other response quantities,
like Hall conductance for solids. It is clear that the mathematical model needed for the de-
scription of such qualitative modifications should be based on topological arguments as well
as the symmetry properties of the system [1–3, 6, 7, 10, 12, 17, 19].

The relevance of a topological invariant, namely the Chern class, to the qualitative phe-
nomenon of the energy level redistribution between energy bands in rovibrational struc-
ture of molecules was initially suggested in [13]. The analysis was done by using so called
a semi-quantum model which is based on the splitting of all dynamical variables of the
problem into “slow” classical and “fast” quantum variables. In the case of rotational struc-
ture of vibrational states, classical rotational variables form a phase space which is a two-
dimensional sphere and the number of quantum states taken into account corresponds to a
number of analyzed vibrational states counted with their degeneracies. Further studies have
shown that generically the redistribution of energy levels in the rotational band structure
consists in the transfer of one energy level and is associated with the modification of Chern
number by one [5, 6].

In the present paper we analyze in detail the effect of invariance properties of the sys-
tem exhibiting the effect of the redistribution of energy levels between bands under the
variation of control parameters. We start in Sect. 2 with a brief description of a two-state
semi-quantum model for rotational structure of vibrational molecular states in the presence
of a symmetry group of a problem. Then in Sect. 3 we give a construction of complex line
bundles associated with the semi-quantum model and introduce the system of charts and a
transition function between them which allow us to realize in Sect. 4 an explicit calcula-
tion of Chern numbers in terms of winding numbers. Section 5 discusses a construction of
iso-Chern diagrams which describe the splitting of the space of control parameters of the
model into regions associated with the same set of Chern numbers for complex line bundles.
Concrete examples of Chern number calculations are studied in Sect. 6 by using effective
rotational Hamiltonians for two vibrational states invariant with respect to the cubic symme-
try group O. An alternative approach to the prediction of possible types of rearrangements
based on a simple group theoretical arguments introduced in [18] is compared with the
present analysis of Chern numbers in Sect. 7. Finally, Sect. 8 includes a discussion of fur-
ther applications and generalizations of our approach as well as a remark on the method of
evaluating Chern numbers.

2 Semi-quantum Two State Models

Let us start by introducing the energy bands on a very simple purely quantum example of
the coupling of two angular momenta.

Let us consider two operators N and S, acting each on irreducible finite dimensional
vector space VN and VS whose dimensions are dim VN = 2N + 1 and dim VS = 2S + 1,
where N,S are nonnegative integers or half integers.

The total space of the problem is the tensor product VN ⊗ VS . This total space generally
could be reducible. The operators acting on that space can be constructed in terms of S ⊗ 1
and 1 ⊗ N operators.

Instead of looking at the total problem, we can try to introduce an additional classifying
operator which splits the total space into irreducible subspaces. If the classifying operator
commutes with the Hamiltonian of the dynamical system under study, it plays the role of an
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integral of motion and enables us to split rigorously the total space into subspaces, according
to different eigenvalues of the classifying operator.

Taking into account the commutativity of the classifying operator and the Hamiltonian,
the whole number of eigenstates of the Hamiltonian can be split into irreducible subspaces
which are the invariant subspaces of the classifying operator. From the physical point of
view, such splitting is often named a band structure. The origin of such terminology be-
comes especially clear in a limiting situation when all the eigenvalues of the Hamiltonian
corresponding to the same eigenvalue of the classifying operator are very close in value
(their energy) being at the same time quite distant from energy eigenvalues corresponding
to another eigenvalue of classifying operator.

Energy eigenstates corresponding to each irreducible subspace of classifying operator
form an “energy band”.

From the physical point of view, there is a quite important and interesting question: Is it
possible to generalize the notion of bands to slightly perturbed (deformed) systems, when
the classifying operator does not commute exactly with the Hamiltonian? And even more
interesting: Is it possible to describe and to characterize the reorganization of bands which
can be easily imagined by constructing a parameter dependent family of Hamiltonians hav-
ing at different limits the Hamiltonians commuting with different classifying operators and
giving the decomposition into different systems of bands?

One of possibilities to realize such a construction is based on the adiabatic separation
of variables responsible for an intra-band structure (so called slow motion) and inter-band
structure (fast motion). After using classical variables for slow motion and quantum de-
scription for fast variables, we obtain so called semi-quantum models [6, 15–17], where
the classical phase space for slow variables can be considered as a base space for a vector
bundle, whose fibers are quantum eigenspaces attached to each point of the classical phase
space. The Hamiltonian as a quantum description in this model is a matrix valued function
defined over the classical limit manifold, the classical phase space for “slow” classical vari-
ables. The rank of the vector bundle is the number of quantum states taken into account in
the model.

The situation becomes simple in the case of a fiber bundle over a base space being a
classical phase space for a one-degree-of-freedom system. If the energy surface associated
with each quantum eigenvalue and considered as a function over the classical phase space is
isolated as a whole, i.e. possesses no degeneracy points with another energy surface, the fiber
bundle can be decomposed into line bundles. The topology of each bundle with complex line
fibers can be characterized by a topological invariant, namely the first Chern number.

Restricting ourselves to two-quantum state approximation and to the two-dimensional
sphere as a classical phase space, we obtain an effective rotation-vibration Hamiltonian writ-
ten in the form of a 2 × 2 Hermitian matrix

(
H11 H12 + iG12

H12 − iG12 H22

)
, (1)

where all matrix elements are functions of rotational variables Jx, Jy, Jz and probably de-
pend on some control parameters (ai, bi, . . .). On account of the conservation of the square
of the rotational angular momentum, J2 = const, all matrix elements are functions defined
on the two-dimensional sphere (the classical phase space of the rotational problem). We
can always add a diagonal matrix with (−H11 − H22)/2 entry to get a matrix with zero
trace. In order to simplify notation we will use below the simple (x, y, z) notation instead
of Jx, Jy, Jz and reparametrize the matrix by imposing the restriction x2 + y2 + z2 = 1.
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In the absence of control parameters the matrix Hamiltonian (1) depends generically
on two parameters characterizing the point position on the classical phase space, S2. Con-
sequently this matrix has no degeneracy points of its two eigenvalues, because Hermitian
matrices with degeneracy of eigenvalues have codimension 3 in the space of generic Her-
mitian matrices. The eigenspaces of the matrix (1) form a bundle of rank two over the base
space S2. In the absence of degeneracy points of eigenvalues, this vector bundle decomposes
into two complex line bundles. Each such complex line bundle is characterized by a Chern
number. We can calculate explicitly the Chern numbers by analyzing eigenvectors of (1).
But before going to this calculation, a short note should be made on a general method of
construction of effective Hamiltonian (1) in the case of the presence of a certain symmetry
group.

Let us suppose that the group G is an invariance group of the problem to be considered.
This means that the Hamiltonian should be invariant with respect to G. We are mainly in-
terested in cases when the symmetry group is a continuous or a finite point group of the
equilibrium configuration extended by time reversal symmetry. Quantum states (or equiv-
alently quantum creation and annihilation bosonic operators) should transform according
to two-dimensional reducible or irreducible representation of the symmetry group G. In a
similar way classical rotational variables transform according to three-dimensional repre-
sentation of group G.

We write an effective Hamiltonian in terms of irreducible tensors which can be chosen
in the form of tensor product of rotational and vibrational tensorial operators. Rotational
tensors R�(K,n�)

α are characterized by degree �, rank K with respect to SO(3) group, mul-
tiplicity index n, and irreducible representation � of group G. The index α denotes line of
a multidimensional representation. The rotational tensors of even degree are invariant with
respect to time reversal, whereas rotational tensors of odd degree change sign under time
reversal.

If we restrict ourselves to the two state approximation for the vibrational part of the
problem, there are associated only four quantum vibrational operators a+

1 a1, a+
2 a2, a+

1 a2 +
a+

2 a1, i(a+
1 a2 − a+

2 a1) which always can be chosen as belonging to irreducible (one- or two-
dimensional) representations of the symmetry group G. First three of these operators are
time reversal invariant. The last one changes sign under time reversal.

In the case of two vibrational states transforming according to two real one-dimensional
representations �1 and �2 the 2 × 2 effective Hamiltonian has the form

(
R

�0
11 R

�3
12,r + iR

�3
12,im

R
�3
12,r − iR

�3
12,im R

�0
22

)
, (2)

where �0 = �2
1 = �2

2 is a totally symmetric representation, and �3 = �1 × �2. Rotational
tensors R

�0
11 , R

�0
22 , R

�3
12,r , are of even degree in elementary rotational variables. Rotational

tensor R
�3
12,im is of odd degree in elementary rotational variables.

3 Setting Up a Complex Line Bundle

Let us now study an abstract 2 × 2 Hermitian matrix

(
a11 a12 + ib12

a12 − ib12 a22

)
, (3)
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whose matrix elements are functions defined on the two-dimensional sphere. We want to
characterize a bundle formed by normalized eigenvectors of the matrix (3).

As soon as we suppose that two eigenvalues λ1, λ2 are nowhere degenerate, we can admit
that λ1 > λ2 everywhere. Let us consider the eigenvector associated to the eigenvalue λ1. We
denote this eigenvector by (

C1

C2

)
, (4)

where C1 and C2 are complex numbers satisfying the normalization condition |C1|2 +
|C2|2 = 1. Two possible alternative equations for C1,C2 follow from the eigenvalue equa-
tion for the matrix (3). We have from the first and the second row of the eigenvalue equation
the relations

(a11 − λ1)C
up
1 + (a12 + ib12)C

up
2 = 0, (5)

and

(a12 − ib12)C
down
1 + (−a11 − λ1)C

down
2 = 0, (6)

respectively. Naturally, both relations give the same eigenvector up to phase factor but the
definition domain for these two representations of the same eigenvector could be different.
Each of them can be defined only in its proper domain in the base space S2. This is why we
have denoted them differently by C

up
α and Cdown

α .
The solution to (5) can be written in the form

(
C

up
1

C
up
2

)
= 1√

(λ1 − a11)2 + a2
12 + b2

12

(
a12 + ib12

λ1 − a11

)
. (7)

This solution is well defined everywhere on the sphere except at points where the norm of
the vector goes through zero. The exceptional points occur if three conditions are satisfied:

a12 = 0; b12 = 0, a11 = λ1. (8)

First two conditions a12 = b12 = 0 generically lead to a number of isolated solutions de-
scribed as isolated points on the sphere. By substituting a12 = 0 and b12 = 0 into a11 = λ1

we get

a11 = 1

2

(
a11 + a22 + |a11 − a22|

)
. (9)

One should be reminded that λ1 is chosen as the highest energy eigenvalue,

λ1,2 = 1

2

(
a11 + a22 ±

√
(a11 − a22)2 + 4a2

12 + 4b2
12

)
, (10)

so that the sign plus before the square root should be chosen for the λ1 eigenvalue.
We rewrite Eq. (9) as

a11(θ,φ) − a22(θ,φ) = ∣∣a11(θ,φ) − a22(θ,φ)
∣∣ (11)

to specify two parameters θ,φ assigning the points on the base space.
It is clear that the equation (11) is automatically satisfied in the region where a11 −a22 ≥ 0

and it is not satisfied in the region where a11 − a22 < 0.
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Now we define the domain Uup to be the subset of the sphere where the solution (7) is
well defined. This domain includes the whole sphere with exception of a number of isolated
points which can be found as a solution of the following system of equations and inequali-
ties:

a12 = 0, b12 = 0, a11 − a22 ≥ 0. (12)

One should note that it is possible to remove the sign equality in the last relation in (12) and
to consider this relation as a strict inequality. This is due to the fact that we are studying now
regular points in the parameter space, which assumes that the degeneracy of eigenvalues
is absent. At the same time, imposing equality in the last relation we get the system of
equations corresponding to the existence of degeneracy points.

Now we can analyze the second equation (6) for the same eigenvector associated with
the highest eigenvalue. The solution to (6) can be written in the form

(
Cdown

1
Cdown

2

)
= 1√

(λ1 − a22)2 + a2
12 + b2

12

(
λ1 − a22

a12 − ib12

)
. (13)

Like (8), the exceptional points occur if three conditions are satisfied:

a12 = 0, b12 = 0, a22 = λ1. (14)

The first two conditions a12 = 0 and b12 = 0 are exactly the same as in (8). They give on
the sphere the same system of isolated points as those for “up” representation. But the third
condition now rewrites as

a22 = 1

2

(
a11 + a22 + |a11 − a22|

)
(15)

or equivalently as

a22 − a11 = |a11 − a22|. (16)

It is clear that condition (16) is satisfied if a11 − a22 ≤ 0.
In a similar manner to the previous case, we can define the domain Udown of the sphere

where the solution (13) is well defined. This region includes the whole sphere with exception
of a number of isolated points which can be found as a solution of the following system of
equations and inequalities:

a12 = 0, b12 = 0, a11 − a22 ≤ 0. (17)

Again, for regular points on the parameter space the last relation can be replaced by strict
inequality because otherwise the degeneracy of eigenvalues occurs.

Thus we have found “exceptional” points corresponding to singularities of the norm of
eigenvectors and constructed two alternative charts on the sphere, where the eigenvectors are
well-defined. We have obtained two expressions, (7) and (13), of the positive eigenvector,
which are defined on Uup and Udown, respectively. The domain Uup consists of the whole
sphere without “positive” exceptional points. The domain Udown consists of the whole sphere
without “negative” exceptional points.

To get the coefficient of proportionality between (7) and (13) on the intersection Uup ∩
Udown, we need to calculate the ratio of the first (or of the second) components of the same
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eigenvectors defined in different domains. This ratio can be rewritten by using the relation
(λ1 − a11)(λ1 − a22) = a2

12 + b2
12 and calculated as

a12 + ib12√
(λ1 − a11)2 + a2

12 + b2
12

√
(λ1 − a22)2 + a2

12 + b2
12

λ1 − a22
= ε

a12 + ib12√
a2

12 + b2
12

, (18)

where ε = sgn(λ1 − a22). Now we have obtained the transition rule

(
C

up
1

C
up
2

)
= ε

a12 + ib12√
a2

12 + b2
12

(
Cdown

1
Cdown

2

)
on Uup ∩ Udown, (19)

which determines the complex line bundle associated with the eigenvalue λ1.
For notational simplicity, we describe the transition rule (19) as

u+ = 	u−, 	 = ε
a12 + ib12√
a2

12 + b2
12

∈ U(1), (20)

where

u+ =
(

C
up
1

C
up
2

)
, u− =

(
Cdown

1
Cdown

2

)
, ε = sgn(λ1 − a22). (21)

Note that in the case of the initial matrix to be chosen with zero trace and a′
11 > 0 , we have

ε = +1.
The following property of the transition phase factor is very useful for further analysis.
Let us take a closed path (we name it contour) on the sphere which does not pass

through “exceptional” points on the sphere. Calculating the phase of the off-diagonal el-
ement a12 + ib12, we can map the contour on the sphere to the complex number plane
{�w,	w}. The result of this map on the w-plane is again a closed curve which can go an
integer (positive or negative) number of times around the w = 0 point. As long as the initial
contour does not go through “exceptional” points, the image of this contour cannot pass
through the zero point w = 0. This means that even if we deform continuously the contour
on the sphere (preventing it from going through “exceptional” points), the integer number
(winding number) giving the number of times the image curve goes around w = 0 point
remains invariant. Moreover, instead of using the phase of the off-diagonal element, we can
equally use directly the real and the imaginary parts of the off-diagonal element without
dividing by the absolute value. As long as the contour does not go through “exceptional”
points, the process of dividing or multiplying by absolute value (which is strictly positive)
cannot change the winding number. Only the continuity of the map is needed to guarantee
the invariance of the winding number.

4 Chern Number Calculation Through Winding Numbers

The local connection forms are defined on Uup and Udown to be

ω+ := u†
+du+, ω− := u†

−du−, (22)
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respectively. Then, when differentiated, the transition equation provides the relation between
ω+ and ω−,

ω+ = 	−1d	 + ω− on Uup ∩ Udown. (23)

Let us put 	 in the form 	 = eiϕ , where ϕ is determined within additive constants. Then,
one obtains by differentiation 	−1d	 = idϕ, where dϕ is defined uniquely on Uup ∩ Udown.
Since d(	−1d	) = id(dϕ) = 0, the curvature form turns out to be defined globally to be

� =
{

dω− on Udown,

dω+ on Uup.
(24)

The first Chern number is defined as the integral over the whole sphere

c1 = i

2π

∫
S2

�. (25)

If we are given the Hermitian matrix (1) explicitly, we can calculate the above integral to get
the Chern number.

In order to calculate the Chern number according to (25), we split the whole sphere S2

into regions S2+ and S2− in such a way that the local connection form ω+ has no singularities
in S2+ and the local connection form ω− has no singularities in S2−. We can always do that
but each region (S2+ or S2−) can consist of several connected components. The division of
the whole sphere S2 into S2+ and S2− can be done by a set of closed paths (closed curves)
C1,C2, . . . ,Ck . Each closed curve Cs is always a boundary between S2+ and S2− regions.
Each curve Cs should be properly oriented. An application of the Stokes theorem provides

∫
S2

� =
∫

S2+
dω+ +

∫
S2−

dω− =
∮

C1+···+Ck

ω+ +
∮

−(C1+···+Ck)

ω−. (26)

Using (23), we rewrite this expression to obtain
∫

S2
� =

∮
C1+···+Ck

ω+ −
∮

(C1+···+Ck)

(
ω+ − 	−1d	

)

=
k∑

s=1

∮
Cs

	−1d	 =
k∑

s=1

∮
Cs

d(ln	)

=
k∑

s=1

2π i W(Cs), (27)

where W(Cs) denotes the winding number for Cs and where the phase of the transition
function between two charts is written symbolically as ln	. Finally, from (25) and (27), we
get the expression of the first Chern number in the form of the sum of the winding numbers
for appropriately chosen contours,

c1 = i

2π

k∑
s=1

2πiW(Cs) = −
k∑

s=1

W(Cs). (28)

The answer is just the sum of winding numbers for all contours separating S2+ and S2−
regions. It can be easily seen that this sum of winding numbers can be transformed into a
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Fig. 1 Example of the splitting of the sphere into S2+ and S2− regions. The part of the sphere is represented
which has three “positive” zeros. These zeros are shown by three black dots. Left figure gives an example of
the choice of two contours, C1 and C2, separating S2+ and S2− regions. The sum of integrals along C1 and C2
contours is equivalent to the sum of integrals along three contours surrounding “positive” zeros, as shown in
the right figure. Paths shown by dashed lines in the right figure give zero contribution to the sum of contour
integrals

sum over circles surrounding each exceptional point of S2+ region. Figure 1 shows example
of such transformation of contours. The example shown in Fig. 1 is artificial. Three “excep-
tional” points surrounded by two circular paths are chosen in order to demonstrate that the
number of contours can change by continuous deformation. At a final result of deformation
(shown in Fig. 1, right) the winding numbers can be calculated either along two circular
paths (these two paths are just the deformed versions of initial paths) or along three new
paths. Each new path surrounds one “positive exceptional” point. In Sect. 8, we will make
a remark on the sum of the winding numbers for small circles around positive exceptional
points.

Now we can formulate the final step in the calculation of Chern numbers for a 2 × 2
matrix Hamiltonian defined over the two-dimensional sphere and depending on extra control
parameters.

We split the sphere into (multi-component) regions S2+ and S2− in such a way that S2+
includes only “negative” exceptional points and S2− includes only “positive” exceptional
points. For each contour separating S2+ and S2−, we find the winding number for the map
of this contour to the w-plane. The image of this map are components of the real and the
imaginary parts of the off-diagonal matrix element of the Hamiltonian. The Chern number
is expressed as an appropriate algebraic sum of winding numbers for all contours.

From the point of view of practical calculations, it is useful to choose contours lying
on the sphere at a constant value of one of coordinates, say z. This allows us to check
easily the winding numbers by looking at the z dependence of the winding number. The
winding number is not defined if the contour goes through an exceptional point. Otherwise
the winding number is an integer and remains invariant under any continuous deformation
of the contour if all exceptional points remain avoided under such deformation.

5 Iso-Chern Diagrams

If the effective Hamiltonian depends on some control parameters, the degeneracy of eigen-
values is generically possible. All points in the control parameter space which correspond to
the absence of degeneracy of eigenvalues are called regular. Parameters corresponding to the
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degeneracy of eigenvalues form subsets in the parameter space, which can split the param-
eter space into connected domains of regular values of parameters. We call those domains
iso-Chern domains. This is because the Chern numbers assigned to each regular values of
parameters are constant on such a domain.

To find the boundaries of iso-Chern domains, we need to solve the equation:

det

(
a11 a12 + ib12

a12 − ib12 −a11

)
= 0, (29)

which is equivalent (assuming that a11, a12, and b12 are real) to the system of three equations

a11 = 0; a12 = 0; b12 = 0. (30)

Caution should be taken in describing iso-Chern domains in the space of control param-
eters. For example, trivial scaling of all terms of the Hamiltonian by the same positive factor
naturally transforms regular points of the parameter space into regular points, if the Hamil-
tonian depends linear-homogeneously on the parameters. All such regular points should
belong to the same “iso-Chern” domain of the parameter space. At the same time the si-
multaneous scaling of all terms of the Hamiltonian by a negative factor transforms regular
points of parameter space into other regular points of the parameter space, but corresponding
points are not obliged to belong to the same connected (iso-Chern) domain of the parameter
space. This is due to the fact that the zero value of the scaling factor can result in a non-
regular parameter value. This example in which the scaling of all terms of the Hamiltonian
is performed is rather an oversimplified example. In contrast with this, it is possible that the
scaling of only a part of terms of the Hamiltonian does not modify the equations defining
degeneracy points for the eigenvalues. For example, the scaling of all parameters appearing
in the diagonal elements of the matrix, or in the real part of the off-diagonal elements of the
matrix, or in the imaginary part of the off-diagonal elements of the matrix do not change
the equations (30). In such a case the simultaneous scaling by a negative factor transforms
regular points into regular points, but these regular points may belong to different connected
domains of the iso-Chern diagram.

6 O Invariant Model Hamiltonians

The choice of a symmetry group depends on which model we are interested in. Leaving the
choice of SO(2) and D3 to another article [9], we here take up the cubic symmetry O group.
According to the choice of representations of the O group, we here consider three types of
model Hamiltonians.

6.1 A1-A1 Vibrational States for the O Group

A simplest effective two-state model for totally symmetric vibrational states of a molecule
with the O symmetry group has the following form in standard spectroscopic notations,

(
v + a1R

4(4,A1) + b1R
6(6,A1) u + a2R

4(4,A1) + b2R
6(6,A1) − icR9(9,A1)

u + a2R
4(4,A1) + b2R

6(6,A1) + icR9(9,A1) −v − a1R
4(4,A1) − b1R

6(6,A1)

)
,

(31)
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where the O-invariant rotational tensors can be taken in the following explicit form in terms
of Cartesian variables {x, y, z} (instead of writing {Jx, Jy, Jz})

R4(4,A1) = x4 + y4 + z4; (32)

R6(6,A1) = x2y2z2; (33)

R9(9,A1) = xyz
(
x2 − y2

)(
y2 − z2

)(
z2 − x2

)
. (34)

Scalar terms are neglected in the effective Hamiltonian (31). Time reversal symmetry is
included; the real part of the matrix depends on rotational variables in even degree, while
the imaginary part depends on rotational variables in odd degree.

In order to find degeneracy points, we need to solve the system of four equations

v + a1

(
x4 + y4 + z4

) + b1x
2y2z2 = 0; (35)

u + a2

(
x4 + y4 + z4

) + b2x
2y2z2 = 0; (36)

xyz
(
x2 − y2

)(
y2 − z2

)(
z2 − x2

) = 0; (37)

x2 + y2 + z2 = 1. (38)

Equation (35) corresponds to the zero of the diagonal element, and (36) and (37) impose
the real part and the imaginary part of the off-diagonal element to be zero, respectively.
Equation (38) describes the sphere.

Instead of analyzing the whole multi-parametric model, we are allowed to reduce the
number of parameters, keeping at the same time the subdivision of the parameter space
into iso-Chern domains. Two Hamiltonians belong to the same iso-Chern domain, if their
parameters can be connected by a continuous curve in the parameter space which does not
cross the parameter values corresponding to the presence of degeneracy points. Thus, we
need to find the description of parameters belonging to the same iso-Chern domain and of
the boundary of the domain. After constructing boundaries of iso-Chern domains, we have
only to take particular points in different domains to calculate Chern numbers for respective
domains.

In order to make such a choice of particular (but generic) numerical values, it is useful to
start by describing the space of orbits of the Oh group action on the sphere in terms of the
basic invariant polynomials

θ4 = x4 + y4 + z4, θ6 = x2y2z2. (39)

The resultant orbit space is shown in Fig. 2. This orbit space is described in details in [12,
Fig. 14 and Table 6].

The boundary of the space of orbits corresponds exactly to the zero value of the R9(9,A1)

tensor. It should be noted that the orbit space described in Fig. 2 is for the Oh group rather
than for the O group. The orbit space for the O group is twice larger, because the auxiliary
invariant polynomial R9(9,A1) for the O group takes two values for each internal point of
the space of Oh orbits characterized by two Oh invariant polynomials R4(4,A1) and R6(6,A1).
But we need exactly the Oh orbit space to analyze in a geometrical way the solutions of the
system of equations for the existence of degeneracy points. The key point is the fact that the
boundary of the Oh orbit space is the zero of the auxiliary invariant for the O group, which
is an index 2 subgroup of the Oh group.
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Fig. 2 Space of orbits of the Oh

group action on the sphere. The
boundary of the orbit space
corresponds to a zero of R9(9,A1)

auxiliary invariant tensor for the
O group action, whose square is
a polynomial of basic invariants

The diagonal element and the real part of the off-diagonal element are written as linear
functions of the basic invariant polynomials. Thus, graphical representations of these two
equations in terms of the basic invariant polynomials are straight lines. Generically, these
straight lines have one intersection point. This means that the simultaneous solution of the
first, second and fourth equations is a point, which naturally in general case does not coincide
with the points of the boundary of the Oh orbits space corresponding to zero value of the
imaginary part of the off-diagonal element.

By varying the control parameters we can change the position of the intersection point
of the two straight lines corresponding to the real part of the off-diagonal element and to the
diagonal element. If the intersection point of these two lines takes place on the boundary of
the Oh orbit space, the corresponding set of parameter values is associated with the effective
Hamiltonian possessing degeneracy of two eigenvalues. As long as the intersection point
belongs to the boundary (but not to the apex), there are in essence 24 equivalent points. This
is because the degeneracy points on the sphere form an orbit of the O group and the order of
the O group is 24. In this manner, we can make effective use of the {θ4, θ6} plane, in which
the orbit space and the two straight lines corresponding to the diagonal element and the real
part of the off-diagonal element are drawn, in order to figure out a geometric image of the
parameter space.

An obvious consequence of this geometrical approach to (35), (36), (37), (38) is the
existence of at least two different iso-Chern domains. To each effective Hamiltonian (31)
depending on seven control parameters, we put a point A on the {θ4, θ6} plane in correspon-
dence with the intersection point of the two straight lines representing zero of the diagonal
and of the real part of the off-diagonal element. A set of parameters for which the positions
of the point is outside the orbit space and a set of parameters for which the position of A

is inside the orbit space cannot belong to the same iso-Chern domain, because under a con-
tinuous variation of parameters the point A should cross the boundary of the orbit space in
order to pass from the outside to the inside of the orbit space and because the parameters
corresponding to the moment when the point A crosses the boundary are associated with the
degeneracy of the eigenvalues of the Hamiltonian.

Unfortunately, this simple analysis does not give the complete description of all iso-
Chern domains existing for the Hamiltonian (31). The two intersecting straight lines on the
{θ4, θ6} plane are not unique for a given Hamiltonians. In fact, if the parameters (v, a1, b1)

or (u, a2, b2) get the opposite sign, the position of the straight line in question remains to be
the same. We can distinguish those parameters by specifying the directions of the straight
lines with the convention that the positive values of the associated matrix element are on the
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left side of the line with respect to the chosen direction. As long as the direction is speci-
fied, we cannot realize a continuous modification of parameters which results in reversing
the orientation without going through some exceptional configurations of two straight lines
corresponding to zero or infinite values of the diagonal element or of the real part of the off-
diagonal element. Under parameter modifications two lines can also become parallel or can
coincide. The conditions for the appearance of degeneracy points can become less restrictive
if accidentally several coefficients go through zero values.

It is necessary to note that each generic configuration of the two straight lines on the
plane with the orbit space drawn corresponds to four different Hamiltonians. These four
Hamiltonians are due to different possible choice of the sign of the diagonal element and of
the real part of the off-diagonal element. Graphically we can describe these different choices
by assigning the direction (arrow) to each line under the convention already mentioned.
These four configurations cannot belong to the same iso-Chern domain.

The global topology of the parameter space and of the iso-Chern diagram will not be
studied here. We will just analyze some simple generic modification of parameters which
is represented schematically in Fig. 3. The initial choice of parameter values (Fig. 3a) and
the final choice of parameters (Fig. 3e) belong to the same iso-Chern domain, because the
configuration of two straight lines can be evolved from that in Fig. 3a to that in Fig. 3e in
such a way that the intersection point of the two lines does not either enter the orbit space
nor cross the boundary. The configuration shown in Fig. 3c belongs to another iso-Chern
domain.

Let us summarize now numerical results for the positions of exceptional points for the
effective Hamiltonian (31) with the following parameters:

v = 0.4; u = 0.6; a1 = −1; b1 = 1; a2 = 1.36;
b2 = −1; c = 1.

(40)

These parameters correspond to the position of the intersection point of the two straight
lines inside the orbit space. There are 24 “positive” real exceptional points, 24 “negative”
real exceptional points and 48 complex solutions for zeros of the off-diagonal element for
this set of control parameters, where “positive” and “negative” are attached to indicate the
sign of a11, the diagonal element, for exceptional points in question. We are interested only
in real solutions. They correspond to two intersection points of the line corresponding to
the real part of the off-diagonal element with the boundary of the orbit space. These two
points lie at different sides of the straight line representing zero of the diagonal element
and consequently they are associated with different sign of the diagonal element. These
exceptional points form two orbits of the O group action on the sphere. Each orbit consists
of 24 points and has a trivial stabilizer C1 of the O group. With respect to a larger Oh group
the stabilizer of each orbit is Cs . If we use the geometric representation of the Oh orbit space
in terms of the basis invariant polynomials (θ4 = x4 +y4 +z4, θ6 = x2y2z2), these two orbits
have coordinates

θ4 = 0.422181, θ6 = 0.0258329, a11 > 0

for positive exceptional points and

θ4 = 0.428552, θ6 = 0.0171687, a11 < 0

for negative exceptional points.
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Fig. 3 (Color online) Parametric evolution of an O symmetric Hamiltonian. Green line represents zero value
of the diagonal matrix element. Black line represents zero value of the real part of off-diagonal element.
Red boundary of the orbit space corresponds to zero value of the auxiliary invariant R9(9,A1) . The value
of v parameter varies from (a) to (e). The intersection point of two (green and black) lines corresponds to
simultaneous zero of the diagonal and the real part of the off-diagonal element. (b) and (d) correspond to
the set of parameters associated with the formation of 24 degeneracy points. When the intersection point is
outside of the orbit space, i.e. in (a) and (e) cases, the Chern numbers for two eigen-line bundles are zero.
When the intersection point is inside the orbit space, case (c), the Chern numbers are ±24
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Table 1 Exceptional points for
Hamiltonian (41) with
parameters given in (40). Each
line corresponds to four
exceptional points with all
possible combinations of signs of
x and y coordinates

z y x a11

0.75941 ±0.46004 ±0.46004 +
0.67772 ±0.67772 ±0.28527 −
0.67772 ±0.28527 ±0.67772 −
0.46004 ±0.75941 ±0.46004 +
0.46004 ±0.46004 ±0.75941 +
0.28527 ±0.67772 ±0.67772 −

−0.28527 ±0.67772 ±0.67772 −
−0.46004 ±0.46004 ±0.75941 +
−0.46004 ±0.75941 ±0.46004 +
−0.67772 ±0.28527 ±0.67772 −
−0.67772 ±0.67772 ±0.28527 −
−0.75941 ±0.46004 ±0.46004 +

The {x, y, z} coordinates of the real exceptional points are listed in Table 1.
In order to calculate the Chern number, we split the sphere into UP and DOWN domains

by zα = const sections, α = 1,2,3,4,5,6, subject to

0.7594 > z1 > 0.6777; 0.6777 > z2 > 0.4600;
0.4600 > z3 > 0.2852; −0.2852 > z4 > −0.4600;

−0.4600 > z5 > −0.6777; −0.6777 > z6 > −0.7594.

These zα = const sections separate regions with positive and negative exceptional points.
Both the real and the imaginary parts of the off-diagonal element are O-invariant func-

tions in the studied case of two totally symmetric states. As soon as the z axis coincides with
the order four symmetry axis, the winding number can be calculated as four times the wind-
ing number corresponding to the closed contour associated to the range of φ angle between
0 and π/2. This sub-contour is closed on the w-plane owing to the C4 symmetry.

Figure 4 shows winding numbers for three contours with positive zα values. Each con-
tour gives contribution ±4 to the Chern numbers. After summing winding numbers with
appropriate signs, the Chern numbers for two eigen-line bundles are found to be ±24.

When the parameters are such that the intersection point of two lines shown in Fig. 3
is located outside the orbit space, all exceptional points have the same sign. Both intersec-
tion points of the straight line corresponding to zero of the off-diagonal element with the
boundary of the orbit space are located in the same half-plane with respect to the line cor-
responding to zero of the diagonal element. The immediate consequence of this fact is the
zero Chern numbers for both components.

6.2 A1-A2 Vibrational States for the O Group

If we take into account rotational tensors up to degree six, an effective rotational Hamilto-
nian for two vibrational states with A1, A2 type representations of the O symmetry group
has the form

(
v + a1R

4(4,A1) + b1R
6(6,A1) a2R

6(6,A2) − icR3(3,A2)

a2R
6(6,A2) + icR3(3,A2) −v − a1R

4(4,A1) − b1R
6(6,A1)

)
. (41)
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Fig. 4 Winding number calculation for contours corresponding to z = 0.7, z = 0.6, z = 0.4. Due to Cz
4

symmetry of the imaginary part of off-diagonal element the plot is done for 0 ≤ φ ≤ π/2. The winding
number for the whole contour corresponding to 0 ≤ φ ≤ 2π is four times larger. The absolute value of total
winding number for each z = const section is four. The sign of winding numbers is shown by a diagram
below the contour in the complex plane

The A2 tensors can be chosen to take the form

R3(3,A2) = xyz; (42)

R6(6,A2) = (
x2 − y2

)(
y2 − z2

)(
z2 − x2

)
. (43)

In order to represent degeneracy points on the orbit space, we need to find expressions for
the square of R3(3,A2) and of R6(6,A2) in terms of basic invariants used in the preceding
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subsection;
(
R3(3,A2)

)2 = R6(6,A1); (44)

(
R6(6,A2)

)2 = 1

2

(
R4(4,A1)

)3 − 27
(
R6(6,A1)

)2 − 9R4(4,A1)R6(6,A1)

−5

4

(
R4(4,A1)

)2 + 5R6(6,A1) + R4(4,A1) − 1

4
. (45)

In fact, the answer is trivially related to the syzygy used earlier for the Oh group. The
auxiliary invariant R9(9,A1) is simply a product of two A2 covariants:

R9(9,A1) = R3(3,A2)R6(6,A2).

Thus, the imaginary part of the off-diagonal element becomes zero, R3(3,A2) = 0, only at the
boundary of the Oh orbit space, corresponding to R6(6,A1) = 0 (on the closure of Ch stratum
of the Oh group, where Ch class includes three reflections in planes orthogonal to three C4

axes). The real part of the off-diagonal element takes zero value at two other sides of the
Oh orbit space (on the closure of Cs stratum of the Oh group, where Cs class includes six
reflections in planes orthogonal to six C

(d)

2 axes). Common zero of the real and the imaginary
parts of the off-diagonal elements occurs always [for any non-zero choice of parameters of
the Hamiltonian written in the form (41)] at C4v and C2v isolated orbits of the Oh group.

For the Hamiltonian of the form (41), the representation of the zeros of diagonal elements
is a straight line on the {θ4, θ6} plane. In order to describe the situations corresponding to
the formation of degeneracy points (simultaneous zero of the diagonal and the off-diagonal
elements), we first note that varying coefficients in the off-diagonal element (one coefficient
for the real part and another coefficient for the imaginary part) does not alter the position
of zeros of the off-diagonal element, which are fixed at C2 and C4 axis positions except
for cases when a2 or c coefficients become zero. Varying coefficients of the diagonal part
changes the position of the straight line representing zeros of the diagonal elements on the
{θ4, θ6} plane. See Fig. 5.

Let us say that the straight line is regular if it does not pass through C2v or C4v orbit and
singular if it passes through at least one of these orbits. There are two different equivalence
classes of regular straight lines, which can be continuously transformed one into another
without passing through one singular line. One such class consists of all lines which cross
the line segment ((1/2,0), (1,0)). Another class consists of all lines which do not cross the
line segment ((1/2,0), (1,0)). This gives rise to the splitting of the parameter space of the
effective Hamiltonians into different iso-Chern domains.

For the more accurate description of different iso-Chern domains, one should take into
account the location of positive and negative values of the diagonal matrix elements, which
can be done by specifying the direction of the line. With such directions taken into account,
there are two different iso-Chern domains associated with lines crossing the Ch stratum and
two different iso-Chern domains associated with lines which do not cross the Ch stratum.

One singular line passes through C2v orbit. It corresponds to the formation of 12 equiv-
alent degeneracy points. Another singular line passing through C4v orbit corresponds to the
formation of 6 equivalent degeneracy points. It should be noted here that the degeneracy
points at C2v and C4v orbits differ by their multiplicity. While the degeneracy point belong-
ing to C2v orbit has multiplicity one, the degeneracy point at C4v orbit has multiplicity two.
This explains the same amount of change in Chern numbers when the parametric evolu-
tion of the effective Hamiltonian in the parameter space crosses the boundary of iso-Chern
domains at C2v or C4v orbits.
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Fig. 5 (Color online) Parametric evolution of rotational structure for effective Hamiltonian for two vibra-
tional states of A1 and A2 symmetry types in the presence of O symmetry. The representation is done in
basic invariants of Oh group. Green lines correspond to zero of diagonal element. Red line corresponds to
zero of the imaginary part of the off-diagonal element. Black lines corresponds to zeros of the real part of
the off-diagonal element. All figures correspond to the existence of 12 equivalent C2 zeros and 6 equivalent
C4 zeros of the off-diagonal element. (a), (c), (e) figures represent regular cases with the absence of degen-
eracy points. (b) corresponds to the existence of 12 degeneracy points at C2 positions. (d) corresponds to the
existence of 6 degeneracy points at C4 positions
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The same situation occurs in the multiplicity of zeros of the off-diagonal elements. For
any regular Hamiltonian there are 12 equivalent zeros at C2v orbit and 6 equivalent zeros at
C4v orbit. The winding number for each zero on C4v orbit is twice the winding number for
any zero on C2v orbit.

Finally the answer about possible values of Chern numbers can be formulated for the
effective Hamiltonian (41) in a rather simple way. There are two possible sets of Chern
numbers for two eigen-line bundles for the effective Hamiltonian (41) in the absence of
degeneracy points.

(i) Chern numbers are zero for two eigen-line bundles for the effective Hamiltonians cor-
responding to figures where the line of zeros of the diagonal element does not cross Ch

stratum.
(ii) Chern numbers are ±12 for two eigen-line bundles for the effective Hamiltonians cor-

responding to figures with the line of zeros of the diagonal element crossing Ch stratum.

Such a simple geometric representation is a consequence of a relatively simple form of
the effective Hamiltonian which includes a small number of tensor contributions for the real
and the imaginary parts of the off-diagonal matrix elements (in fact, only one contribution
for the real and one for the imaginary part of the off-diagonal element). Another simplify-
ing factor is the small number of auxiliary invariants needed to construct all invariant and
covariant tensors.

6.3 E Vibrational State for the O Group

Let us now consider a simple effective Hamiltonian for a doubly degenerate E vibrational
state in the presence of the O symmetry group, by taking into account terms up to third
degree in elementary rotational operators;

(
aR

2(2,E)

1 aR
2(2,E)

2 − ibR3(3,A2)

aR
2(2,E)

2 + ibR3(3,A2) −aR
2(2,E)

1

)
. (46)

Here we follow the choice of effective Hamiltonian done in [14] with simplifying notation
{Jx, Jy, Jz} ∼ {x, y, z};

R
2(2,E)

1 = 2z2 − x2 − y2; (47)

R
2(2,E)

2 = √
3
(
x2 − y2

); (48)

R3(3,A2) = xyz. (49)

There are only two control parameters a, b in the Hamiltonian (46). In spite of the fact that
the diagonal element and the real and the imaginary parts of the off-diagonal elements are
not invariant functions, it is still possible to express the condition for the appearance of
degeneracy points in terms of the basic invariant polynomials. The condition for zero value
of the imaginary part of the off-diagonal element reads

(
bR3(3,A2)

)2 = 0 ⇔ b2R6(6,A1) = 0. (50)

The condition for zero value of the real part of the off-diagonal element and of the diagonal
element can be written as

a2
[(

R
2(2,E)

1

)2 + (
R

2(2,E)

2

)2] = 0 ⇔ a2
(
3R4(4,A1) − 1

) = 0. (51)
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This means that for the effective Hamiltonian (46) the degeneracy points can appear only
when one of the control parameters a, b is zero. If both a and b parameters are non-zero,
there is no degeneracy points. If b = 0, the degeneracy points always exist on C3v orbit
defined on the space of orbits by the equality R4(4,A1) = 1/3. When a = 0 the Hamiltonian
is highly degenerate. There are three circles on the sphere x = 0, y = 0, z = 0 consisting of
degeneracy points.

In order to calculate the Chern numbers for the Hamiltonian with a 
= 0, b 
= 0, we need
to find a system of “exceptional” points. It is important to note that exceptional points do not
form orbits of the symmetry group, because the real part of the off-diagonal element belong
to a two-dimensional representation of the O group. Nevertheless we can consider it as an
invariant of D2 subgroup. The calculation of exceptional points in this simple example is
carried out straightforwardly. In fact, the solutions of the two equations

xyz = 0, x2 − y2 = 0; (52)

are

(x = 0, y = 0, z = ±1);
(

x = 1√
2
, y = ± 1√

2
, z = 0

)
;

(
x = − 1√

2
, y = ± 1√

2
, z = 0

)
.

Among these six exceptional points there are two lying on the z axis and four lying in the xy

plane. Their signs are opposite. We can calculate winding numbers either around positive or
around negative exceptional points. The off-diagonal element has C2 symmetry with respect
to the two exceptional points on the z axis. That is why the winding numbers for these
points are ±2, depending on the sign of parameters. At the same time the winding number
for the exceptional point lying in the equatorial plane is ±1. But the number of equatorial
points is four. So in any case the Chern numbers for two eigen-line bundles for the effective
Hamiltonian (46) with a 
= 0 and b 
= 0 are ±4.

7 Symmetry Analysis of Rearrangements

We can look at the problem of band formation and their rearrangements from the point of
view of symmetry effects by using completely different approach based on the analysis of
purely quantum problem.

In order to make the suggested below construction more physically meaningful, let us
suppose first that for a molecule with a given symmetry group G we have a system of ro-
tational multiplets associated with isolated vibrational states having certain symmetry types
�vib,i . Then for totally symmetric vibrational state there are 2J + 1 rotational levels for each
value of the rotational quantum number J whose purely rotational symmetry can be found
by decomposing the irreducible representation (J ) of rotational dynamic symmetry group
SO(3) (or SU(2) if half integers values of J are allowed) into irreducible representations of
the invariance symmetry group G. (For simplicity we assume that the symmetry group is a
purely rotational group without improper (reflection) symmetry operations.)

The total set of rotation-vibration states in the case of a system of vibrational states of
different symmetry types, �vib,i , i = 1, . . . , k spans the representation

(
k∑

i=1

�vib,i

)
⊗ (J ),
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where (J ) denotes the decomposition of a rotational multiplet of weight J into irreducible
representations of the symmetry group G. The sum over index i is the sum over all vi-
brational states, or equivalently over all irreducible representations (with their multiplicity
taken into account) spanned by the set of vibrational states.

Such presentation should be valid globally for all J values, if the rotational multiplets
for different vibrational states remain isolated and do not change. The sequence of rotational
multiplets with different J values forms a band. We say that the redistribution of energy
levels between bands takes place [17, 18] if we can rewrite the above expression in an
alternative form (∑

�vib,i

)
⊗ (J ) =

∑(
�vib,j ⊗ (J + 
j)

)
(53)

with 
j 
= 0 for at least some j . The sum over index i in the left-hand side and the sum over
the index j in the right-hand side of (53) could be over a different set of representations but
the total dimension of the whole set of vibrational states should be naturally the same.

This is in some way a generalization of the relation in the decomposition of the product
of two representations of SU(2) group with weights ( 1

2 ) and (J )

(
1

2

)
⊗ (J ) =

(
J + 1

2

)
⊕

(
J − 1

2

)

corresponding to the rearrangement of two rotational bands described by the simplest model
with Sz + t (J · S) Hamiltonian [5, 13, 16].

For the symmetry group O, formally imaginable redistributions of states between two
rotational multiplets associated with totally symmetrical quantum states are

(J )A1 + (J )A1 → (J + 
)A1 + (J − 
)A1 , (54)

among which the only possibilities are those corresponding to 
 = 12k, where (J )A1 de-
notes a tensor product representation of the (J ) representation of SO(3) group considered
as a reducible representation of the cubic symmetry group O by the A1 irrep of the O group,
and the other similar notations are defined likewise. Only in the case of 
 = 12k, the de-
composition of each of (J + 
) multiplet into irreducible representations of the O group
remains valid.

In a similar way we can analyze the situation with two different one-dimensional repre-
sentations and rotational part in the case of O symmetry.

Verifying the decompositions for the rearrangements of type

(J )A1 + (J )A2 → (J + 
)A1 + (J − 
)A2 , (55)

we find that only 
 = 6k with k any integer is possible.
An important fact is that the smaller value for 
 is possible in the case of two different

representations as compared to the case of two identical representations for quantum states.
Let us consider finally the case of doubly degenerate vibrational representation of the

symmetry group O and corresponding rotational structure. It is easy to see that the E band
cannot be decomposed into two bands with both bands having the same number of states
and keeping the appropriate set of irreducible representations of the O group. It follows just
from the fact that for J = 0 the E representation cannot be reduced. More generally, at any
J the number of E representations is the same for A1 band and for A2 band. At the same
time for E band the number of E representations for some J values is even but for some is
odd.
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In contrast, the rearrangement of type

(J )E ↔ (J + 
)A1 + (J − 
)A2 (56)

is possible, for example, for 
 = ±2,±4. At the same time the rearrangement is not possible
for 
 = ±3 nor for 
 = 0.

General analysis shows [18]:
For the O group with doubly degenerate vibrational representation, the decomposition

into individual bands according to (56) is possible for values of 
 being any even non-zero
integer except those multiple to 6: 
 
= 2k + 1, 
 
= 6k, k = 0,1,2, . . . . More formally

 = ±2 mod 6.

One of the goal of the present paper is to demonstrate that such a simple group theoretical
analysis gives the same results as the topological analysis which in the presence of symmetry
restricts the possible values of topological invariants (Chern numbers) for individual bands.
To correlate the results, one needs to remember that changing J by 
 is associated with the
modification of the energy levels within the band by 2
 and the modification of a Chern
number of an isolated band by δ is associated with the modification of the number of energy
levels within the band by δ. In view of this, it turns out that the agreement between analysis
of Chern numbers and symmetry decomposition done in this paper is exact.

8 Concluding Remarks

We here make a remark on the method for evaluating Chern numbers. We have mentioned
that the formula (28) can be brought into the sum of winding numbers for small circles
around positive exceptional points (see Fig. 1). This method for evaluation of Chern numbers
is a generic method which is used to find the Chern number for a complex line bundle or
a U(1) bundle over a two-dimensional manifold. In the study of the quantization of the
Hall conductance, one sets up a model quantum system on the two-torus and describes the
Hall conductance in terms of a Chern number [11]. The present method is used in practice
to evaluate the Chern number. The same method is applied in [4] for evaluating the Chern
number associated with a complex line bundle over a two-torus in relation with spectral
degeneracy in Harper-like models. It is applied also in [6] for evaluating the Chern number
of a complex line bundle over the two-sphere. Further, the method is available, if each small
circle retracts to the exceptional point enclosed by the circle and if the order of the zero
is not higher than one. This procedure provides a linearization method for Chern numbers,
which is used in [9].

We have studied rather particular problems of rearrangement of energy levels between
bands under a variation of control parameters of the model in the presence of a point symme-
try group. Our results show that possible values of Chern numbers characterizing individual
energy bands is strongly influenced by the symmetry. Direct calculation of Chern numbers
for a semi-quantum model allows us to find possible values of Chern numbers and their
modifications, but the formulation of general result similar to that obtained by completely
different arguments within group theoretical analysis of purely quantum problem is still
lacking. Another big step to realize consists in a generalization of this analysis to fiber bun-
dles defined over higher dimensional base space. First attempts in that direction was done in
[8]. Authors hope that the present analysis will be of help for advance in that direction.
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