TOPOLOGY

. Deformation of elastic body.
. Cutting and gluing.

. Morse type functions.

. Morse inequalities.

. Morse functions and symmetry.

. Generating functions for Morse polynomials.



Are these objects topologically equivalent?
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Can one object be transformed into another one?




Compare cylinder and Bbius strip.
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Gluing handles to sphere.




Gluing disks.
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Dirac construction which demonstrate non-equivalencgradind4
rotations.
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Morse functions

FunctionF'(x1, x2, . . ., xx) IS a Morse type function if all its stationary
points are non-degenerate.

By an appropriate change of variables near each statiomany ghe
Morse type function can be written as

Y — Y5 — e — Y+ Y+ YR

The number of plus or minus signs characterize the type tbatay
point.




Function ofone variablalefined on theircle.
Number of minimum points equals the number of maximum points

Compare with Euler relation for polygons.

For function oftwo variableon thespherdghe number of maximum
points plus the number of minimum points minus number of Eaddints
IS equal to 2.

Compare with Euler relation for polyhedrons.




Betti numbers.
by - number of connected components.

b1 - number of non-contractible closed curves (circles) winahnot be
expressed as a combination of others.

b, - number of closed non-equivalent 2D-surfaces ...

Table 1: Betti numbers and Euler characteristics for thaitafiplane, the

sphere and the torus,

bo b1 b2 x=0bp— b1+ b

plane 1 O
sphere 1

torus




Morse inequalities.

For a function of two variables defined on 2D-space chanzetby
Betti numbersyg, b1, b, there exist Morse inequalities

co = b07 (1)
c1 — cop > by — by, (2)

co —c1 +cop = ba — by + bo. (3)

which include the equality for Euler characteristics. Heres the number
of stationary points of index




What is the minimal number of stationary points for a genbtarse type
function defined on the sphefs in the presence of symmetry

021 D21 Td1 Oh! Ih ?

For an island with mountains one calculates:
the number of peaks (max) plus the number of wells (min) mthas
number of saddle points.
What is the result?




Morse polynomials and up-down permutations

Let us consider Morse polynomials of one variablef degreen + 1 with
the coefficient at™ ! equal 1.

p(x) =" + a1 +asx™ .+ g

We can associate each Morse polynomial with certain petmoatan the
set ofn elements. The permutation indicates the order of critiafles of
polynomial.

(45132)




Up-down permutations

Each element of such permutation either larger than botkeitsand
right) neighbors or smaller than both neighbors. The lasnhenht should

always be smaller that its left neighbor.

For smalln the numbers of types of Morse polynomials form sequence

1,1,2,5,16, 61,272, ...

AN
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DEVIATION: Exponential generating functions

Properties of exponential generating functions
Formula for product

a2 o bo b1 b2 oo — (D8 22y
+ —s+ 2!8 —|—...)<O!-|—1!s-|—2!s —|—...>—(O!—|—1!s-|—2!s + ...

where

en = Vaohn+( Varbp1+...+( anb
0 1 n




Derivative and integral of exponential generating funasio

ap ~ ap az o oar | ag asg o ,
(a—l—ﬂs—l_gs —l_..-)—a_l_ﬂS—I_Q!S —I_"'7

/dS(@—I-ﬁS—I-%S2—I-...):@S—I—ESQ—I—%SS—I—....

ol 1! 2! 1! 2! 3!

end of deviation




For oddn the number of up-down permutatiorts, is given by the
exponential generating function

b b 1 2 16
B(z)= —z+ —2*+...= o+ 2>+ —2°+ ... = tanax

1! 3! 1! 3! 5!

For evenn the number of up-down permutatiors,, is given by the
exponential generating function

1 5 601 1
—I—...:1—|—§y2—|——x4—|— by =

€4 4 22
4! 6! Y COS Y
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Derivation of the generating function

For each Morse polynomials we move the highest maximum nftoity.
This gives the correspondence between initial Morse paohaband two
new Morse polynomials. If initial polynomial hgs + 1) critical points,
two new polynomials havé and(n — k) critical points with(n — k)

being odd.
If (n+ 1) is odd therk and(n — k) are both odd and we have a recurrerjt
relation forb,,:
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Using properties of exponential generating functions wesha
B'(z) = B*(z) + 1.

Solution of this equation gives

B
dB = (B* + 1)dz, B2+1:/da:

arctan B =z, B(x) = tan(z).




If (n+ 1) is even therk is even andn — k) is odd. The recurrent relation
takes the form:

En+1 = Z ( : )ekbn—k-

k even

It corresponds to the following equation on generating fioms:

Its solution gives

(In&(y))" = tany,




Dynamical system applications

Examples of classifications of dynamical systems.
Definition domain of dynamic variables - phase space topolog

Harmonic oscillator{g;, p;} dynamic variables???¥ phase space.

Reduced isotropic harmonic oscillatdr;, (p7 + ¢7)/2 = Const
C'Pn_1 phase space.

Rotator with fixed square of the angular momentum.
Dynamic variabled,..L,, L., L, + L; + L? = const.
The phase space is a two-dimensional sphgtfey CP;.




Two dynamical systems are equivalent if :

0) Their phase spaces are topologically equivalent (veiakwe
equivalence).

1) Their systems of stationary points of Hamiltonians areiegjent.

i) Stratifications of the phase space by symmetry groumadre
equivalent.

i) Their phase portraits are equivalents (very strongiesjance).




Rotational problem$? phase space) is equivalent to reduced vibrationl
problem for two-dimensional harmonic oscillatér ; phase space)

- topological equivalence of phase spaces.

Action of the same symmetry group on rotational and vibratlo
variables can be different.




Complexity characterization of Hamiltonians.

Hamiltonian is a Morse type function.

Simplest Hamiltonian - minimal number of non-degeneraatictary

points (compatible with the symmetry group action).
- Perfect Morse type function.
Examples

Hamiltonian on theS? phase space without symmetry.
Two stationary points (minimum and maximum)

Hamiltonian on the5? phase space in the presence of inversion symmeljry.
Six stationary points (two minima, two maxima, two saddles)
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1 degree of freedom; 1 control parameter

Table 2: Bifurcations in the presence of symmetry. Soligdimienote
stable stationary points. Dash lines - unstable statiopamyts. Numbers
In parenthesis indicate the multiplicity of stationary st

Cfé\f:l: 02L:|: CN

n

n=34 CLt n>4

The type of bifurcation depends on the local symmetry (Bagn) of a stationary point.




Let us consider the transformation of vectefs= ( (1) ) ey = (

given by matrix

Aeq . A2eq
A3eq - Atey
Aes - AZey
A3es - Atey

The integer numbers which appear belong to the Fibonacoeseg.




Matrix A is symmetric, it can be diagonalized.

=(2-AN)(1=-XN)—-1=X-3)+1,

This gives A, = 32—*/5 =1+ pand)\_ = 3_2—\/5 =2 — .
¢ is the gold number, solution of equatied = = + 1.




Eigenvectors oA :




1
1 1

Matrix A =

can be considered as a transformation of a torus.

In this context it is known under the name : Arnold‘s cat map




Catastrophe theory

We want to study the behavior of a system under variation wfeso
control parameters.

The number of parameters is of crucial importance.

Important notions:

Generic property

Structural stability




Examples of generic statements:

e Generic smooth function of one variall&x) takes value O at some
pointz = xy and at that point the first derivative is non-zero,

dF
%lfﬂ:fﬂo 7é 0.

Generic smooth function of several variablegr, ...z ) is of Morse
type (all stationary points are non-degenerate).

e A one-parameter family of smooth functions of one variable; \)
has at some value of control parameter \y function F'(z; A\g)
possessing at some value= xy a degenerate stationary point with

dF(CC, )\0)

d2F(CIZ; )\0)

dx T=xq d£U2

— 0 and




Fold catastrophe.
Eigenvalues of a generic real symmetric mafvfxare not degenerate.

One parameter family of real symmetric matridgg)\) does not
Include matrices with degenerate eigenvalues.

Two-parameter family of complex Hermitian matrick& A, i) does
not include matrices with degenerate eigenvalues.

Three parameter family of complex Hermitian matridés\.u, v/)
has for some isolated values of parametees \g, 1 = po, v = 1
matrix M (Ao, 1o, o) With two degenerate eigenvalues.




Evolution of the equilibrium position as a function of casitparameters.

Gravitational machine
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Van der Waals equation

(P + %)(V—b) — RT

ForT > T., - P(V) has no stationary points.
ForT < T¢, - P(V) has one minimum and one maximum.
[The line of the first order phase transition ends by a ciipicant.]

PV? —bPV?+aV —ab= RTV? (4)

RT a ab
3 L2 Gy, 89
V (b—|— P)V —|—PV Iz 0 (5)

For critical isotermil” = T, this polynomial has three coinciding roots

(V =Vu)? =V3 =3V, V4 3VV - V3 =0 (6)




Compairing coefficients allows to find..., P.., T¢,

RT ¢

3Ver
PCI'




Regular lattices and defects

Periodic solids
Non-periodic crystals
Sphere packing
Honeycomb

Bernard convection.

Defects of lattices: vacation, dislocation, disclinatioronodromy defect.
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(G. Gaeta, Phys. Rep. 189, 4 (1990)) “Go to the kitchen, lighthe
stove, and put a pot on it (let us say about 30 cm diameter)amécup
of water and 3/4 cup of rice. The quantity of heat producedupdrtime
by the flame is your control parameter; in the beginning yaepkiélow,

mix everything and wait for the system to reach equilibridrater you
try to increase it. You observe that when the flame is highiteegets
Into a peculiar pattern, with many holes; if you observe gatern, you

will notice a hexagonal symmetry. ... This example is phaibyaelevant
and has its own nam@&grnard convectiorfthe convection cells are called
Bérnard cells.) It takes place, besides in your kitchen,arsstif you look
at an astronomy book, you will probably find a picture of th&'Su
surface displaying the same kind of pattern that you obslarvgour
overheated rice pot.”




The closest 2D-packing gives many alternative periodicraomdperiodic
packings.







Lattice with vacation.
Construction of linear dislocation and lattice with linelslocation




Construction of the angular dislocation (elementary moooy defect).




A
¥

Regular square lattice with three elementary monodromgalef




WAW

Regular triangular lattice with two elementary monodrorsfedts.




Construction of the rotational disclination by removindgigangler /2
shown on the left picture.




Construction of the rotational dislocation (disclinafidny introducing
solid anglekn /2. k = 1 on the left and: = 4 on the right picture.
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